diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,20 @@ from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput, StableDiffu
33
33
  logger = logging.get_logger(__name__) # pylint: disable=invalid-name
34
34
 
35
35
 
36
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
37
+ def retrieve_latents(
38
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
39
+ ):
40
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
41
+ return encoder_output.latent_dist.sample(generator)
42
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
43
+ return encoder_output.latent_dist.mode()
44
+ elif hasattr(encoder_output, "latents"):
45
+ return encoder_output.latents
46
+ else:
47
+ raise AttributeError("Could not access latents of provided encoder_output")
48
+
49
+
36
50
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.preprocess
37
51
  def preprocess(image):
38
52
  warnings.warn(
@@ -105,7 +119,54 @@ class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMix
105
119
  self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
106
120
  self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, resample="bicubic")
107
121
 
108
- def _encode_prompt(self, prompt, device, do_classifier_free_guidance, negative_prompt):
122
+ def _encode_prompt(
123
+ self,
124
+ prompt,
125
+ device,
126
+ do_classifier_free_guidance,
127
+ negative_prompt=None,
128
+ prompt_embeds: Optional[torch.Tensor] = None,
129
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
130
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
131
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
132
+ **kwargs,
133
+ ):
134
+ deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
135
+ deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
136
+
137
+ (
138
+ prompt_embeds,
139
+ negative_prompt_embeds,
140
+ pooled_prompt_embeds,
141
+ negative_pooled_prompt_embeds,
142
+ ) = self.encode_prompt(
143
+ prompt=prompt,
144
+ device=device,
145
+ do_classifier_free_guidance=do_classifier_free_guidance,
146
+ negative_prompt=negative_prompt,
147
+ prompt_embeds=prompt_embeds,
148
+ negative_prompt_embeds=negative_prompt_embeds,
149
+ pooled_prompt_embeds=pooled_prompt_embeds,
150
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
151
+ **kwargs,
152
+ )
153
+
154
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
155
+ pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds])
156
+
157
+ return prompt_embeds, pooled_prompt_embeds
158
+
159
+ def encode_prompt(
160
+ self,
161
+ prompt,
162
+ device,
163
+ do_classifier_free_guidance,
164
+ negative_prompt=None,
165
+ prompt_embeds: Optional[torch.Tensor] = None,
166
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
167
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
168
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
169
+ ):
109
170
  r"""
110
171
  Encodes the prompt into text encoder hidden states.
111
172
 
@@ -119,81 +180,100 @@ class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMix
119
180
  negative_prompt (`str` or `List[str]`):
120
181
  The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
121
182
  if `guidance_scale` is less than `1`).
183
+ prompt_embeds (`torch.FloatTensor`, *optional*):
184
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
185
+ provided, text embeddings will be generated from `prompt` input argument.
186
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
187
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
188
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
189
+ argument.
190
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
191
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
192
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
193
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
194
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
195
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
196
+ input argument.
122
197
  """
123
- batch_size = len(prompt) if isinstance(prompt, list) else 1
124
-
125
- text_inputs = self.tokenizer(
126
- prompt,
127
- padding="max_length",
128
- max_length=self.tokenizer.model_max_length,
129
- truncation=True,
130
- return_length=True,
131
- return_tensors="pt",
132
- )
133
- text_input_ids = text_inputs.input_ids
134
-
135
- untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
136
-
137
- if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
138
- removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
139
- logger.warning(
140
- "The following part of your input was truncated because CLIP can only handle sequences up to"
141
- f" {self.tokenizer.model_max_length} tokens: {removed_text}"
142
- )
143
-
144
- text_encoder_out = self.text_encoder(
145
- text_input_ids.to(device),
146
- output_hidden_states=True,
147
- )
148
- text_embeddings = text_encoder_out.hidden_states[-1]
149
- text_pooler_out = text_encoder_out.pooler_output
150
-
151
- # get unconditional embeddings for classifier free guidance
152
- if do_classifier_free_guidance:
153
- uncond_tokens: List[str]
154
- if negative_prompt is None:
155
- uncond_tokens = [""] * batch_size
156
- elif type(prompt) is not type(negative_prompt):
157
- raise TypeError(
158
- f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
159
- f" {type(prompt)}."
160
- )
161
- elif isinstance(negative_prompt, str):
162
- uncond_tokens = [negative_prompt]
163
- elif batch_size != len(negative_prompt):
164
- raise ValueError(
165
- f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
166
- f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
167
- " the batch size of `prompt`."
168
- )
169
- else:
170
- uncond_tokens = negative_prompt
198
+ if prompt is not None and isinstance(prompt, str):
199
+ batch_size = 1
200
+ elif prompt is not None and isinstance(prompt, list):
201
+ batch_size = len(prompt)
202
+ else:
203
+ batch_size = prompt_embeds.shape[0]
171
204
 
172
- max_length = text_input_ids.shape[-1]
173
- uncond_input = self.tokenizer(
174
- uncond_tokens,
205
+ if prompt_embeds is None or pooled_prompt_embeds is None:
206
+ text_inputs = self.tokenizer(
207
+ prompt,
175
208
  padding="max_length",
176
- max_length=max_length,
209
+ max_length=self.tokenizer.model_max_length,
177
210
  truncation=True,
178
211
  return_length=True,
179
212
  return_tensors="pt",
180
213
  )
214
+ text_input_ids = text_inputs.input_ids
181
215
 
182
- uncond_encoder_out = self.text_encoder(
183
- uncond_input.input_ids.to(device),
216
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
217
+
218
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
219
+ text_input_ids, untruncated_ids
220
+ ):
221
+ removed_text = self.tokenizer.batch_decode(
222
+ untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
223
+ )
224
+ logger.warning(
225
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
226
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
227
+ )
228
+
229
+ text_encoder_out = self.text_encoder(
230
+ text_input_ids.to(device),
184
231
  output_hidden_states=True,
185
232
  )
233
+ prompt_embeds = text_encoder_out.hidden_states[-1]
234
+ pooled_prompt_embeds = text_encoder_out.pooler_output
186
235
 
187
- uncond_embeddings = uncond_encoder_out.hidden_states[-1]
188
- uncond_pooler_out = uncond_encoder_out.pooler_output
236
+ # get unconditional embeddings for classifier free guidance
237
+ if do_classifier_free_guidance:
238
+ if negative_prompt_embeds is None or negative_pooled_prompt_embeds is None:
239
+ uncond_tokens: List[str]
240
+ if negative_prompt is None:
241
+ uncond_tokens = [""] * batch_size
242
+ elif type(prompt) is not type(negative_prompt):
243
+ raise TypeError(
244
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
245
+ f" {type(prompt)}."
246
+ )
247
+ elif isinstance(negative_prompt, str):
248
+ uncond_tokens = [negative_prompt]
249
+ elif batch_size != len(negative_prompt):
250
+ raise ValueError(
251
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
252
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
253
+ " the batch size of `prompt`."
254
+ )
255
+ else:
256
+ uncond_tokens = negative_prompt
257
+
258
+ max_length = text_input_ids.shape[-1]
259
+ uncond_input = self.tokenizer(
260
+ uncond_tokens,
261
+ padding="max_length",
262
+ max_length=max_length,
263
+ truncation=True,
264
+ return_length=True,
265
+ return_tensors="pt",
266
+ )
267
+
268
+ uncond_encoder_out = self.text_encoder(
269
+ uncond_input.input_ids.to(device),
270
+ output_hidden_states=True,
271
+ )
189
272
 
190
- # For classifier free guidance, we need to do two forward passes.
191
- # Here we concatenate the unconditional and text embeddings into a single batch
192
- # to avoid doing two forward passes
193
- text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
194
- text_pooler_out = torch.cat([uncond_pooler_out, text_pooler_out])
273
+ negative_prompt_embeds = uncond_encoder_out.hidden_states[-1]
274
+ negative_pooled_prompt_embeds = uncond_encoder_out.pooler_output
195
275
 
196
- return text_embeddings, text_pooler_out
276
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
197
277
 
198
278
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
199
279
  def decode_latents(self, latents):
@@ -207,12 +287,56 @@ class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMix
207
287
  image = image.cpu().permute(0, 2, 3, 1).float().numpy()
208
288
  return image
209
289
 
210
- def check_inputs(self, prompt, image, callback_steps):
211
- if not isinstance(prompt, str) and not isinstance(prompt, list):
290
+ def check_inputs(
291
+ self,
292
+ prompt,
293
+ image,
294
+ callback_steps,
295
+ negative_prompt=None,
296
+ prompt_embeds=None,
297
+ negative_prompt_embeds=None,
298
+ pooled_prompt_embeds=None,
299
+ negative_pooled_prompt_embeds=None,
300
+ ):
301
+ if prompt is not None and prompt_embeds is not None:
302
+ raise ValueError(
303
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
304
+ " only forward one of the two."
305
+ )
306
+ elif prompt is None and prompt_embeds is None:
307
+ raise ValueError(
308
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
309
+ )
310
+ elif prompt is not None and not isinstance(prompt, str) and not isinstance(prompt, list):
212
311
  raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
213
312
 
313
+ if negative_prompt is not None and negative_prompt_embeds is not None:
314
+ raise ValueError(
315
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
316
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
317
+ )
318
+
319
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
320
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
321
+ raise ValueError(
322
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
323
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
324
+ f" {negative_prompt_embeds.shape}."
325
+ )
326
+
327
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
328
+ raise ValueError(
329
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
330
+ )
331
+
332
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
333
+ raise ValueError(
334
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
335
+ )
336
+
214
337
  if (
215
338
  not isinstance(image, torch.Tensor)
339
+ and not isinstance(image, np.ndarray)
216
340
  and not isinstance(image, PIL.Image.Image)
217
341
  and not isinstance(image, list)
218
342
  ):
@@ -221,11 +345,15 @@ class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMix
221
345
  )
222
346
 
223
347
  # verify batch size of prompt and image are same if image is a list or tensor
224
- if isinstance(image, list) or isinstance(image, torch.Tensor):
225
- if isinstance(prompt, str):
226
- batch_size = 1
348
+ if isinstance(image, (list, torch.Tensor)):
349
+ if prompt is not None:
350
+ if isinstance(prompt, str):
351
+ batch_size = 1
352
+ else:
353
+ batch_size = len(prompt)
227
354
  else:
228
- batch_size = len(prompt)
355
+ batch_size = prompt_embeds.shape[0]
356
+
229
357
  if isinstance(image, list):
230
358
  image_batch_size = len(image)
231
359
  else:
@@ -261,16 +389,20 @@ class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMix
261
389
  @torch.no_grad()
262
390
  def __call__(
263
391
  self,
264
- prompt: Union[str, List[str]],
392
+ prompt: Union[str, List[str]] = None,
265
393
  image: PipelineImageInput = None,
266
394
  num_inference_steps: int = 75,
267
395
  guidance_scale: float = 9.0,
268
396
  negative_prompt: Optional[Union[str, List[str]]] = None,
269
397
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
270
- latents: Optional[torch.FloatTensor] = None,
398
+ latents: Optional[torch.Tensor] = None,
399
+ prompt_embeds: Optional[torch.Tensor] = None,
400
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
401
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
402
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
271
403
  output_type: Optional[str] = "pil",
272
404
  return_dict: bool = True,
273
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
405
+ callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
274
406
  callback_steps: int = 1,
275
407
  ):
276
408
  r"""
@@ -279,7 +411,7 @@ class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMix
279
411
  Args:
280
412
  prompt (`str` or `List[str]`):
281
413
  The prompt or prompts to guide image upscaling.
282
- image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
414
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
283
415
  `Image` or tensor representing an image batch to be upscaled. If it's a tensor, it can be either a
284
416
  latent output from a Stable Diffusion model or an image tensor in the range `[-1, 1]`. It is considered
285
417
  a `latent` if `image.shape[1]` is `4`; otherwise, it is considered to be an image representation and
@@ -299,7 +431,7 @@ class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMix
299
431
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
300
432
  A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
301
433
  generation deterministic.
302
- latents (`torch.FloatTensor`, *optional*):
434
+ latents (`torch.Tensor`, *optional*):
303
435
  Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
304
436
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
305
437
  tensor is generated by sampling using the supplied random `generator`.
@@ -310,7 +442,7 @@ class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMix
310
442
  plain tuple.
311
443
  callback (`Callable`, *optional*):
312
444
  A function that calls every `callback_steps` steps during inference. The function is called with the
313
- following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
445
+ following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
314
446
  callback_steps (`int`, *optional*, defaults to 1):
315
447
  The frequency at which the `callback` function is called. If not specified, the callback is called at
316
448
  every step.
@@ -359,10 +491,22 @@ class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMix
359
491
  """
360
492
 
361
493
  # 1. Check inputs
362
- self.check_inputs(prompt, image, callback_steps)
494
+ self.check_inputs(
495
+ prompt,
496
+ image,
497
+ callback_steps,
498
+ negative_prompt,
499
+ prompt_embeds,
500
+ negative_prompt_embeds,
501
+ pooled_prompt_embeds,
502
+ negative_pooled_prompt_embeds,
503
+ )
363
504
 
364
505
  # 2. Define call parameters
365
- batch_size = 1 if isinstance(prompt, str) else len(prompt)
506
+ if prompt is not None:
507
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
508
+ else:
509
+ batch_size = prompt_embeds.shape[0]
366
510
  device = self._execution_device
367
511
  # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
368
512
  # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
@@ -373,16 +517,32 @@ class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMix
373
517
  prompt = [""] * batch_size
374
518
 
375
519
  # 3. Encode input prompt
376
- text_embeddings, text_pooler_out = self._encode_prompt(
377
- prompt, device, do_classifier_free_guidance, negative_prompt
520
+ (
521
+ prompt_embeds,
522
+ negative_prompt_embeds,
523
+ pooled_prompt_embeds,
524
+ negative_pooled_prompt_embeds,
525
+ ) = self.encode_prompt(
526
+ prompt,
527
+ device,
528
+ do_classifier_free_guidance,
529
+ negative_prompt,
530
+ prompt_embeds,
531
+ negative_prompt_embeds,
532
+ pooled_prompt_embeds,
533
+ negative_pooled_prompt_embeds,
378
534
  )
379
535
 
536
+ if do_classifier_free_guidance:
537
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
538
+ pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds])
539
+
380
540
  # 4. Preprocess image
381
541
  image = self.image_processor.preprocess(image)
382
- image = image.to(dtype=text_embeddings.dtype, device=device)
542
+ image = image.to(dtype=prompt_embeds.dtype, device=device)
383
543
  if image.shape[1] == 3:
384
544
  # encode image if not in latent-space yet
385
- image = self.vae.encode(image).latent_dist.sample() * self.vae.config.scaling_factor
545
+ image = retrieve_latents(self.vae.encode(image), generator=generator) * self.vae.config.scaling_factor
386
546
 
387
547
  # 5. set timesteps
388
548
  self.scheduler.set_timesteps(num_inference_steps, device=device)
@@ -400,17 +560,17 @@ class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMix
400
560
  inv_noise_level = (noise_level**2 + 1) ** (-0.5)
401
561
 
402
562
  image_cond = F.interpolate(image, scale_factor=2, mode="nearest") * inv_noise_level[:, None, None, None]
403
- image_cond = image_cond.to(text_embeddings.dtype)
563
+ image_cond = image_cond.to(prompt_embeds.dtype)
404
564
 
405
565
  noise_level_embed = torch.cat(
406
566
  [
407
- torch.ones(text_pooler_out.shape[0], 64, dtype=text_pooler_out.dtype, device=device),
408
- torch.zeros(text_pooler_out.shape[0], 64, dtype=text_pooler_out.dtype, device=device),
567
+ torch.ones(pooled_prompt_embeds.shape[0], 64, dtype=pooled_prompt_embeds.dtype, device=device),
568
+ torch.zeros(pooled_prompt_embeds.shape[0], 64, dtype=pooled_prompt_embeds.dtype, device=device),
409
569
  ],
410
570
  dim=1,
411
571
  )
412
572
 
413
- timestep_condition = torch.cat([noise_level_embed, text_pooler_out], dim=1)
573
+ timestep_condition = torch.cat([noise_level_embed, pooled_prompt_embeds], dim=1)
414
574
 
415
575
  # 6. Prepare latent variables
416
576
  height, width = image.shape[2:]
@@ -420,7 +580,7 @@ class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMix
420
580
  num_channels_latents,
421
581
  height * 2, # 2x upscale
422
582
  width * 2,
423
- text_embeddings.dtype,
583
+ prompt_embeds.dtype,
424
584
  device,
425
585
  generator,
426
586
  latents,
@@ -454,7 +614,7 @@ class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMix
454
614
  noise_pred = self.unet(
455
615
  scaled_model_input,
456
616
  timestep,
457
- encoder_hidden_states=text_embeddings,
617
+ encoder_hidden_states=prompt_embeds,
458
618
  timestep_cond=timestep_condition,
459
619
  ).sample
460
620
 
@@ -22,12 +22,10 @@ import torch
22
22
  from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
23
23
 
24
24
  from ...image_processor import PipelineImageInput, VaeImageProcessor
25
- from ...loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
25
+ from ...loaders import FromSingleFileMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
26
26
  from ...models import AutoencoderKL, UNet2DConditionModel
27
27
  from ...models.attention_processor import (
28
28
  AttnProcessor2_0,
29
- LoRAAttnProcessor2_0,
30
- LoRAXFormersAttnProcessor,
31
29
  XFormersAttnProcessor,
32
30
  )
33
31
  from ...models.lora import adjust_lora_scale_text_encoder
@@ -68,7 +66,11 @@ def preprocess(image):
68
66
 
69
67
 
70
68
  class StableDiffusionUpscalePipeline(
71
- DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin
69
+ DiffusionPipeline,
70
+ StableDiffusionMixin,
71
+ TextualInversionLoaderMixin,
72
+ StableDiffusionLoraLoaderMixin,
73
+ FromSingleFileMixin,
72
74
  ):
73
75
  r"""
74
76
  Pipeline for text-guided image super-resolution using Stable Diffusion 2.
@@ -78,8 +80,8 @@ class StableDiffusionUpscalePipeline(
78
80
 
79
81
  The pipeline also inherits the following loading methods:
80
82
  - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
81
- - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
82
- - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
83
+ - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
84
+ - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
83
85
  - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
84
86
 
85
87
  Args:
@@ -176,8 +178,8 @@ class StableDiffusionUpscalePipeline(
176
178
  num_images_per_prompt,
177
179
  do_classifier_free_guidance,
178
180
  negative_prompt=None,
179
- prompt_embeds: Optional[torch.FloatTensor] = None,
180
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
181
+ prompt_embeds: Optional[torch.Tensor] = None,
182
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
181
183
  lora_scale: Optional[float] = None,
182
184
  **kwargs,
183
185
  ):
@@ -209,8 +211,8 @@ class StableDiffusionUpscalePipeline(
209
211
  num_images_per_prompt,
210
212
  do_classifier_free_guidance,
211
213
  negative_prompt=None,
212
- prompt_embeds: Optional[torch.FloatTensor] = None,
213
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
214
+ prompt_embeds: Optional[torch.Tensor] = None,
215
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
214
216
  lora_scale: Optional[float] = None,
215
217
  clip_skip: Optional[int] = None,
216
218
  ):
@@ -230,10 +232,10 @@ class StableDiffusionUpscalePipeline(
230
232
  The prompt or prompts not to guide the image generation. If not defined, one has to pass
231
233
  `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
232
234
  less than `1`).
233
- prompt_embeds (`torch.FloatTensor`, *optional*):
235
+ prompt_embeds (`torch.Tensor`, *optional*):
234
236
  Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
235
237
  provided, text embeddings will be generated from `prompt` input argument.
236
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
238
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
237
239
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
238
240
  weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
239
241
  argument.
@@ -245,7 +247,7 @@ class StableDiffusionUpscalePipeline(
245
247
  """
246
248
  # set lora scale so that monkey patched LoRA
247
249
  # function of text encoder can correctly access it
248
- if lora_scale is not None and isinstance(self, LoraLoaderMixin):
250
+ if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
249
251
  self._lora_scale = lora_scale
250
252
 
251
253
  # dynamically adjust the LoRA scale
@@ -377,9 +379,10 @@ class StableDiffusionUpscalePipeline(
377
379
  negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
378
380
  negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
379
381
 
380
- if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
381
- # Retrieve the original scale by scaling back the LoRA layers
382
- unscale_lora_layers(self.text_encoder, lora_scale)
382
+ if self.text_encoder is not None:
383
+ if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
384
+ # Retrieve the original scale by scaling back the LoRA layers
385
+ unscale_lora_layers(self.text_encoder, lora_scale)
383
386
 
384
387
  return prompt_embeds, negative_prompt_embeds
385
388
 
@@ -468,7 +471,7 @@ class StableDiffusionUpscalePipeline(
468
471
  )
469
472
 
470
473
  # verify batch size of prompt and image are same if image is a list or tensor or numpy array
471
- if isinstance(image, list) or isinstance(image, torch.Tensor) or isinstance(image, np.ndarray):
474
+ if isinstance(image, (list, np.ndarray, torch.Tensor)):
472
475
  if prompt is not None and isinstance(prompt, str):
473
476
  batch_size = 1
474
477
  elif prompt is not None and isinstance(prompt, list):
@@ -519,8 +522,6 @@ class StableDiffusionUpscalePipeline(
519
522
  (
520
523
  AttnProcessor2_0,
521
524
  XFormersAttnProcessor,
522
- LoRAXFormersAttnProcessor,
523
- LoRAAttnProcessor2_0,
524
525
  ),
525
526
  )
526
527
  # if xformers or torch_2_0 is used attention block does not need
@@ -542,12 +543,12 @@ class StableDiffusionUpscalePipeline(
542
543
  num_images_per_prompt: Optional[int] = 1,
543
544
  eta: float = 0.0,
544
545
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
545
- latents: Optional[torch.FloatTensor] = None,
546
- prompt_embeds: Optional[torch.FloatTensor] = None,
547
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
546
+ latents: Optional[torch.Tensor] = None,
547
+ prompt_embeds: Optional[torch.Tensor] = None,
548
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
548
549
  output_type: Optional[str] = "pil",
549
550
  return_dict: bool = True,
550
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
551
+ callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
551
552
  callback_steps: int = 1,
552
553
  cross_attention_kwargs: Optional[Dict[str, Any]] = None,
553
554
  clip_skip: int = None,
@@ -558,7 +559,7 @@ class StableDiffusionUpscalePipeline(
558
559
  Args:
559
560
  prompt (`str` or `List[str]`, *optional*):
560
561
  The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
561
- image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
562
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
562
563
  `Image` or tensor representing an image batch to be upscaled.
563
564
  num_inference_steps (`int`, *optional*, defaults to 50):
564
565
  The number of denoising steps. More denoising steps usually lead to a higher quality image at the
@@ -577,14 +578,14 @@ class StableDiffusionUpscalePipeline(
577
578
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
578
579
  A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
579
580
  generation deterministic.
580
- latents (`torch.FloatTensor`, *optional*):
581
+ latents (`torch.Tensor`, *optional*):
581
582
  Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
582
583
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
583
584
  tensor is generated by sampling using the supplied random `generator`.
584
- prompt_embeds (`torch.FloatTensor`, *optional*):
585
+ prompt_embeds (`torch.Tensor`, *optional*):
585
586
  Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
586
587
  provided, text embeddings are generated from the `prompt` input argument.
587
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
588
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
588
589
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
589
590
  not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
590
591
  output_type (`str`, *optional*, defaults to `"pil"`):
@@ -594,7 +595,7 @@ class StableDiffusionUpscalePipeline(
594
595
  plain tuple.
595
596
  callback (`Callable`, *optional*):
596
597
  A function that calls every `callback_steps` steps during inference. The function is called with the
597
- following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
598
+ following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
598
599
  callback_steps (`int`, *optional*, defaults to 1):
599
600
  The frequency at which the `callback` function is called. If not specified, the callback is called at
600
601
  every step.
@@ -615,7 +616,7 @@ class StableDiffusionUpscalePipeline(
615
616
  >>> # load model and scheduler
616
617
  >>> model_id = "stabilityai/stable-diffusion-x4-upscaler"
617
618
  >>> pipeline = StableDiffusionUpscalePipeline.from_pretrained(
618
- ... model_id, revision="fp16", torch_dtype=torch.float16
619
+ ... model_id, variant="fp16", torch_dtype=torch.float16
619
620
  ... )
620
621
  >>> pipeline = pipeline.to("cuda")
621
622