diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +50 -53
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.0.dist-info/RECORD +0 -399
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,20 @@ from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput, StableDiffu
|
|
33
33
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
34
34
|
|
35
35
|
|
36
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
37
|
+
def retrieve_latents(
|
38
|
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
39
|
+
):
|
40
|
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
41
|
+
return encoder_output.latent_dist.sample(generator)
|
42
|
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
43
|
+
return encoder_output.latent_dist.mode()
|
44
|
+
elif hasattr(encoder_output, "latents"):
|
45
|
+
return encoder_output.latents
|
46
|
+
else:
|
47
|
+
raise AttributeError("Could not access latents of provided encoder_output")
|
48
|
+
|
49
|
+
|
36
50
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.preprocess
|
37
51
|
def preprocess(image):
|
38
52
|
warnings.warn(
|
@@ -105,7 +119,54 @@ class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMix
|
|
105
119
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
106
120
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, resample="bicubic")
|
107
121
|
|
108
|
-
def _encode_prompt(
|
122
|
+
def _encode_prompt(
|
123
|
+
self,
|
124
|
+
prompt,
|
125
|
+
device,
|
126
|
+
do_classifier_free_guidance,
|
127
|
+
negative_prompt=None,
|
128
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
129
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
130
|
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
131
|
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
132
|
+
**kwargs,
|
133
|
+
):
|
134
|
+
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
|
135
|
+
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
|
136
|
+
|
137
|
+
(
|
138
|
+
prompt_embeds,
|
139
|
+
negative_prompt_embeds,
|
140
|
+
pooled_prompt_embeds,
|
141
|
+
negative_pooled_prompt_embeds,
|
142
|
+
) = self.encode_prompt(
|
143
|
+
prompt=prompt,
|
144
|
+
device=device,
|
145
|
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
146
|
+
negative_prompt=negative_prompt,
|
147
|
+
prompt_embeds=prompt_embeds,
|
148
|
+
negative_prompt_embeds=negative_prompt_embeds,
|
149
|
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
150
|
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
151
|
+
**kwargs,
|
152
|
+
)
|
153
|
+
|
154
|
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
155
|
+
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds])
|
156
|
+
|
157
|
+
return prompt_embeds, pooled_prompt_embeds
|
158
|
+
|
159
|
+
def encode_prompt(
|
160
|
+
self,
|
161
|
+
prompt,
|
162
|
+
device,
|
163
|
+
do_classifier_free_guidance,
|
164
|
+
negative_prompt=None,
|
165
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
166
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
167
|
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
168
|
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
169
|
+
):
|
109
170
|
r"""
|
110
171
|
Encodes the prompt into text encoder hidden states.
|
111
172
|
|
@@ -119,81 +180,100 @@ class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMix
|
|
119
180
|
negative_prompt (`str` or `List[str]`):
|
120
181
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
121
182
|
if `guidance_scale` is less than `1`).
|
183
|
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
184
|
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
185
|
+
provided, text embeddings will be generated from `prompt` input argument.
|
186
|
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
187
|
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
188
|
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
189
|
+
argument.
|
190
|
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
191
|
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
192
|
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
193
|
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
194
|
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
195
|
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
196
|
+
input argument.
|
122
197
|
"""
|
123
|
-
|
124
|
-
|
125
|
-
|
126
|
-
prompt
|
127
|
-
|
128
|
-
|
129
|
-
truncation=True,
|
130
|
-
return_length=True,
|
131
|
-
return_tensors="pt",
|
132
|
-
)
|
133
|
-
text_input_ids = text_inputs.input_ids
|
134
|
-
|
135
|
-
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
136
|
-
|
137
|
-
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
138
|
-
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
|
139
|
-
logger.warning(
|
140
|
-
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
141
|
-
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
142
|
-
)
|
143
|
-
|
144
|
-
text_encoder_out = self.text_encoder(
|
145
|
-
text_input_ids.to(device),
|
146
|
-
output_hidden_states=True,
|
147
|
-
)
|
148
|
-
text_embeddings = text_encoder_out.hidden_states[-1]
|
149
|
-
text_pooler_out = text_encoder_out.pooler_output
|
150
|
-
|
151
|
-
# get unconditional embeddings for classifier free guidance
|
152
|
-
if do_classifier_free_guidance:
|
153
|
-
uncond_tokens: List[str]
|
154
|
-
if negative_prompt is None:
|
155
|
-
uncond_tokens = [""] * batch_size
|
156
|
-
elif type(prompt) is not type(negative_prompt):
|
157
|
-
raise TypeError(
|
158
|
-
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
159
|
-
f" {type(prompt)}."
|
160
|
-
)
|
161
|
-
elif isinstance(negative_prompt, str):
|
162
|
-
uncond_tokens = [negative_prompt]
|
163
|
-
elif batch_size != len(negative_prompt):
|
164
|
-
raise ValueError(
|
165
|
-
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
166
|
-
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
167
|
-
" the batch size of `prompt`."
|
168
|
-
)
|
169
|
-
else:
|
170
|
-
uncond_tokens = negative_prompt
|
198
|
+
if prompt is not None and isinstance(prompt, str):
|
199
|
+
batch_size = 1
|
200
|
+
elif prompt is not None and isinstance(prompt, list):
|
201
|
+
batch_size = len(prompt)
|
202
|
+
else:
|
203
|
+
batch_size = prompt_embeds.shape[0]
|
171
204
|
|
172
|
-
|
173
|
-
|
174
|
-
|
205
|
+
if prompt_embeds is None or pooled_prompt_embeds is None:
|
206
|
+
text_inputs = self.tokenizer(
|
207
|
+
prompt,
|
175
208
|
padding="max_length",
|
176
|
-
max_length=
|
209
|
+
max_length=self.tokenizer.model_max_length,
|
177
210
|
truncation=True,
|
178
211
|
return_length=True,
|
179
212
|
return_tensors="pt",
|
180
213
|
)
|
214
|
+
text_input_ids = text_inputs.input_ids
|
181
215
|
|
182
|
-
|
183
|
-
|
216
|
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
217
|
+
|
218
|
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
219
|
+
text_input_ids, untruncated_ids
|
220
|
+
):
|
221
|
+
removed_text = self.tokenizer.batch_decode(
|
222
|
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
223
|
+
)
|
224
|
+
logger.warning(
|
225
|
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
226
|
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
227
|
+
)
|
228
|
+
|
229
|
+
text_encoder_out = self.text_encoder(
|
230
|
+
text_input_ids.to(device),
|
184
231
|
output_hidden_states=True,
|
185
232
|
)
|
233
|
+
prompt_embeds = text_encoder_out.hidden_states[-1]
|
234
|
+
pooled_prompt_embeds = text_encoder_out.pooler_output
|
186
235
|
|
187
|
-
|
188
|
-
|
236
|
+
# get unconditional embeddings for classifier free guidance
|
237
|
+
if do_classifier_free_guidance:
|
238
|
+
if negative_prompt_embeds is None or negative_pooled_prompt_embeds is None:
|
239
|
+
uncond_tokens: List[str]
|
240
|
+
if negative_prompt is None:
|
241
|
+
uncond_tokens = [""] * batch_size
|
242
|
+
elif type(prompt) is not type(negative_prompt):
|
243
|
+
raise TypeError(
|
244
|
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
245
|
+
f" {type(prompt)}."
|
246
|
+
)
|
247
|
+
elif isinstance(negative_prompt, str):
|
248
|
+
uncond_tokens = [negative_prompt]
|
249
|
+
elif batch_size != len(negative_prompt):
|
250
|
+
raise ValueError(
|
251
|
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
252
|
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
253
|
+
" the batch size of `prompt`."
|
254
|
+
)
|
255
|
+
else:
|
256
|
+
uncond_tokens = negative_prompt
|
257
|
+
|
258
|
+
max_length = text_input_ids.shape[-1]
|
259
|
+
uncond_input = self.tokenizer(
|
260
|
+
uncond_tokens,
|
261
|
+
padding="max_length",
|
262
|
+
max_length=max_length,
|
263
|
+
truncation=True,
|
264
|
+
return_length=True,
|
265
|
+
return_tensors="pt",
|
266
|
+
)
|
267
|
+
|
268
|
+
uncond_encoder_out = self.text_encoder(
|
269
|
+
uncond_input.input_ids.to(device),
|
270
|
+
output_hidden_states=True,
|
271
|
+
)
|
189
272
|
|
190
|
-
|
191
|
-
|
192
|
-
# to avoid doing two forward passes
|
193
|
-
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
194
|
-
text_pooler_out = torch.cat([uncond_pooler_out, text_pooler_out])
|
273
|
+
negative_prompt_embeds = uncond_encoder_out.hidden_states[-1]
|
274
|
+
negative_pooled_prompt_embeds = uncond_encoder_out.pooler_output
|
195
275
|
|
196
|
-
return
|
276
|
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
197
277
|
|
198
278
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
|
199
279
|
def decode_latents(self, latents):
|
@@ -207,12 +287,56 @@ class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMix
|
|
207
287
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
208
288
|
return image
|
209
289
|
|
210
|
-
def check_inputs(
|
211
|
-
|
290
|
+
def check_inputs(
|
291
|
+
self,
|
292
|
+
prompt,
|
293
|
+
image,
|
294
|
+
callback_steps,
|
295
|
+
negative_prompt=None,
|
296
|
+
prompt_embeds=None,
|
297
|
+
negative_prompt_embeds=None,
|
298
|
+
pooled_prompt_embeds=None,
|
299
|
+
negative_pooled_prompt_embeds=None,
|
300
|
+
):
|
301
|
+
if prompt is not None and prompt_embeds is not None:
|
302
|
+
raise ValueError(
|
303
|
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
304
|
+
" only forward one of the two."
|
305
|
+
)
|
306
|
+
elif prompt is None and prompt_embeds is None:
|
307
|
+
raise ValueError(
|
308
|
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
309
|
+
)
|
310
|
+
elif prompt is not None and not isinstance(prompt, str) and not isinstance(prompt, list):
|
212
311
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
213
312
|
|
313
|
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
314
|
+
raise ValueError(
|
315
|
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
316
|
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
317
|
+
)
|
318
|
+
|
319
|
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
320
|
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
321
|
+
raise ValueError(
|
322
|
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
323
|
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
324
|
+
f" {negative_prompt_embeds.shape}."
|
325
|
+
)
|
326
|
+
|
327
|
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
328
|
+
raise ValueError(
|
329
|
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
330
|
+
)
|
331
|
+
|
332
|
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
333
|
+
raise ValueError(
|
334
|
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
335
|
+
)
|
336
|
+
|
214
337
|
if (
|
215
338
|
not isinstance(image, torch.Tensor)
|
339
|
+
and not isinstance(image, np.ndarray)
|
216
340
|
and not isinstance(image, PIL.Image.Image)
|
217
341
|
and not isinstance(image, list)
|
218
342
|
):
|
@@ -221,11 +345,15 @@ class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMix
|
|
221
345
|
)
|
222
346
|
|
223
347
|
# verify batch size of prompt and image are same if image is a list or tensor
|
224
|
-
if isinstance(image, list
|
225
|
-
if
|
226
|
-
|
348
|
+
if isinstance(image, (list, torch.Tensor)):
|
349
|
+
if prompt is not None:
|
350
|
+
if isinstance(prompt, str):
|
351
|
+
batch_size = 1
|
352
|
+
else:
|
353
|
+
batch_size = len(prompt)
|
227
354
|
else:
|
228
|
-
batch_size =
|
355
|
+
batch_size = prompt_embeds.shape[0]
|
356
|
+
|
229
357
|
if isinstance(image, list):
|
230
358
|
image_batch_size = len(image)
|
231
359
|
else:
|
@@ -261,16 +389,20 @@ class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMix
|
|
261
389
|
@torch.no_grad()
|
262
390
|
def __call__(
|
263
391
|
self,
|
264
|
-
prompt: Union[str, List[str]],
|
392
|
+
prompt: Union[str, List[str]] = None,
|
265
393
|
image: PipelineImageInput = None,
|
266
394
|
num_inference_steps: int = 75,
|
267
395
|
guidance_scale: float = 9.0,
|
268
396
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
269
397
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
270
|
-
latents: Optional[torch.
|
398
|
+
latents: Optional[torch.Tensor] = None,
|
399
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
400
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
401
|
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
402
|
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
271
403
|
output_type: Optional[str] = "pil",
|
272
404
|
return_dict: bool = True,
|
273
|
-
callback: Optional[Callable[[int, int, torch.
|
405
|
+
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
274
406
|
callback_steps: int = 1,
|
275
407
|
):
|
276
408
|
r"""
|
@@ -279,7 +411,7 @@ class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMix
|
|
279
411
|
Args:
|
280
412
|
prompt (`str` or `List[str]`):
|
281
413
|
The prompt or prompts to guide image upscaling.
|
282
|
-
image (`torch.
|
414
|
+
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
283
415
|
`Image` or tensor representing an image batch to be upscaled. If it's a tensor, it can be either a
|
284
416
|
latent output from a Stable Diffusion model or an image tensor in the range `[-1, 1]`. It is considered
|
285
417
|
a `latent` if `image.shape[1]` is `4`; otherwise, it is considered to be an image representation and
|
@@ -299,7 +431,7 @@ class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMix
|
|
299
431
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
300
432
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
301
433
|
generation deterministic.
|
302
|
-
latents (`torch.
|
434
|
+
latents (`torch.Tensor`, *optional*):
|
303
435
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
304
436
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
305
437
|
tensor is generated by sampling using the supplied random `generator`.
|
@@ -310,7 +442,7 @@ class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMix
|
|
310
442
|
plain tuple.
|
311
443
|
callback (`Callable`, *optional*):
|
312
444
|
A function that calls every `callback_steps` steps during inference. The function is called with the
|
313
|
-
following arguments: `callback(step: int, timestep: int, latents: torch.
|
445
|
+
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
314
446
|
callback_steps (`int`, *optional*, defaults to 1):
|
315
447
|
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
316
448
|
every step.
|
@@ -359,10 +491,22 @@ class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMix
|
|
359
491
|
"""
|
360
492
|
|
361
493
|
# 1. Check inputs
|
362
|
-
self.check_inputs(
|
494
|
+
self.check_inputs(
|
495
|
+
prompt,
|
496
|
+
image,
|
497
|
+
callback_steps,
|
498
|
+
negative_prompt,
|
499
|
+
prompt_embeds,
|
500
|
+
negative_prompt_embeds,
|
501
|
+
pooled_prompt_embeds,
|
502
|
+
negative_pooled_prompt_embeds,
|
503
|
+
)
|
363
504
|
|
364
505
|
# 2. Define call parameters
|
365
|
-
|
506
|
+
if prompt is not None:
|
507
|
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
508
|
+
else:
|
509
|
+
batch_size = prompt_embeds.shape[0]
|
366
510
|
device = self._execution_device
|
367
511
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
368
512
|
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
@@ -373,16 +517,32 @@ class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMix
|
|
373
517
|
prompt = [""] * batch_size
|
374
518
|
|
375
519
|
# 3. Encode input prompt
|
376
|
-
|
377
|
-
|
520
|
+
(
|
521
|
+
prompt_embeds,
|
522
|
+
negative_prompt_embeds,
|
523
|
+
pooled_prompt_embeds,
|
524
|
+
negative_pooled_prompt_embeds,
|
525
|
+
) = self.encode_prompt(
|
526
|
+
prompt,
|
527
|
+
device,
|
528
|
+
do_classifier_free_guidance,
|
529
|
+
negative_prompt,
|
530
|
+
prompt_embeds,
|
531
|
+
negative_prompt_embeds,
|
532
|
+
pooled_prompt_embeds,
|
533
|
+
negative_pooled_prompt_embeds,
|
378
534
|
)
|
379
535
|
|
536
|
+
if do_classifier_free_guidance:
|
537
|
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
538
|
+
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds])
|
539
|
+
|
380
540
|
# 4. Preprocess image
|
381
541
|
image = self.image_processor.preprocess(image)
|
382
|
-
image = image.to(dtype=
|
542
|
+
image = image.to(dtype=prompt_embeds.dtype, device=device)
|
383
543
|
if image.shape[1] == 3:
|
384
544
|
# encode image if not in latent-space yet
|
385
|
-
image = self.vae.encode(image)
|
545
|
+
image = retrieve_latents(self.vae.encode(image), generator=generator) * self.vae.config.scaling_factor
|
386
546
|
|
387
547
|
# 5. set timesteps
|
388
548
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
@@ -400,17 +560,17 @@ class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMix
|
|
400
560
|
inv_noise_level = (noise_level**2 + 1) ** (-0.5)
|
401
561
|
|
402
562
|
image_cond = F.interpolate(image, scale_factor=2, mode="nearest") * inv_noise_level[:, None, None, None]
|
403
|
-
image_cond = image_cond.to(
|
563
|
+
image_cond = image_cond.to(prompt_embeds.dtype)
|
404
564
|
|
405
565
|
noise_level_embed = torch.cat(
|
406
566
|
[
|
407
|
-
torch.ones(
|
408
|
-
torch.zeros(
|
567
|
+
torch.ones(pooled_prompt_embeds.shape[0], 64, dtype=pooled_prompt_embeds.dtype, device=device),
|
568
|
+
torch.zeros(pooled_prompt_embeds.shape[0], 64, dtype=pooled_prompt_embeds.dtype, device=device),
|
409
569
|
],
|
410
570
|
dim=1,
|
411
571
|
)
|
412
572
|
|
413
|
-
timestep_condition = torch.cat([noise_level_embed,
|
573
|
+
timestep_condition = torch.cat([noise_level_embed, pooled_prompt_embeds], dim=1)
|
414
574
|
|
415
575
|
# 6. Prepare latent variables
|
416
576
|
height, width = image.shape[2:]
|
@@ -420,7 +580,7 @@ class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMix
|
|
420
580
|
num_channels_latents,
|
421
581
|
height * 2, # 2x upscale
|
422
582
|
width * 2,
|
423
|
-
|
583
|
+
prompt_embeds.dtype,
|
424
584
|
device,
|
425
585
|
generator,
|
426
586
|
latents,
|
@@ -454,7 +614,7 @@ class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMix
|
|
454
614
|
noise_pred = self.unet(
|
455
615
|
scaled_model_input,
|
456
616
|
timestep,
|
457
|
-
encoder_hidden_states=
|
617
|
+
encoder_hidden_states=prompt_embeds,
|
458
618
|
timestep_cond=timestep_condition,
|
459
619
|
).sample
|
460
620
|
|
@@ -22,12 +22,10 @@ import torch
|
|
22
22
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
23
23
|
|
24
24
|
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
25
|
-
from ...loaders import FromSingleFileMixin,
|
25
|
+
from ...loaders import FromSingleFileMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
26
26
|
from ...models import AutoencoderKL, UNet2DConditionModel
|
27
27
|
from ...models.attention_processor import (
|
28
28
|
AttnProcessor2_0,
|
29
|
-
LoRAAttnProcessor2_0,
|
30
|
-
LoRAXFormersAttnProcessor,
|
31
29
|
XFormersAttnProcessor,
|
32
30
|
)
|
33
31
|
from ...models.lora import adjust_lora_scale_text_encoder
|
@@ -68,7 +66,11 @@ def preprocess(image):
|
|
68
66
|
|
69
67
|
|
70
68
|
class StableDiffusionUpscalePipeline(
|
71
|
-
DiffusionPipeline,
|
69
|
+
DiffusionPipeline,
|
70
|
+
StableDiffusionMixin,
|
71
|
+
TextualInversionLoaderMixin,
|
72
|
+
StableDiffusionLoraLoaderMixin,
|
73
|
+
FromSingleFileMixin,
|
72
74
|
):
|
73
75
|
r"""
|
74
76
|
Pipeline for text-guided image super-resolution using Stable Diffusion 2.
|
@@ -78,8 +80,8 @@ class StableDiffusionUpscalePipeline(
|
|
78
80
|
|
79
81
|
The pipeline also inherits the following loading methods:
|
80
82
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
81
|
-
- [`~loaders.
|
82
|
-
- [`~loaders.
|
83
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
84
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
83
85
|
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
84
86
|
|
85
87
|
Args:
|
@@ -176,8 +178,8 @@ class StableDiffusionUpscalePipeline(
|
|
176
178
|
num_images_per_prompt,
|
177
179
|
do_classifier_free_guidance,
|
178
180
|
negative_prompt=None,
|
179
|
-
prompt_embeds: Optional[torch.
|
180
|
-
negative_prompt_embeds: Optional[torch.
|
181
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
182
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
181
183
|
lora_scale: Optional[float] = None,
|
182
184
|
**kwargs,
|
183
185
|
):
|
@@ -209,8 +211,8 @@ class StableDiffusionUpscalePipeline(
|
|
209
211
|
num_images_per_prompt,
|
210
212
|
do_classifier_free_guidance,
|
211
213
|
negative_prompt=None,
|
212
|
-
prompt_embeds: Optional[torch.
|
213
|
-
negative_prompt_embeds: Optional[torch.
|
214
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
215
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
214
216
|
lora_scale: Optional[float] = None,
|
215
217
|
clip_skip: Optional[int] = None,
|
216
218
|
):
|
@@ -230,10 +232,10 @@ class StableDiffusionUpscalePipeline(
|
|
230
232
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
231
233
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
232
234
|
less than `1`).
|
233
|
-
prompt_embeds (`torch.
|
235
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
234
236
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
235
237
|
provided, text embeddings will be generated from `prompt` input argument.
|
236
|
-
negative_prompt_embeds (`torch.
|
238
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
237
239
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
238
240
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
239
241
|
argument.
|
@@ -245,7 +247,7 @@ class StableDiffusionUpscalePipeline(
|
|
245
247
|
"""
|
246
248
|
# set lora scale so that monkey patched LoRA
|
247
249
|
# function of text encoder can correctly access it
|
248
|
-
if lora_scale is not None and isinstance(self,
|
250
|
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
249
251
|
self._lora_scale = lora_scale
|
250
252
|
|
251
253
|
# dynamically adjust the LoRA scale
|
@@ -377,9 +379,10 @@ class StableDiffusionUpscalePipeline(
|
|
377
379
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
378
380
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
379
381
|
|
380
|
-
if
|
381
|
-
|
382
|
-
|
382
|
+
if self.text_encoder is not None:
|
383
|
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
384
|
+
# Retrieve the original scale by scaling back the LoRA layers
|
385
|
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
383
386
|
|
384
387
|
return prompt_embeds, negative_prompt_embeds
|
385
388
|
|
@@ -468,7 +471,7 @@ class StableDiffusionUpscalePipeline(
|
|
468
471
|
)
|
469
472
|
|
470
473
|
# verify batch size of prompt and image are same if image is a list or tensor or numpy array
|
471
|
-
if isinstance(image, list
|
474
|
+
if isinstance(image, (list, np.ndarray, torch.Tensor)):
|
472
475
|
if prompt is not None and isinstance(prompt, str):
|
473
476
|
batch_size = 1
|
474
477
|
elif prompt is not None and isinstance(prompt, list):
|
@@ -519,8 +522,6 @@ class StableDiffusionUpscalePipeline(
|
|
519
522
|
(
|
520
523
|
AttnProcessor2_0,
|
521
524
|
XFormersAttnProcessor,
|
522
|
-
LoRAXFormersAttnProcessor,
|
523
|
-
LoRAAttnProcessor2_0,
|
524
525
|
),
|
525
526
|
)
|
526
527
|
# if xformers or torch_2_0 is used attention block does not need
|
@@ -542,12 +543,12 @@ class StableDiffusionUpscalePipeline(
|
|
542
543
|
num_images_per_prompt: Optional[int] = 1,
|
543
544
|
eta: float = 0.0,
|
544
545
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
545
|
-
latents: Optional[torch.
|
546
|
-
prompt_embeds: Optional[torch.
|
547
|
-
negative_prompt_embeds: Optional[torch.
|
546
|
+
latents: Optional[torch.Tensor] = None,
|
547
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
548
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
548
549
|
output_type: Optional[str] = "pil",
|
549
550
|
return_dict: bool = True,
|
550
|
-
callback: Optional[Callable[[int, int, torch.
|
551
|
+
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
551
552
|
callback_steps: int = 1,
|
552
553
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
553
554
|
clip_skip: int = None,
|
@@ -558,7 +559,7 @@ class StableDiffusionUpscalePipeline(
|
|
558
559
|
Args:
|
559
560
|
prompt (`str` or `List[str]`, *optional*):
|
560
561
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
561
|
-
image (`torch.
|
562
|
+
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
562
563
|
`Image` or tensor representing an image batch to be upscaled.
|
563
564
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
564
565
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
@@ -577,14 +578,14 @@ class StableDiffusionUpscalePipeline(
|
|
577
578
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
578
579
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
579
580
|
generation deterministic.
|
580
|
-
latents (`torch.
|
581
|
+
latents (`torch.Tensor`, *optional*):
|
581
582
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
582
583
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
583
584
|
tensor is generated by sampling using the supplied random `generator`.
|
584
|
-
prompt_embeds (`torch.
|
585
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
585
586
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
586
587
|
provided, text embeddings are generated from the `prompt` input argument.
|
587
|
-
negative_prompt_embeds (`torch.
|
588
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
588
589
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
589
590
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
590
591
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
@@ -594,7 +595,7 @@ class StableDiffusionUpscalePipeline(
|
|
594
595
|
plain tuple.
|
595
596
|
callback (`Callable`, *optional*):
|
596
597
|
A function that calls every `callback_steps` steps during inference. The function is called with the
|
597
|
-
following arguments: `callback(step: int, timestep: int, latents: torch.
|
598
|
+
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
598
599
|
callback_steps (`int`, *optional*, defaults to 1):
|
599
600
|
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
600
601
|
every step.
|
@@ -615,7 +616,7 @@ class StableDiffusionUpscalePipeline(
|
|
615
616
|
>>> # load model and scheduler
|
616
617
|
>>> model_id = "stabilityai/stable-diffusion-x4-upscaler"
|
617
618
|
>>> pipeline = StableDiffusionUpscalePipeline.from_pretrained(
|
618
|
-
... model_id,
|
619
|
+
... model_id, variant="fp16", torch_dtype=torch.float16
|
619
620
|
... )
|
620
621
|
>>> pipeline = pipeline.to("cuda")
|
621
622
|
|