diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +50 -53
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.0.dist-info/RECORD +0 -399
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -25,6 +25,7 @@ from transformers import (
|
|
25
25
|
CLIPVisionModelWithProjection,
|
26
26
|
)
|
27
27
|
|
28
|
+
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
|
28
29
|
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
29
30
|
from ...loaders import (
|
30
31
|
FromSingleFileMixin,
|
@@ -35,8 +36,6 @@ from ...loaders import (
|
|
35
36
|
from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
36
37
|
from ...models.attention_processor import (
|
37
38
|
AttnProcessor2_0,
|
38
|
-
LoRAAttnProcessor2_0,
|
39
|
-
LoRAXFormersAttnProcessor,
|
40
39
|
XFormersAttnProcessor,
|
41
40
|
)
|
42
41
|
from ...models.lora import adjust_lora_scale_text_encoder
|
@@ -91,9 +90,21 @@ EXAMPLE_DOC_STRING = """
|
|
91
90
|
|
92
91
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
|
93
92
|
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
94
|
-
"""
|
95
|
-
|
96
|
-
|
93
|
+
r"""
|
94
|
+
Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
|
95
|
+
Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
|
96
|
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
97
|
+
|
98
|
+
Args:
|
99
|
+
noise_cfg (`torch.Tensor`):
|
100
|
+
The predicted noise tensor for the guided diffusion process.
|
101
|
+
noise_pred_text (`torch.Tensor`):
|
102
|
+
The predicted noise tensor for the text-guided diffusion process.
|
103
|
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
104
|
+
A rescale factor applied to the noise predictions.
|
105
|
+
|
106
|
+
Returns:
|
107
|
+
noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
|
97
108
|
"""
|
98
109
|
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
99
110
|
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
@@ -124,9 +135,10 @@ def retrieve_timesteps(
|
|
124
135
|
num_inference_steps: Optional[int] = None,
|
125
136
|
device: Optional[Union[str, torch.device]] = None,
|
126
137
|
timesteps: Optional[List[int]] = None,
|
138
|
+
sigmas: Optional[List[float]] = None,
|
127
139
|
**kwargs,
|
128
140
|
):
|
129
|
-
"""
|
141
|
+
r"""
|
130
142
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
131
143
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
132
144
|
|
@@ -134,19 +146,23 @@ def retrieve_timesteps(
|
|
134
146
|
scheduler (`SchedulerMixin`):
|
135
147
|
The scheduler to get timesteps from.
|
136
148
|
num_inference_steps (`int`):
|
137
|
-
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
138
|
-
|
149
|
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
150
|
+
must be `None`.
|
139
151
|
device (`str` or `torch.device`, *optional*):
|
140
152
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
141
153
|
timesteps (`List[int]`, *optional*):
|
142
|
-
|
143
|
-
|
144
|
-
|
154
|
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
155
|
+
`num_inference_steps` and `sigmas` must be `None`.
|
156
|
+
sigmas (`List[float]`, *optional*):
|
157
|
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
158
|
+
`num_inference_steps` and `timesteps` must be `None`.
|
145
159
|
|
146
160
|
Returns:
|
147
161
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
148
162
|
second element is the number of inference steps.
|
149
163
|
"""
|
164
|
+
if timesteps is not None and sigmas is not None:
|
165
|
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
150
166
|
if timesteps is not None:
|
151
167
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
152
168
|
if not accepts_timesteps:
|
@@ -157,6 +173,16 @@ def retrieve_timesteps(
|
|
157
173
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
158
174
|
timesteps = scheduler.timesteps
|
159
175
|
num_inference_steps = len(timesteps)
|
176
|
+
elif sigmas is not None:
|
177
|
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
178
|
+
if not accept_sigmas:
|
179
|
+
raise ValueError(
|
180
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
181
|
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
182
|
+
)
|
183
|
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
184
|
+
timesteps = scheduler.timesteps
|
185
|
+
num_inference_steps = len(timesteps)
|
160
186
|
else:
|
161
187
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
162
188
|
timesteps = scheduler.timesteps
|
@@ -231,11 +257,8 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
231
257
|
_callback_tensor_inputs = [
|
232
258
|
"latents",
|
233
259
|
"prompt_embeds",
|
234
|
-
"negative_prompt_embeds",
|
235
260
|
"add_text_embeds",
|
236
261
|
"add_time_ids",
|
237
|
-
"negative_pooled_prompt_embeds",
|
238
|
-
"add_neg_time_ids",
|
239
262
|
]
|
240
263
|
|
241
264
|
def __init__(
|
@@ -288,10 +311,10 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
288
311
|
do_classifier_free_guidance: bool = True,
|
289
312
|
negative_prompt: Optional[str] = None,
|
290
313
|
negative_prompt_2: Optional[str] = None,
|
291
|
-
prompt_embeds: Optional[torch.
|
292
|
-
negative_prompt_embeds: Optional[torch.
|
293
|
-
pooled_prompt_embeds: Optional[torch.
|
294
|
-
negative_pooled_prompt_embeds: Optional[torch.
|
314
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
315
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
316
|
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
317
|
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
295
318
|
lora_scale: Optional[float] = None,
|
296
319
|
clip_skip: Optional[int] = None,
|
297
320
|
):
|
@@ -317,17 +340,17 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
317
340
|
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
318
341
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
319
342
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
320
|
-
prompt_embeds (`torch.
|
343
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
321
344
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
322
345
|
provided, text embeddings will be generated from `prompt` input argument.
|
323
|
-
negative_prompt_embeds (`torch.
|
346
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
324
347
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
325
348
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
326
349
|
argument.
|
327
|
-
pooled_prompt_embeds (`torch.
|
350
|
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
328
351
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
329
352
|
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
330
|
-
negative_pooled_prompt_embeds (`torch.
|
353
|
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
331
354
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
332
355
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
333
356
|
input argument.
|
@@ -626,14 +649,16 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
626
649
|
if denoising_start is None:
|
627
650
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
628
651
|
t_start = max(num_inference_steps - init_timestep, 0)
|
629
|
-
else:
|
630
|
-
t_start = 0
|
631
652
|
|
632
|
-
|
653
|
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
654
|
+
if hasattr(self.scheduler, "set_begin_index"):
|
655
|
+
self.scheduler.set_begin_index(t_start * self.scheduler.order)
|
656
|
+
|
657
|
+
return timesteps, num_inference_steps - t_start
|
633
658
|
|
634
|
-
|
635
|
-
|
636
|
-
|
659
|
+
else:
|
660
|
+
# Strength is irrelevant if we directly request a timestep to start at;
|
661
|
+
# that is, strength is determined by the denoising_start instead.
|
637
662
|
discrete_timestep_cutoff = int(
|
638
663
|
round(
|
639
664
|
self.scheduler.config.num_train_timesteps
|
@@ -641,22 +666,23 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
641
666
|
)
|
642
667
|
)
|
643
668
|
|
644
|
-
num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item()
|
669
|
+
num_inference_steps = (self.scheduler.timesteps < discrete_timestep_cutoff).sum().item()
|
645
670
|
if self.scheduler.order == 2 and num_inference_steps % 2 == 0:
|
646
671
|
# if the scheduler is a 2nd order scheduler we might have to do +1
|
647
672
|
# because `num_inference_steps` might be even given that every timestep
|
648
673
|
# (except the highest one) is duplicated. If `num_inference_steps` is even it would
|
649
674
|
# mean that we cut the timesteps in the middle of the denoising step
|
650
|
-
# (between 1st and 2nd
|
675
|
+
# (between 1st and 2nd derivative) which leads to incorrect results. By adding 1
|
651
676
|
# we ensure that the denoising process always ends after the 2nd derivate step of the scheduler
|
652
677
|
num_inference_steps = num_inference_steps + 1
|
653
678
|
|
654
679
|
# because t_n+1 >= t_n, we slice the timesteps starting from the end
|
655
|
-
|
680
|
+
t_start = len(self.scheduler.timesteps) - num_inference_steps
|
681
|
+
timesteps = self.scheduler.timesteps[t_start:]
|
682
|
+
if hasattr(self.scheduler, "set_begin_index"):
|
683
|
+
self.scheduler.set_begin_index(t_start)
|
656
684
|
return timesteps, num_inference_steps
|
657
685
|
|
658
|
-
return timesteps, num_inference_steps - t_start
|
659
|
-
|
660
686
|
def prepare_latents(
|
661
687
|
self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None, add_noise=True
|
662
688
|
):
|
@@ -665,6 +691,12 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
665
691
|
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
666
692
|
)
|
667
693
|
|
694
|
+
latents_mean = latents_std = None
|
695
|
+
if hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None:
|
696
|
+
latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1)
|
697
|
+
if hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None:
|
698
|
+
latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1)
|
699
|
+
|
668
700
|
# Offload text encoder if `enable_model_cpu_offload` was enabled
|
669
701
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
670
702
|
self.text_encoder_2.to("cpu")
|
@@ -690,6 +722,13 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
690
722
|
)
|
691
723
|
|
692
724
|
elif isinstance(generator, list):
|
725
|
+
if image.shape[0] < batch_size and batch_size % image.shape[0] == 0:
|
726
|
+
image = torch.cat([image] * (batch_size // image.shape[0]), dim=0)
|
727
|
+
elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0:
|
728
|
+
raise ValueError(
|
729
|
+
f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} "
|
730
|
+
)
|
731
|
+
|
693
732
|
init_latents = [
|
694
733
|
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
695
734
|
for i in range(batch_size)
|
@@ -702,7 +741,12 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
702
741
|
self.vae.to(dtype)
|
703
742
|
|
704
743
|
init_latents = init_latents.to(dtype)
|
705
|
-
|
744
|
+
if latents_mean is not None and latents_std is not None:
|
745
|
+
latents_mean = latents_mean.to(device=device, dtype=dtype)
|
746
|
+
latents_std = latents_std.to(device=device, dtype=dtype)
|
747
|
+
init_latents = (init_latents - latents_mean) * self.vae.config.scaling_factor / latents_std
|
748
|
+
else:
|
749
|
+
init_latents = self.vae.config.scaling_factor * init_latents
|
706
750
|
|
707
751
|
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
|
708
752
|
# expand init_latents for batch_size
|
@@ -754,6 +798,9 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
754
798
|
def prepare_ip_adapter_image_embeds(
|
755
799
|
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
756
800
|
):
|
801
|
+
image_embeds = []
|
802
|
+
if do_classifier_free_guidance:
|
803
|
+
negative_image_embeds = []
|
757
804
|
if ip_adapter_image_embeds is None:
|
758
805
|
if not isinstance(ip_adapter_image, list):
|
759
806
|
ip_adapter_image = [ip_adapter_image]
|
@@ -763,7 +810,6 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
763
810
|
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
764
811
|
)
|
765
812
|
|
766
|
-
image_embeds = []
|
767
813
|
for single_ip_adapter_image, image_proj_layer in zip(
|
768
814
|
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
769
815
|
):
|
@@ -771,36 +817,28 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
771
817
|
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
772
818
|
single_ip_adapter_image, device, 1, output_hidden_state
|
773
819
|
)
|
774
|
-
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
775
|
-
single_negative_image_embeds = torch.stack(
|
776
|
-
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
777
|
-
)
|
778
820
|
|
821
|
+
image_embeds.append(single_image_embeds[None, :])
|
779
822
|
if do_classifier_free_guidance:
|
780
|
-
|
781
|
-
single_image_embeds = single_image_embeds.to(device)
|
782
|
-
|
783
|
-
image_embeds.append(single_image_embeds)
|
823
|
+
negative_image_embeds.append(single_negative_image_embeds[None, :])
|
784
824
|
else:
|
785
|
-
repeat_dims = [1]
|
786
|
-
image_embeds = []
|
787
825
|
for single_image_embeds in ip_adapter_image_embeds:
|
788
826
|
if do_classifier_free_guidance:
|
789
827
|
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
790
|
-
|
791
|
-
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
792
|
-
)
|
793
|
-
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
794
|
-
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
795
|
-
)
|
796
|
-
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
797
|
-
else:
|
798
|
-
single_image_embeds = single_image_embeds.repeat(
|
799
|
-
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
800
|
-
)
|
828
|
+
negative_image_embeds.append(single_negative_image_embeds)
|
801
829
|
image_embeds.append(single_image_embeds)
|
802
830
|
|
803
|
-
|
831
|
+
ip_adapter_image_embeds = []
|
832
|
+
for i, single_image_embeds in enumerate(image_embeds):
|
833
|
+
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
834
|
+
if do_classifier_free_guidance:
|
835
|
+
single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
|
836
|
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
|
837
|
+
|
838
|
+
single_image_embeds = single_image_embeds.to(device=device)
|
839
|
+
ip_adapter_image_embeds.append(single_image_embeds)
|
840
|
+
|
841
|
+
return ip_adapter_image_embeds
|
804
842
|
|
805
843
|
def _get_add_time_ids(
|
806
844
|
self,
|
@@ -862,8 +900,6 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
862
900
|
(
|
863
901
|
AttnProcessor2_0,
|
864
902
|
XFormersAttnProcessor,
|
865
|
-
LoRAXFormersAttnProcessor,
|
866
|
-
LoRAAttnProcessor2_0,
|
867
903
|
),
|
868
904
|
)
|
869
905
|
# if xformers or torch_2_0 is used attention block does not need
|
@@ -874,20 +910,22 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
874
910
|
self.vae.decoder.mid_block.to(dtype)
|
875
911
|
|
876
912
|
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
877
|
-
def get_guidance_scale_embedding(
|
913
|
+
def get_guidance_scale_embedding(
|
914
|
+
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
915
|
+
) -> torch.Tensor:
|
878
916
|
"""
|
879
917
|
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
880
918
|
|
881
919
|
Args:
|
882
|
-
|
883
|
-
|
920
|
+
w (`torch.Tensor`):
|
921
|
+
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
884
922
|
embedding_dim (`int`, *optional*, defaults to 512):
|
885
|
-
|
886
|
-
dtype:
|
887
|
-
|
923
|
+
Dimension of the embeddings to generate.
|
924
|
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
925
|
+
Data type of the generated embeddings.
|
888
926
|
|
889
927
|
Returns:
|
890
|
-
`torch.
|
928
|
+
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
891
929
|
"""
|
892
930
|
assert len(w.shape) == 1
|
893
931
|
w = w * 1000.0
|
@@ -951,6 +989,7 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
951
989
|
strength: float = 0.3,
|
952
990
|
num_inference_steps: int = 50,
|
953
991
|
timesteps: List[int] = None,
|
992
|
+
sigmas: List[float] = None,
|
954
993
|
denoising_start: Optional[float] = None,
|
955
994
|
denoising_end: Optional[float] = None,
|
956
995
|
guidance_scale: float = 5.0,
|
@@ -959,13 +998,13 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
959
998
|
num_images_per_prompt: Optional[int] = 1,
|
960
999
|
eta: float = 0.0,
|
961
1000
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
962
|
-
latents: Optional[torch.
|
963
|
-
prompt_embeds: Optional[torch.
|
964
|
-
negative_prompt_embeds: Optional[torch.
|
965
|
-
pooled_prompt_embeds: Optional[torch.
|
966
|
-
negative_pooled_prompt_embeds: Optional[torch.
|
1001
|
+
latents: Optional[torch.Tensor] = None,
|
1002
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
1003
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
1004
|
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
1005
|
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
967
1006
|
ip_adapter_image: Optional[PipelineImageInput] = None,
|
968
|
-
ip_adapter_image_embeds: Optional[List[torch.
|
1007
|
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
969
1008
|
output_type: Optional[str] = "pil",
|
970
1009
|
return_dict: bool = True,
|
971
1010
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
@@ -979,7 +1018,9 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
979
1018
|
aesthetic_score: float = 6.0,
|
980
1019
|
negative_aesthetic_score: float = 2.5,
|
981
1020
|
clip_skip: Optional[int] = None,
|
982
|
-
callback_on_step_end: Optional[
|
1021
|
+
callback_on_step_end: Optional[
|
1022
|
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
1023
|
+
] = None,
|
983
1024
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
984
1025
|
**kwargs,
|
985
1026
|
):
|
@@ -993,7 +1034,7 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
993
1034
|
prompt_2 (`str` or `List[str]`, *optional*):
|
994
1035
|
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
995
1036
|
used in both text-encoders
|
996
|
-
image (`torch.
|
1037
|
+
image (`torch.Tensor` or `PIL.Image.Image` or `np.ndarray` or `List[torch.Tensor]` or `List[PIL.Image.Image]` or `List[np.ndarray]`):
|
997
1038
|
The image(s) to modify with the pipeline.
|
998
1039
|
strength (`float`, *optional*, defaults to 0.3):
|
999
1040
|
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`
|
@@ -1009,6 +1050,10 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
1009
1050
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
1010
1051
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
1011
1052
|
passed will be used. Must be in descending order.
|
1053
|
+
sigmas (`List[float]`, *optional*):
|
1054
|
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
1055
|
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
1056
|
+
will be used.
|
1012
1057
|
denoising_start (`float`, *optional*):
|
1013
1058
|
When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
|
1014
1059
|
bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
|
@@ -1045,30 +1090,30 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
1045
1090
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1046
1091
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
1047
1092
|
to make generation deterministic.
|
1048
|
-
latents (`torch.
|
1093
|
+
latents (`torch.Tensor`, *optional*):
|
1049
1094
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
1050
1095
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1051
1096
|
tensor will ge generated by sampling using the supplied random `generator`.
|
1052
|
-
prompt_embeds (`torch.
|
1097
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
1053
1098
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
1054
1099
|
provided, text embeddings will be generated from `prompt` input argument.
|
1055
|
-
negative_prompt_embeds (`torch.
|
1100
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
1056
1101
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
1057
1102
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
1058
1103
|
argument.
|
1059
|
-
pooled_prompt_embeds (`torch.
|
1104
|
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
1060
1105
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
1061
1106
|
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
1062
|
-
negative_pooled_prompt_embeds (`torch.
|
1107
|
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
1063
1108
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
1064
1109
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
1065
1110
|
input argument.
|
1066
1111
|
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
1067
|
-
ip_adapter_image_embeds (`List[torch.
|
1068
|
-
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
1069
|
-
Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
1070
|
-
if `do_classifier_free_guidance` is set to `True`.
|
1071
|
-
|
1112
|
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
1113
|
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
1114
|
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
1115
|
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
1116
|
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
1072
1117
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
1073
1118
|
The output format of the generate image. Choose between
|
1074
1119
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
@@ -1124,11 +1169,11 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
1124
1169
|
clip_skip (`int`, *optional*):
|
1125
1170
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
1126
1171
|
the output of the pre-final layer will be used for computing the prompt embeddings.
|
1127
|
-
callback_on_step_end (`Callable`, *optional*):
|
1128
|
-
A function
|
1129
|
-
with the following arguments: `callback_on_step_end(self:
|
1130
|
-
callback_kwargs: Dict)`. `callback_kwargs` will include a
|
1131
|
-
`callback_on_step_end_tensor_inputs`.
|
1172
|
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
1173
|
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
1174
|
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
1175
|
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
1176
|
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
1132
1177
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1133
1178
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1134
1179
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
@@ -1158,6 +1203,9 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
1158
1203
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
1159
1204
|
)
|
1160
1205
|
|
1206
|
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
1207
|
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
1208
|
+
|
1161
1209
|
# 1. Check inputs. Raise error if not correct
|
1162
1210
|
self.check_inputs(
|
1163
1211
|
prompt,
|
@@ -1224,7 +1272,9 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
1224
1272
|
def denoising_value_valid(dnv):
|
1225
1273
|
return isinstance(dnv, float) and 0 < dnv < 1
|
1226
1274
|
|
1227
|
-
timesteps, num_inference_steps = retrieve_timesteps(
|
1275
|
+
timesteps, num_inference_steps = retrieve_timesteps(
|
1276
|
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
1277
|
+
)
|
1228
1278
|
timesteps, num_inference_steps = self.get_timesteps(
|
1229
1279
|
num_inference_steps,
|
1230
1280
|
strength,
|
@@ -1234,17 +1284,19 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
1234
1284
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
1235
1285
|
|
1236
1286
|
add_noise = True if self.denoising_start is None else False
|
1287
|
+
|
1237
1288
|
# 6. Prepare latent variables
|
1238
|
-
latents
|
1239
|
-
|
1240
|
-
|
1241
|
-
|
1242
|
-
|
1243
|
-
|
1244
|
-
|
1245
|
-
|
1246
|
-
|
1247
|
-
|
1289
|
+
if latents is None:
|
1290
|
+
latents = self.prepare_latents(
|
1291
|
+
image,
|
1292
|
+
latent_timestep,
|
1293
|
+
batch_size,
|
1294
|
+
num_images_per_prompt,
|
1295
|
+
prompt_embeds.dtype,
|
1296
|
+
device,
|
1297
|
+
generator,
|
1298
|
+
add_noise,
|
1299
|
+
)
|
1248
1300
|
# 7. Prepare extra step kwargs.
|
1249
1301
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1250
1302
|
|
@@ -1368,7 +1420,12 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
1368
1420
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
1369
1421
|
|
1370
1422
|
# compute the previous noisy sample x_t -> x_t-1
|
1423
|
+
latents_dtype = latents.dtype
|
1371
1424
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1425
|
+
if latents.dtype != latents_dtype:
|
1426
|
+
if torch.backends.mps.is_available():
|
1427
|
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
1428
|
+
latents = latents.to(latents_dtype)
|
1372
1429
|
|
1373
1430
|
if callback_on_step_end is not None:
|
1374
1431
|
callback_kwargs = {}
|
@@ -1378,13 +1435,8 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
1378
1435
|
|
1379
1436
|
latents = callback_outputs.pop("latents", latents)
|
1380
1437
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1381
|
-
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1382
1438
|
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
|
1383
|
-
negative_pooled_prompt_embeds = callback_outputs.pop(
|
1384
|
-
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
1385
|
-
)
|
1386
1439
|
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
|
1387
|
-
add_neg_time_ids = callback_outputs.pop("add_neg_time_ids", add_neg_time_ids)
|
1388
1440
|
|
1389
1441
|
# call the callback, if provided
|
1390
1442
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
@@ -1403,6 +1455,10 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
1403
1455
|
if needs_upcasting:
|
1404
1456
|
self.upcast_vae()
|
1405
1457
|
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1458
|
+
elif latents.dtype != self.vae.dtype:
|
1459
|
+
if torch.backends.mps.is_available():
|
1460
|
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
1461
|
+
self.vae = self.vae.to(latents.dtype)
|
1406
1462
|
|
1407
1463
|
# unscale/denormalize the latents
|
1408
1464
|
# denormalize with the mean and std if available and not None
|