diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1036 @@
1
+ # Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import PIL.Image
19
+ import torch
20
+ from transformers import (
21
+ CLIPTextModelWithProjection,
22
+ CLIPTokenizer,
23
+ T5EncoderModel,
24
+ T5TokenizerFast,
25
+ )
26
+
27
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
28
+ from ...loaders import FromSingleFileMixin, SD3LoraLoaderMixin
29
+ from ...models.autoencoders import AutoencoderKL
30
+ from ...models.transformers import SD3Transformer2DModel
31
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
32
+ from ...utils import (
33
+ USE_PEFT_BACKEND,
34
+ is_torch_xla_available,
35
+ logging,
36
+ replace_example_docstring,
37
+ scale_lora_layers,
38
+ unscale_lora_layers,
39
+ )
40
+ from ...utils.torch_utils import randn_tensor
41
+ from ..pipeline_utils import DiffusionPipeline
42
+ from .pipeline_output import StableDiffusion3PipelineOutput
43
+
44
+
45
+ if is_torch_xla_available():
46
+ import torch_xla.core.xla_model as xm
47
+
48
+ XLA_AVAILABLE = True
49
+ else:
50
+ XLA_AVAILABLE = False
51
+
52
+
53
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
54
+
55
+ EXAMPLE_DOC_STRING = """
56
+ Examples:
57
+ ```py
58
+ >>> import torch
59
+
60
+ >>> from diffusers import AutoPipelineForImage2Image
61
+ >>> from diffusers.utils import load_image
62
+
63
+ >>> device = "cuda"
64
+ >>> model_id_or_path = "stabilityai/stable-diffusion-3-medium-diffusers"
65
+ >>> pipe = AutoPipelineForImage2Image.from_pretrained(model_id_or_path, torch_dtype=torch.float16)
66
+ >>> pipe = pipe.to(device)
67
+
68
+ >>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
69
+ >>> init_image = load_image(url).resize((1024, 1024))
70
+
71
+ >>> prompt = "cat wizard, gandalf, lord of the rings, detailed, fantasy, cute, adorable, Pixar, Disney, 8k"
72
+
73
+ >>> images = pipe(prompt=prompt, image=init_image, strength=0.95, guidance_scale=7.5).images[0]
74
+ ```
75
+ """
76
+
77
+
78
+ # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
79
+ def calculate_shift(
80
+ image_seq_len,
81
+ base_seq_len: int = 256,
82
+ max_seq_len: int = 4096,
83
+ base_shift: float = 0.5,
84
+ max_shift: float = 1.16,
85
+ ):
86
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
87
+ b = base_shift - m * base_seq_len
88
+ mu = image_seq_len * m + b
89
+ return mu
90
+
91
+
92
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
93
+ def retrieve_latents(
94
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
95
+ ):
96
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
97
+ return encoder_output.latent_dist.sample(generator)
98
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
99
+ return encoder_output.latent_dist.mode()
100
+ elif hasattr(encoder_output, "latents"):
101
+ return encoder_output.latents
102
+ else:
103
+ raise AttributeError("Could not access latents of provided encoder_output")
104
+
105
+
106
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
107
+ def retrieve_timesteps(
108
+ scheduler,
109
+ num_inference_steps: Optional[int] = None,
110
+ device: Optional[Union[str, torch.device]] = None,
111
+ timesteps: Optional[List[int]] = None,
112
+ sigmas: Optional[List[float]] = None,
113
+ **kwargs,
114
+ ):
115
+ r"""
116
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
117
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
118
+
119
+ Args:
120
+ scheduler (`SchedulerMixin`):
121
+ The scheduler to get timesteps from.
122
+ num_inference_steps (`int`):
123
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
124
+ must be `None`.
125
+ device (`str` or `torch.device`, *optional*):
126
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
127
+ timesteps (`List[int]`, *optional*):
128
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
129
+ `num_inference_steps` and `sigmas` must be `None`.
130
+ sigmas (`List[float]`, *optional*):
131
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
132
+ `num_inference_steps` and `timesteps` must be `None`.
133
+
134
+ Returns:
135
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
136
+ second element is the number of inference steps.
137
+ """
138
+ if timesteps is not None and sigmas is not None:
139
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
140
+ if timesteps is not None:
141
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
142
+ if not accepts_timesteps:
143
+ raise ValueError(
144
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
145
+ f" timestep schedules. Please check whether you are using the correct scheduler."
146
+ )
147
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
148
+ timesteps = scheduler.timesteps
149
+ num_inference_steps = len(timesteps)
150
+ elif sigmas is not None:
151
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
152
+ if not accept_sigmas:
153
+ raise ValueError(
154
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
155
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
156
+ )
157
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
158
+ timesteps = scheduler.timesteps
159
+ num_inference_steps = len(timesteps)
160
+ else:
161
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
162
+ timesteps = scheduler.timesteps
163
+ return timesteps, num_inference_steps
164
+
165
+
166
+ class StableDiffusion3Img2ImgPipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingleFileMixin):
167
+ r"""
168
+ Args:
169
+ transformer ([`SD3Transformer2DModel`]):
170
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
171
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
172
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
173
+ vae ([`AutoencoderKL`]):
174
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
175
+ text_encoder ([`CLIPTextModelWithProjection`]):
176
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
177
+ specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant,
178
+ with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size`
179
+ as its dimension.
180
+ text_encoder_2 ([`CLIPTextModelWithProjection`]):
181
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
182
+ specifically the
183
+ [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
184
+ variant.
185
+ text_encoder_3 ([`T5EncoderModel`]):
186
+ Frozen text-encoder. Stable Diffusion 3 uses
187
+ [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
188
+ [t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
189
+ tokenizer (`CLIPTokenizer`):
190
+ Tokenizer of class
191
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
192
+ tokenizer_2 (`CLIPTokenizer`):
193
+ Second Tokenizer of class
194
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
195
+ tokenizer_3 (`T5TokenizerFast`):
196
+ Tokenizer of class
197
+ [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
198
+ """
199
+
200
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->transformer->vae"
201
+ _optional_components = []
202
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"]
203
+
204
+ def __init__(
205
+ self,
206
+ transformer: SD3Transformer2DModel,
207
+ scheduler: FlowMatchEulerDiscreteScheduler,
208
+ vae: AutoencoderKL,
209
+ text_encoder: CLIPTextModelWithProjection,
210
+ tokenizer: CLIPTokenizer,
211
+ text_encoder_2: CLIPTextModelWithProjection,
212
+ tokenizer_2: CLIPTokenizer,
213
+ text_encoder_3: T5EncoderModel,
214
+ tokenizer_3: T5TokenizerFast,
215
+ ):
216
+ super().__init__()
217
+
218
+ self.register_modules(
219
+ vae=vae,
220
+ text_encoder=text_encoder,
221
+ text_encoder_2=text_encoder_2,
222
+ text_encoder_3=text_encoder_3,
223
+ tokenizer=tokenizer,
224
+ tokenizer_2=tokenizer_2,
225
+ tokenizer_3=tokenizer_3,
226
+ transformer=transformer,
227
+ scheduler=scheduler,
228
+ )
229
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
230
+ self.image_processor = VaeImageProcessor(
231
+ vae_scale_factor=self.vae_scale_factor, vae_latent_channels=self.vae.config.latent_channels
232
+ )
233
+ self.tokenizer_max_length = self.tokenizer.model_max_length
234
+ self.default_sample_size = self.transformer.config.sample_size
235
+ self.patch_size = (
236
+ self.transformer.config.patch_size if hasattr(self, "transformer") and self.transformer is not None else 2
237
+ )
238
+
239
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_t5_prompt_embeds
240
+ def _get_t5_prompt_embeds(
241
+ self,
242
+ prompt: Union[str, List[str]] = None,
243
+ num_images_per_prompt: int = 1,
244
+ max_sequence_length: int = 256,
245
+ device: Optional[torch.device] = None,
246
+ dtype: Optional[torch.dtype] = None,
247
+ ):
248
+ device = device or self._execution_device
249
+ dtype = dtype or self.text_encoder.dtype
250
+
251
+ prompt = [prompt] if isinstance(prompt, str) else prompt
252
+ batch_size = len(prompt)
253
+
254
+ if self.text_encoder_3 is None:
255
+ return torch.zeros(
256
+ (
257
+ batch_size * num_images_per_prompt,
258
+ self.tokenizer_max_length,
259
+ self.transformer.config.joint_attention_dim,
260
+ ),
261
+ device=device,
262
+ dtype=dtype,
263
+ )
264
+
265
+ text_inputs = self.tokenizer_3(
266
+ prompt,
267
+ padding="max_length",
268
+ max_length=max_sequence_length,
269
+ truncation=True,
270
+ add_special_tokens=True,
271
+ return_tensors="pt",
272
+ )
273
+ text_input_ids = text_inputs.input_ids
274
+ untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids
275
+
276
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
277
+ removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
278
+ logger.warning(
279
+ "The following part of your input was truncated because `max_sequence_length` is set to "
280
+ f" {max_sequence_length} tokens: {removed_text}"
281
+ )
282
+
283
+ prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0]
284
+
285
+ dtype = self.text_encoder_3.dtype
286
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
287
+
288
+ _, seq_len, _ = prompt_embeds.shape
289
+
290
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
291
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
292
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
293
+
294
+ return prompt_embeds
295
+
296
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_clip_prompt_embeds
297
+ def _get_clip_prompt_embeds(
298
+ self,
299
+ prompt: Union[str, List[str]],
300
+ num_images_per_prompt: int = 1,
301
+ device: Optional[torch.device] = None,
302
+ clip_skip: Optional[int] = None,
303
+ clip_model_index: int = 0,
304
+ ):
305
+ device = device or self._execution_device
306
+
307
+ clip_tokenizers = [self.tokenizer, self.tokenizer_2]
308
+ clip_text_encoders = [self.text_encoder, self.text_encoder_2]
309
+
310
+ tokenizer = clip_tokenizers[clip_model_index]
311
+ text_encoder = clip_text_encoders[clip_model_index]
312
+
313
+ prompt = [prompt] if isinstance(prompt, str) else prompt
314
+ batch_size = len(prompt)
315
+
316
+ text_inputs = tokenizer(
317
+ prompt,
318
+ padding="max_length",
319
+ max_length=self.tokenizer_max_length,
320
+ truncation=True,
321
+ return_tensors="pt",
322
+ )
323
+
324
+ text_input_ids = text_inputs.input_ids
325
+ untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
326
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
327
+ removed_text = tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
328
+ logger.warning(
329
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
330
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
331
+ )
332
+ prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
333
+ pooled_prompt_embeds = prompt_embeds[0]
334
+
335
+ if clip_skip is None:
336
+ prompt_embeds = prompt_embeds.hidden_states[-2]
337
+ else:
338
+ prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
339
+
340
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
341
+
342
+ _, seq_len, _ = prompt_embeds.shape
343
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
344
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
345
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
346
+
347
+ pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1)
348
+ pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1)
349
+
350
+ return prompt_embeds, pooled_prompt_embeds
351
+
352
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.encode_prompt
353
+ def encode_prompt(
354
+ self,
355
+ prompt: Union[str, List[str]],
356
+ prompt_2: Union[str, List[str]],
357
+ prompt_3: Union[str, List[str]],
358
+ device: Optional[torch.device] = None,
359
+ num_images_per_prompt: int = 1,
360
+ do_classifier_free_guidance: bool = True,
361
+ negative_prompt: Optional[Union[str, List[str]]] = None,
362
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
363
+ negative_prompt_3: Optional[Union[str, List[str]]] = None,
364
+ prompt_embeds: Optional[torch.FloatTensor] = None,
365
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
366
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
367
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
368
+ clip_skip: Optional[int] = None,
369
+ max_sequence_length: int = 256,
370
+ lora_scale: Optional[float] = None,
371
+ ):
372
+ r"""
373
+
374
+ Args:
375
+ prompt (`str` or `List[str]`, *optional*):
376
+ prompt to be encoded
377
+ prompt_2 (`str` or `List[str]`, *optional*):
378
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
379
+ used in all text-encoders
380
+ prompt_3 (`str` or `List[str]`, *optional*):
381
+ The prompt or prompts to be sent to the `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
382
+ used in all text-encoders
383
+ device: (`torch.device`):
384
+ torch device
385
+ num_images_per_prompt (`int`):
386
+ number of images that should be generated per prompt
387
+ do_classifier_free_guidance (`bool`):
388
+ whether to use classifier free guidance or not
389
+ negative_prompt (`str` or `List[str]`, *optional*):
390
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
391
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
392
+ less than `1`).
393
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
394
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
395
+ `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
396
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
397
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
398
+ `text_encoder_3`. If not defined, `negative_prompt` is used in both text-encoders
399
+ prompt_embeds (`torch.FloatTensor`, *optional*):
400
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
401
+ provided, text embeddings will be generated from `prompt` input argument.
402
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
403
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
404
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
405
+ argument.
406
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
407
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
408
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
409
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
410
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
411
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
412
+ input argument.
413
+ clip_skip (`int`, *optional*):
414
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
415
+ the output of the pre-final layer will be used for computing the prompt embeddings.
416
+ lora_scale (`float`, *optional*):
417
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
418
+ """
419
+ device = device or self._execution_device
420
+
421
+ # set lora scale so that monkey patched LoRA
422
+ # function of text encoder can correctly access it
423
+ if lora_scale is not None and isinstance(self, SD3LoraLoaderMixin):
424
+ self._lora_scale = lora_scale
425
+
426
+ # dynamically adjust the LoRA scale
427
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
428
+ scale_lora_layers(self.text_encoder, lora_scale)
429
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
430
+ scale_lora_layers(self.text_encoder_2, lora_scale)
431
+
432
+ prompt = [prompt] if isinstance(prompt, str) else prompt
433
+ if prompt is not None:
434
+ batch_size = len(prompt)
435
+ else:
436
+ batch_size = prompt_embeds.shape[0]
437
+
438
+ if prompt_embeds is None:
439
+ prompt_2 = prompt_2 or prompt
440
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
441
+
442
+ prompt_3 = prompt_3 or prompt
443
+ prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3
444
+
445
+ prompt_embed, pooled_prompt_embed = self._get_clip_prompt_embeds(
446
+ prompt=prompt,
447
+ device=device,
448
+ num_images_per_prompt=num_images_per_prompt,
449
+ clip_skip=clip_skip,
450
+ clip_model_index=0,
451
+ )
452
+ prompt_2_embed, pooled_prompt_2_embed = self._get_clip_prompt_embeds(
453
+ prompt=prompt_2,
454
+ device=device,
455
+ num_images_per_prompt=num_images_per_prompt,
456
+ clip_skip=clip_skip,
457
+ clip_model_index=1,
458
+ )
459
+ clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1)
460
+
461
+ t5_prompt_embed = self._get_t5_prompt_embeds(
462
+ prompt=prompt_3,
463
+ num_images_per_prompt=num_images_per_prompt,
464
+ max_sequence_length=max_sequence_length,
465
+ device=device,
466
+ )
467
+
468
+ clip_prompt_embeds = torch.nn.functional.pad(
469
+ clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1])
470
+ )
471
+
472
+ prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2)
473
+ pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1)
474
+
475
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
476
+ negative_prompt = negative_prompt or ""
477
+ negative_prompt_2 = negative_prompt_2 or negative_prompt
478
+ negative_prompt_3 = negative_prompt_3 or negative_prompt
479
+
480
+ # normalize str to list
481
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
482
+ negative_prompt_2 = (
483
+ batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
484
+ )
485
+ negative_prompt_3 = (
486
+ batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3
487
+ )
488
+
489
+ if prompt is not None and type(prompt) is not type(negative_prompt):
490
+ raise TypeError(
491
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
492
+ f" {type(prompt)}."
493
+ )
494
+ elif batch_size != len(negative_prompt):
495
+ raise ValueError(
496
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
497
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
498
+ " the batch size of `prompt`."
499
+ )
500
+
501
+ negative_prompt_embed, negative_pooled_prompt_embed = self._get_clip_prompt_embeds(
502
+ negative_prompt,
503
+ device=device,
504
+ num_images_per_prompt=num_images_per_prompt,
505
+ clip_skip=None,
506
+ clip_model_index=0,
507
+ )
508
+ negative_prompt_2_embed, negative_pooled_prompt_2_embed = self._get_clip_prompt_embeds(
509
+ negative_prompt_2,
510
+ device=device,
511
+ num_images_per_prompt=num_images_per_prompt,
512
+ clip_skip=None,
513
+ clip_model_index=1,
514
+ )
515
+ negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1)
516
+
517
+ t5_negative_prompt_embed = self._get_t5_prompt_embeds(
518
+ prompt=negative_prompt_3,
519
+ num_images_per_prompt=num_images_per_prompt,
520
+ max_sequence_length=max_sequence_length,
521
+ device=device,
522
+ )
523
+
524
+ negative_clip_prompt_embeds = torch.nn.functional.pad(
525
+ negative_clip_prompt_embeds,
526
+ (0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1]),
527
+ )
528
+
529
+ negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2)
530
+ negative_pooled_prompt_embeds = torch.cat(
531
+ [negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1
532
+ )
533
+
534
+ if self.text_encoder is not None:
535
+ if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
536
+ # Retrieve the original scale by scaling back the LoRA layers
537
+ unscale_lora_layers(self.text_encoder, lora_scale)
538
+
539
+ if self.text_encoder_2 is not None:
540
+ if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
541
+ # Retrieve the original scale by scaling back the LoRA layers
542
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
543
+
544
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
545
+
546
+ def check_inputs(
547
+ self,
548
+ prompt,
549
+ prompt_2,
550
+ prompt_3,
551
+ height,
552
+ width,
553
+ strength,
554
+ negative_prompt=None,
555
+ negative_prompt_2=None,
556
+ negative_prompt_3=None,
557
+ prompt_embeds=None,
558
+ negative_prompt_embeds=None,
559
+ pooled_prompt_embeds=None,
560
+ negative_pooled_prompt_embeds=None,
561
+ callback_on_step_end_tensor_inputs=None,
562
+ max_sequence_length=None,
563
+ ):
564
+ if (
565
+ height % (self.vae_scale_factor * self.patch_size) != 0
566
+ or width % (self.vae_scale_factor * self.patch_size) != 0
567
+ ):
568
+ raise ValueError(
569
+ f"`height` and `width` have to be divisible by {self.vae_scale_factor * self.patch_size} but are {height} and {width}."
570
+ f"You can use height {height - height % (self.vae_scale_factor * self.patch_size)} and width {width - width % (self.vae_scale_factor * self.patch_size)}."
571
+ )
572
+
573
+ if strength < 0 or strength > 1:
574
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
575
+
576
+ if callback_on_step_end_tensor_inputs is not None and not all(
577
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
578
+ ):
579
+ raise ValueError(
580
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
581
+ )
582
+
583
+ if prompt is not None and prompt_embeds is not None:
584
+ raise ValueError(
585
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
586
+ " only forward one of the two."
587
+ )
588
+ elif prompt_2 is not None and prompt_embeds is not None:
589
+ raise ValueError(
590
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
591
+ " only forward one of the two."
592
+ )
593
+ elif prompt_3 is not None and prompt_embeds is not None:
594
+ raise ValueError(
595
+ f"Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
596
+ " only forward one of the two."
597
+ )
598
+ elif prompt is None and prompt_embeds is None:
599
+ raise ValueError(
600
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
601
+ )
602
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
603
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
604
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
605
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
606
+ elif prompt_3 is not None and (not isinstance(prompt_3, str) and not isinstance(prompt_3, list)):
607
+ raise ValueError(f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}")
608
+
609
+ if negative_prompt is not None and negative_prompt_embeds is not None:
610
+ raise ValueError(
611
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
612
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
613
+ )
614
+ elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
615
+ raise ValueError(
616
+ f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
617
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
618
+ )
619
+ elif negative_prompt_3 is not None and negative_prompt_embeds is not None:
620
+ raise ValueError(
621
+ f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`:"
622
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
623
+ )
624
+
625
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
626
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
627
+ raise ValueError(
628
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
629
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
630
+ f" {negative_prompt_embeds.shape}."
631
+ )
632
+
633
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
634
+ raise ValueError(
635
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
636
+ )
637
+
638
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
639
+ raise ValueError(
640
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
641
+ )
642
+
643
+ if max_sequence_length is not None and max_sequence_length > 512:
644
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
645
+
646
+ def get_timesteps(self, num_inference_steps, strength, device):
647
+ # get the original timestep using init_timestep
648
+ init_timestep = min(num_inference_steps * strength, num_inference_steps)
649
+
650
+ t_start = int(max(num_inference_steps - init_timestep, 0))
651
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
652
+ if hasattr(self.scheduler, "set_begin_index"):
653
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
654
+
655
+ return timesteps, num_inference_steps - t_start
656
+
657
+ def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None):
658
+ if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
659
+ raise ValueError(
660
+ f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
661
+ )
662
+
663
+ image = image.to(device=device, dtype=dtype)
664
+
665
+ batch_size = batch_size * num_images_per_prompt
666
+ if image.shape[1] == self.vae.config.latent_channels:
667
+ init_latents = image
668
+
669
+ else:
670
+ if isinstance(generator, list) and len(generator) != batch_size:
671
+ raise ValueError(
672
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
673
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
674
+ )
675
+
676
+ elif isinstance(generator, list):
677
+ init_latents = [
678
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
679
+ for i in range(batch_size)
680
+ ]
681
+ init_latents = torch.cat(init_latents, dim=0)
682
+ else:
683
+ init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
684
+
685
+ init_latents = (init_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
686
+
687
+ if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
688
+ # expand init_latents for batch_size
689
+ additional_image_per_prompt = batch_size // init_latents.shape[0]
690
+ init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
691
+ elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
692
+ raise ValueError(
693
+ f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
694
+ )
695
+ else:
696
+ init_latents = torch.cat([init_latents], dim=0)
697
+
698
+ shape = init_latents.shape
699
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
700
+
701
+ # get latents
702
+ init_latents = self.scheduler.scale_noise(init_latents, timestep, noise)
703
+ latents = init_latents.to(device=device, dtype=dtype)
704
+
705
+ return latents
706
+
707
+ @property
708
+ def guidance_scale(self):
709
+ return self._guidance_scale
710
+
711
+ @property
712
+ def joint_attention_kwargs(self):
713
+ return self._joint_attention_kwargs
714
+
715
+ @property
716
+ def clip_skip(self):
717
+ return self._clip_skip
718
+
719
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
720
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
721
+ # corresponds to doing no classifier free guidance.
722
+ @property
723
+ def do_classifier_free_guidance(self):
724
+ return self._guidance_scale > 1
725
+
726
+ @property
727
+ def num_timesteps(self):
728
+ return self._num_timesteps
729
+
730
+ @property
731
+ def interrupt(self):
732
+ return self._interrupt
733
+
734
+ @torch.no_grad()
735
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
736
+ def __call__(
737
+ self,
738
+ prompt: Union[str, List[str]] = None,
739
+ prompt_2: Optional[Union[str, List[str]]] = None,
740
+ prompt_3: Optional[Union[str, List[str]]] = None,
741
+ height: Optional[int] = None,
742
+ width: Optional[int] = None,
743
+ image: PipelineImageInput = None,
744
+ strength: float = 0.6,
745
+ num_inference_steps: int = 50,
746
+ sigmas: Optional[List[float]] = None,
747
+ guidance_scale: float = 7.0,
748
+ negative_prompt: Optional[Union[str, List[str]]] = None,
749
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
750
+ negative_prompt_3: Optional[Union[str, List[str]]] = None,
751
+ num_images_per_prompt: Optional[int] = 1,
752
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
753
+ latents: Optional[torch.FloatTensor] = None,
754
+ prompt_embeds: Optional[torch.FloatTensor] = None,
755
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
756
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
757
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
758
+ output_type: Optional[str] = "pil",
759
+ return_dict: bool = True,
760
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
761
+ clip_skip: Optional[int] = None,
762
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
763
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
764
+ max_sequence_length: int = 256,
765
+ mu: Optional[float] = None,
766
+ ):
767
+ r"""
768
+ Function invoked when calling the pipeline for generation.
769
+
770
+ Args:
771
+ prompt (`str` or `List[str]`, *optional*):
772
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
773
+ instead.
774
+ prompt_2 (`str` or `List[str]`, *optional*):
775
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
776
+ will be used instead
777
+ prompt_3 (`str` or `List[str]`, *optional*):
778
+ The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
779
+ will be used instead
780
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
781
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
782
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
783
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
784
+ num_inference_steps (`int`, *optional*, defaults to 50):
785
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
786
+ expense of slower inference.
787
+ sigmas (`List[float]`, *optional*):
788
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
789
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
790
+ will be used.
791
+ guidance_scale (`float`, *optional*, defaults to 7.0):
792
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
793
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
794
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
795
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
796
+ usually at the expense of lower image quality.
797
+ negative_prompt (`str` or `List[str]`, *optional*):
798
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
799
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
800
+ less than `1`).
801
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
802
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
803
+ `text_encoder_2`. If not defined, `negative_prompt` is used instead
804
+ negative_prompt_3 (`str` or `List[str]`, *optional*):
805
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
806
+ `text_encoder_3`. If not defined, `negative_prompt` is used instead
807
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
808
+ The number of images to generate per prompt.
809
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
810
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
811
+ to make generation deterministic.
812
+ latents (`torch.FloatTensor`, *optional*):
813
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
814
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
815
+ tensor will ge generated by sampling using the supplied random `generator`.
816
+ prompt_embeds (`torch.FloatTensor`, *optional*):
817
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
818
+ provided, text embeddings will be generated from `prompt` input argument.
819
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
820
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
821
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
822
+ argument.
823
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
824
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
825
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
826
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
827
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
828
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
829
+ input argument.
830
+ output_type (`str`, *optional*, defaults to `"pil"`):
831
+ The output format of the generate image. Choose between
832
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
833
+ return_dict (`bool`, *optional*, defaults to `True`):
834
+ Whether or not to return a [`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] instead of
835
+ a plain tuple.
836
+ joint_attention_kwargs (`dict`, *optional*):
837
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
838
+ `self.processor` in
839
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
840
+ callback_on_step_end (`Callable`, *optional*):
841
+ A function that calls at the end of each denoising steps during the inference. The function is called
842
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
843
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
844
+ `callback_on_step_end_tensor_inputs`.
845
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
846
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
847
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
848
+ `._callback_tensor_inputs` attribute of your pipeline class.
849
+ max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
850
+ mu (`float`, *optional*): `mu` value used for `dynamic_shifting`.
851
+
852
+ Examples:
853
+
854
+ Returns:
855
+ [`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] or `tuple`:
856
+ [`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] if `return_dict` is True, otherwise a
857
+ `tuple`. When returning a tuple, the first element is a list with the generated images.
858
+ """
859
+ height = height or self.default_sample_size * self.vae_scale_factor
860
+ width = width or self.default_sample_size * self.vae_scale_factor
861
+
862
+ # 1. Check inputs. Raise error if not correct
863
+ self.check_inputs(
864
+ prompt,
865
+ prompt_2,
866
+ prompt_3,
867
+ height,
868
+ width,
869
+ strength,
870
+ negative_prompt=negative_prompt,
871
+ negative_prompt_2=negative_prompt_2,
872
+ negative_prompt_3=negative_prompt_3,
873
+ prompt_embeds=prompt_embeds,
874
+ negative_prompt_embeds=negative_prompt_embeds,
875
+ pooled_prompt_embeds=pooled_prompt_embeds,
876
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
877
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
878
+ max_sequence_length=max_sequence_length,
879
+ )
880
+
881
+ self._guidance_scale = guidance_scale
882
+ self._clip_skip = clip_skip
883
+ self._joint_attention_kwargs = joint_attention_kwargs
884
+ self._interrupt = False
885
+
886
+ # 2. Define call parameters
887
+ if prompt is not None and isinstance(prompt, str):
888
+ batch_size = 1
889
+ elif prompt is not None and isinstance(prompt, list):
890
+ batch_size = len(prompt)
891
+ else:
892
+ batch_size = prompt_embeds.shape[0]
893
+
894
+ device = self._execution_device
895
+
896
+ lora_scale = (
897
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
898
+ )
899
+
900
+ (
901
+ prompt_embeds,
902
+ negative_prompt_embeds,
903
+ pooled_prompt_embeds,
904
+ negative_pooled_prompt_embeds,
905
+ ) = self.encode_prompt(
906
+ prompt=prompt,
907
+ prompt_2=prompt_2,
908
+ prompt_3=prompt_3,
909
+ negative_prompt=negative_prompt,
910
+ negative_prompt_2=negative_prompt_2,
911
+ negative_prompt_3=negative_prompt_3,
912
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
913
+ prompt_embeds=prompt_embeds,
914
+ negative_prompt_embeds=negative_prompt_embeds,
915
+ pooled_prompt_embeds=pooled_prompt_embeds,
916
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
917
+ device=device,
918
+ clip_skip=self.clip_skip,
919
+ num_images_per_prompt=num_images_per_prompt,
920
+ max_sequence_length=max_sequence_length,
921
+ lora_scale=lora_scale,
922
+ )
923
+
924
+ if self.do_classifier_free_guidance:
925
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
926
+ pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
927
+
928
+ # 3. Preprocess image
929
+ image = self.image_processor.preprocess(image, height=height, width=width)
930
+
931
+ # 4. Prepare timesteps
932
+ scheduler_kwargs = {}
933
+ if self.scheduler.config.get("use_dynamic_shifting", None) and mu is None:
934
+ image_seq_len = (int(height) // self.vae_scale_factor // self.transformer.config.patch_size) * (
935
+ int(width) // self.vae_scale_factor // self.transformer.config.patch_size
936
+ )
937
+ mu = calculate_shift(
938
+ image_seq_len,
939
+ self.scheduler.config.base_image_seq_len,
940
+ self.scheduler.config.max_image_seq_len,
941
+ self.scheduler.config.base_shift,
942
+ self.scheduler.config.max_shift,
943
+ )
944
+ scheduler_kwargs["mu"] = mu
945
+ elif mu is not None:
946
+ scheduler_kwargs["mu"] = mu
947
+ timesteps, num_inference_steps = retrieve_timesteps(
948
+ self.scheduler, num_inference_steps, device, sigmas=sigmas, **scheduler_kwargs
949
+ )
950
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
951
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
952
+
953
+ # 5. Prepare latent variables
954
+ if latents is None:
955
+ latents = self.prepare_latents(
956
+ image,
957
+ latent_timestep,
958
+ batch_size,
959
+ num_images_per_prompt,
960
+ prompt_embeds.dtype,
961
+ device,
962
+ generator,
963
+ )
964
+
965
+ # 6. Denoising loop
966
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
967
+ self._num_timesteps = len(timesteps)
968
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
969
+ for i, t in enumerate(timesteps):
970
+ if self.interrupt:
971
+ continue
972
+
973
+ # expand the latents if we are doing classifier free guidance
974
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
975
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
976
+ timestep = t.expand(latent_model_input.shape[0])
977
+
978
+ noise_pred = self.transformer(
979
+ hidden_states=latent_model_input,
980
+ timestep=timestep,
981
+ encoder_hidden_states=prompt_embeds,
982
+ pooled_projections=pooled_prompt_embeds,
983
+ joint_attention_kwargs=self.joint_attention_kwargs,
984
+ return_dict=False,
985
+ )[0]
986
+
987
+ # perform guidance
988
+ if self.do_classifier_free_guidance:
989
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
990
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
991
+
992
+ # compute the previous noisy sample x_t -> x_t-1
993
+ latents_dtype = latents.dtype
994
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
995
+
996
+ if latents.dtype != latents_dtype:
997
+ if torch.backends.mps.is_available():
998
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
999
+ latents = latents.to(latents_dtype)
1000
+
1001
+ if callback_on_step_end is not None:
1002
+ callback_kwargs = {}
1003
+ for k in callback_on_step_end_tensor_inputs:
1004
+ callback_kwargs[k] = locals()[k]
1005
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1006
+
1007
+ latents = callback_outputs.pop("latents", latents)
1008
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1009
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1010
+ negative_pooled_prompt_embeds = callback_outputs.pop(
1011
+ "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
1012
+ )
1013
+
1014
+ # call the callback, if provided
1015
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1016
+ progress_bar.update()
1017
+
1018
+ if XLA_AVAILABLE:
1019
+ xm.mark_step()
1020
+
1021
+ if output_type == "latent":
1022
+ image = latents
1023
+
1024
+ else:
1025
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
1026
+
1027
+ image = self.vae.decode(latents, return_dict=False)[0]
1028
+ image = self.image_processor.postprocess(image, output_type=output_type)
1029
+
1030
+ # Offload all models
1031
+ self.maybe_free_model_hooks()
1032
+
1033
+ if not return_dict:
1034
+ return (image,)
1035
+
1036
+ return StableDiffusion3PipelineOutput(images=image)