diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1543 @@
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/
16
+
17
+ import inspect
18
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
19
+
20
+ import numpy as np
21
+ import PIL.Image
22
+ import torch
23
+ import torch.nn.functional as F
24
+ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
25
+
26
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
27
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
28
+ from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
29
+ from ...models import AutoencoderKL, ControlNetModel, ImageProjection, MultiControlNetModel, UNet2DConditionModel
30
+ from ...models.lora import adjust_lora_scale_text_encoder
31
+ from ...schedulers import KarrasDiffusionSchedulers
32
+ from ...utils import (
33
+ USE_PEFT_BACKEND,
34
+ logging,
35
+ replace_example_docstring,
36
+ scale_lora_layers,
37
+ unscale_lora_layers,
38
+ )
39
+ from ...utils.torch_utils import is_compiled_module, randn_tensor
40
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
41
+ from ..stable_diffusion import StableDiffusionPipelineOutput
42
+ from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
43
+ from .pag_utils import PAGMixin
44
+
45
+
46
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
47
+
48
+
49
+ EXAMPLE_DOC_STRING = """
50
+ Examples:
51
+ ```py
52
+ >>> # !pip install transformers accelerate
53
+ >>> import cv2
54
+ >>> from diffusers import AutoPipelineForInpainting, ControlNetModel, DDIMScheduler
55
+ >>> from diffusers.utils import load_image
56
+ >>> import numpy as np
57
+ >>> from PIL import Image
58
+ >>> import torch
59
+
60
+ >>> init_image = load_image(
61
+ ... "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy.png"
62
+ ... )
63
+ >>> init_image = init_image.resize((512, 512))
64
+
65
+ >>> generator = torch.Generator(device="cpu").manual_seed(1)
66
+
67
+ >>> mask_image = load_image(
68
+ ... "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy_mask.png"
69
+ ... )
70
+ >>> mask_image = mask_image.resize((512, 512))
71
+
72
+
73
+ >>> def make_canny_condition(image):
74
+ ... image = np.array(image)
75
+ ... image = cv2.Canny(image, 100, 200)
76
+ ... image = image[:, :, None]
77
+ ... image = np.concatenate([image, image, image], axis=2)
78
+ ... image = Image.fromarray(image)
79
+ ... return image
80
+
81
+
82
+ >>> control_image = make_canny_condition(init_image)
83
+
84
+ >>> controlnet = ControlNetModel.from_pretrained(
85
+ ... "lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16
86
+ ... )
87
+ >>> pipe = AutoPipelineForInpainting.from_pretrained(
88
+ ... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16, enable_pag=True
89
+ ... )
90
+
91
+ >>> pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
92
+ >>> pipe.enable_model_cpu_offload()
93
+
94
+ >>> # generate image
95
+ >>> image = pipe(
96
+ ... "a handsome man with ray-ban sunglasses",
97
+ ... num_inference_steps=20,
98
+ ... generator=generator,
99
+ ... eta=1.0,
100
+ ... image=init_image,
101
+ ... mask_image=mask_image,
102
+ ... control_image=control_image,
103
+ ... pag_scale=0.3,
104
+ ... ).images[0]
105
+ ```
106
+ """
107
+
108
+
109
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
110
+ def retrieve_latents(
111
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
112
+ ):
113
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
114
+ return encoder_output.latent_dist.sample(generator)
115
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
116
+ return encoder_output.latent_dist.mode()
117
+ elif hasattr(encoder_output, "latents"):
118
+ return encoder_output.latents
119
+ else:
120
+ raise AttributeError("Could not access latents of provided encoder_output")
121
+
122
+
123
+ class StableDiffusionControlNetPAGInpaintPipeline(
124
+ DiffusionPipeline,
125
+ StableDiffusionMixin,
126
+ TextualInversionLoaderMixin,
127
+ StableDiffusionLoraLoaderMixin,
128
+ IPAdapterMixin,
129
+ FromSingleFileMixin,
130
+ PAGMixin,
131
+ ):
132
+ r"""
133
+ Pipeline for image inpainting using Stable Diffusion with ControlNet guidance.
134
+
135
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
136
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
137
+
138
+ The pipeline also inherits the following loading methods:
139
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
140
+ - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
141
+ - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
142
+ - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
143
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
144
+
145
+ <Tip>
146
+
147
+ This pipeline can be used with checkpoints that have been specifically fine-tuned for inpainting
148
+ ([runwayml/stable-diffusion-inpainting](https://huggingface.co/runwayml/stable-diffusion-inpainting)) as well as
149
+ default text-to-image Stable Diffusion checkpoints
150
+ ([runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5)). Default text-to-image
151
+ Stable Diffusion checkpoints might be preferable for ControlNets that have been fine-tuned on those, such as
152
+ [lllyasviel/control_v11p_sd15_inpaint](https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint).
153
+
154
+ </Tip>
155
+
156
+ Args:
157
+ vae ([`AutoencoderKL`]):
158
+ Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
159
+ text_encoder ([`~transformers.CLIPTextModel`]):
160
+ Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
161
+ tokenizer ([`~transformers.CLIPTokenizer`]):
162
+ A `CLIPTokenizer` to tokenize text.
163
+ unet ([`UNet2DConditionModel`]):
164
+ A `UNet2DConditionModel` to denoise the encoded image latents.
165
+ controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
166
+ Provides additional conditioning to the `unet` during the denoising process. If you set multiple
167
+ ControlNets as a list, the outputs from each ControlNet are added together to create one combined
168
+ additional conditioning.
169
+ scheduler ([`SchedulerMixin`]):
170
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
171
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
172
+ safety_checker ([`StableDiffusionSafetyChecker`]):
173
+ Classification module that estimates whether generated images could be considered offensive or harmful.
174
+ Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
175
+ about a model's potential harms.
176
+ feature_extractor ([`~transformers.CLIPImageProcessor`]):
177
+ A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
178
+ """
179
+
180
+ model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
181
+ _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
182
+ _exclude_from_cpu_offload = ["safety_checker"]
183
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
184
+
185
+ def __init__(
186
+ self,
187
+ vae: AutoencoderKL,
188
+ text_encoder: CLIPTextModel,
189
+ tokenizer: CLIPTokenizer,
190
+ unet: UNet2DConditionModel,
191
+ controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
192
+ scheduler: KarrasDiffusionSchedulers,
193
+ safety_checker: StableDiffusionSafetyChecker,
194
+ feature_extractor: CLIPImageProcessor,
195
+ image_encoder: CLIPVisionModelWithProjection = None,
196
+ requires_safety_checker: bool = True,
197
+ pag_applied_layers: Union[str, List[str]] = "mid",
198
+ ):
199
+ super().__init__()
200
+
201
+ if safety_checker is None and requires_safety_checker:
202
+ logger.warning(
203
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
204
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
205
+ " results in services or applications open to the public. Both the diffusers team and Hugging Face"
206
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
207
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
208
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
209
+ )
210
+
211
+ if safety_checker is not None and feature_extractor is None:
212
+ raise ValueError(
213
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
214
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
215
+ )
216
+
217
+ if isinstance(controlnet, (list, tuple)):
218
+ controlnet = MultiControlNetModel(controlnet)
219
+
220
+ self.register_modules(
221
+ vae=vae,
222
+ text_encoder=text_encoder,
223
+ tokenizer=tokenizer,
224
+ unet=unet,
225
+ controlnet=controlnet,
226
+ scheduler=scheduler,
227
+ safety_checker=safety_checker,
228
+ feature_extractor=feature_extractor,
229
+ image_encoder=image_encoder,
230
+ )
231
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
232
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
233
+ self.mask_processor = VaeImageProcessor(
234
+ vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
235
+ )
236
+ self.control_image_processor = VaeImageProcessor(
237
+ vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
238
+ )
239
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
240
+ self.set_pag_applied_layers(pag_applied_layers)
241
+
242
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
243
+ def encode_prompt(
244
+ self,
245
+ prompt,
246
+ device,
247
+ num_images_per_prompt,
248
+ do_classifier_free_guidance,
249
+ negative_prompt=None,
250
+ prompt_embeds: Optional[torch.Tensor] = None,
251
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
252
+ lora_scale: Optional[float] = None,
253
+ clip_skip: Optional[int] = None,
254
+ ):
255
+ r"""
256
+ Encodes the prompt into text encoder hidden states.
257
+
258
+ Args:
259
+ prompt (`str` or `List[str]`, *optional*):
260
+ prompt to be encoded
261
+ device: (`torch.device`):
262
+ torch device
263
+ num_images_per_prompt (`int`):
264
+ number of images that should be generated per prompt
265
+ do_classifier_free_guidance (`bool`):
266
+ whether to use classifier free guidance or not
267
+ negative_prompt (`str` or `List[str]`, *optional*):
268
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
269
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
270
+ less than `1`).
271
+ prompt_embeds (`torch.Tensor`, *optional*):
272
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
273
+ provided, text embeddings will be generated from `prompt` input argument.
274
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
275
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
276
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
277
+ argument.
278
+ lora_scale (`float`, *optional*):
279
+ A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
280
+ clip_skip (`int`, *optional*):
281
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
282
+ the output of the pre-final layer will be used for computing the prompt embeddings.
283
+ """
284
+ # set lora scale so that monkey patched LoRA
285
+ # function of text encoder can correctly access it
286
+ if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
287
+ self._lora_scale = lora_scale
288
+
289
+ # dynamically adjust the LoRA scale
290
+ if not USE_PEFT_BACKEND:
291
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
292
+ else:
293
+ scale_lora_layers(self.text_encoder, lora_scale)
294
+
295
+ if prompt is not None and isinstance(prompt, str):
296
+ batch_size = 1
297
+ elif prompt is not None and isinstance(prompt, list):
298
+ batch_size = len(prompt)
299
+ else:
300
+ batch_size = prompt_embeds.shape[0]
301
+
302
+ if prompt_embeds is None:
303
+ # textual inversion: process multi-vector tokens if necessary
304
+ if isinstance(self, TextualInversionLoaderMixin):
305
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
306
+
307
+ text_inputs = self.tokenizer(
308
+ prompt,
309
+ padding="max_length",
310
+ max_length=self.tokenizer.model_max_length,
311
+ truncation=True,
312
+ return_tensors="pt",
313
+ )
314
+ text_input_ids = text_inputs.input_ids
315
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
316
+
317
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
318
+ text_input_ids, untruncated_ids
319
+ ):
320
+ removed_text = self.tokenizer.batch_decode(
321
+ untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
322
+ )
323
+ logger.warning(
324
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
325
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
326
+ )
327
+
328
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
329
+ attention_mask = text_inputs.attention_mask.to(device)
330
+ else:
331
+ attention_mask = None
332
+
333
+ if clip_skip is None:
334
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
335
+ prompt_embeds = prompt_embeds[0]
336
+ else:
337
+ prompt_embeds = self.text_encoder(
338
+ text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
339
+ )
340
+ # Access the `hidden_states` first, that contains a tuple of
341
+ # all the hidden states from the encoder layers. Then index into
342
+ # the tuple to access the hidden states from the desired layer.
343
+ prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
344
+ # We also need to apply the final LayerNorm here to not mess with the
345
+ # representations. The `last_hidden_states` that we typically use for
346
+ # obtaining the final prompt representations passes through the LayerNorm
347
+ # layer.
348
+ prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
349
+
350
+ if self.text_encoder is not None:
351
+ prompt_embeds_dtype = self.text_encoder.dtype
352
+ elif self.unet is not None:
353
+ prompt_embeds_dtype = self.unet.dtype
354
+ else:
355
+ prompt_embeds_dtype = prompt_embeds.dtype
356
+
357
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
358
+
359
+ bs_embed, seq_len, _ = prompt_embeds.shape
360
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
361
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
362
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
363
+
364
+ # get unconditional embeddings for classifier free guidance
365
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
366
+ uncond_tokens: List[str]
367
+ if negative_prompt is None:
368
+ uncond_tokens = [""] * batch_size
369
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
370
+ raise TypeError(
371
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
372
+ f" {type(prompt)}."
373
+ )
374
+ elif isinstance(negative_prompt, str):
375
+ uncond_tokens = [negative_prompt]
376
+ elif batch_size != len(negative_prompt):
377
+ raise ValueError(
378
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
379
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
380
+ " the batch size of `prompt`."
381
+ )
382
+ else:
383
+ uncond_tokens = negative_prompt
384
+
385
+ # textual inversion: process multi-vector tokens if necessary
386
+ if isinstance(self, TextualInversionLoaderMixin):
387
+ uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
388
+
389
+ max_length = prompt_embeds.shape[1]
390
+ uncond_input = self.tokenizer(
391
+ uncond_tokens,
392
+ padding="max_length",
393
+ max_length=max_length,
394
+ truncation=True,
395
+ return_tensors="pt",
396
+ )
397
+
398
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
399
+ attention_mask = uncond_input.attention_mask.to(device)
400
+ else:
401
+ attention_mask = None
402
+
403
+ negative_prompt_embeds = self.text_encoder(
404
+ uncond_input.input_ids.to(device),
405
+ attention_mask=attention_mask,
406
+ )
407
+ negative_prompt_embeds = negative_prompt_embeds[0]
408
+
409
+ if do_classifier_free_guidance:
410
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
411
+ seq_len = negative_prompt_embeds.shape[1]
412
+
413
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
414
+
415
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
416
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
417
+
418
+ if self.text_encoder is not None:
419
+ if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
420
+ # Retrieve the original scale by scaling back the LoRA layers
421
+ unscale_lora_layers(self.text_encoder, lora_scale)
422
+
423
+ return prompt_embeds, negative_prompt_embeds
424
+
425
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
426
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
427
+ dtype = next(self.image_encoder.parameters()).dtype
428
+
429
+ if not isinstance(image, torch.Tensor):
430
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
431
+
432
+ image = image.to(device=device, dtype=dtype)
433
+ if output_hidden_states:
434
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
435
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
436
+ uncond_image_enc_hidden_states = self.image_encoder(
437
+ torch.zeros_like(image), output_hidden_states=True
438
+ ).hidden_states[-2]
439
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
440
+ num_images_per_prompt, dim=0
441
+ )
442
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
443
+ else:
444
+ image_embeds = self.image_encoder(image).image_embeds
445
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
446
+ uncond_image_embeds = torch.zeros_like(image_embeds)
447
+
448
+ return image_embeds, uncond_image_embeds
449
+
450
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
451
+ def prepare_ip_adapter_image_embeds(
452
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
453
+ ):
454
+ image_embeds = []
455
+ if do_classifier_free_guidance:
456
+ negative_image_embeds = []
457
+ if ip_adapter_image_embeds is None:
458
+ if not isinstance(ip_adapter_image, list):
459
+ ip_adapter_image = [ip_adapter_image]
460
+
461
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
462
+ raise ValueError(
463
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
464
+ )
465
+
466
+ for single_ip_adapter_image, image_proj_layer in zip(
467
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
468
+ ):
469
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
470
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
471
+ single_ip_adapter_image, device, 1, output_hidden_state
472
+ )
473
+
474
+ image_embeds.append(single_image_embeds[None, :])
475
+ if do_classifier_free_guidance:
476
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
477
+ else:
478
+ for single_image_embeds in ip_adapter_image_embeds:
479
+ if do_classifier_free_guidance:
480
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
481
+ negative_image_embeds.append(single_negative_image_embeds)
482
+ image_embeds.append(single_image_embeds)
483
+
484
+ ip_adapter_image_embeds = []
485
+ for i, single_image_embeds in enumerate(image_embeds):
486
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
487
+ if do_classifier_free_guidance:
488
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
489
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
490
+
491
+ single_image_embeds = single_image_embeds.to(device=device)
492
+ ip_adapter_image_embeds.append(single_image_embeds)
493
+
494
+ return ip_adapter_image_embeds
495
+
496
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
497
+ def run_safety_checker(self, image, device, dtype):
498
+ if self.safety_checker is None:
499
+ has_nsfw_concept = None
500
+ else:
501
+ if torch.is_tensor(image):
502
+ feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
503
+ else:
504
+ feature_extractor_input = self.image_processor.numpy_to_pil(image)
505
+ safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
506
+ image, has_nsfw_concept = self.safety_checker(
507
+ images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
508
+ )
509
+ return image, has_nsfw_concept
510
+
511
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
512
+ def prepare_extra_step_kwargs(self, generator, eta):
513
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
514
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
515
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
516
+ # and should be between [0, 1]
517
+
518
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
519
+ extra_step_kwargs = {}
520
+ if accepts_eta:
521
+ extra_step_kwargs["eta"] = eta
522
+
523
+ # check if the scheduler accepts generator
524
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
525
+ if accepts_generator:
526
+ extra_step_kwargs["generator"] = generator
527
+ return extra_step_kwargs
528
+
529
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
530
+ def get_timesteps(self, num_inference_steps, strength, device):
531
+ # get the original timestep using init_timestep
532
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
533
+
534
+ t_start = max(num_inference_steps - init_timestep, 0)
535
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
536
+ if hasattr(self.scheduler, "set_begin_index"):
537
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
538
+
539
+ return timesteps, num_inference_steps - t_start
540
+
541
+ def check_inputs(
542
+ self,
543
+ prompt,
544
+ image,
545
+ mask_image,
546
+ height,
547
+ width,
548
+ output_type,
549
+ negative_prompt=None,
550
+ prompt_embeds=None,
551
+ negative_prompt_embeds=None,
552
+ ip_adapter_image=None,
553
+ ip_adapter_image_embeds=None,
554
+ controlnet_conditioning_scale=1.0,
555
+ control_guidance_start=0.0,
556
+ control_guidance_end=1.0,
557
+ callback_on_step_end_tensor_inputs=None,
558
+ padding_mask_crop=None,
559
+ ):
560
+ if height is not None and height % 8 != 0 or width is not None and width % 8 != 0:
561
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
562
+
563
+ if callback_on_step_end_tensor_inputs is not None and not all(
564
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
565
+ ):
566
+ raise ValueError(
567
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
568
+ )
569
+
570
+ if prompt is not None and prompt_embeds is not None:
571
+ raise ValueError(
572
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
573
+ " only forward one of the two."
574
+ )
575
+ elif prompt is None and prompt_embeds is None:
576
+ raise ValueError(
577
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
578
+ )
579
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
580
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
581
+
582
+ if negative_prompt is not None and negative_prompt_embeds is not None:
583
+ raise ValueError(
584
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
585
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
586
+ )
587
+
588
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
589
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
590
+ raise ValueError(
591
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
592
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
593
+ f" {negative_prompt_embeds.shape}."
594
+ )
595
+
596
+ if padding_mask_crop is not None:
597
+ if not isinstance(image, PIL.Image.Image):
598
+ raise ValueError(
599
+ f"The image should be a PIL image when inpainting mask crop, but is of type" f" {type(image)}."
600
+ )
601
+ if not isinstance(mask_image, PIL.Image.Image):
602
+ raise ValueError(
603
+ f"The mask image should be a PIL image when inpainting mask crop, but is of type"
604
+ f" {type(mask_image)}."
605
+ )
606
+ if output_type != "pil":
607
+ raise ValueError(f"The output type should be PIL when inpainting mask crop, but is" f" {output_type}.")
608
+
609
+ # `prompt` needs more sophisticated handling when there are multiple
610
+ # conditionings.
611
+ if isinstance(self.controlnet, MultiControlNetModel):
612
+ if isinstance(prompt, list):
613
+ logger.warning(
614
+ f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
615
+ " prompts. The conditionings will be fixed across the prompts."
616
+ )
617
+
618
+ # Check `image`
619
+ is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
620
+ self.controlnet, torch._dynamo.eval_frame.OptimizedModule
621
+ )
622
+ if (
623
+ isinstance(self.controlnet, ControlNetModel)
624
+ or is_compiled
625
+ and isinstance(self.controlnet._orig_mod, ControlNetModel)
626
+ ):
627
+ self.check_image(image, prompt, prompt_embeds)
628
+ elif (
629
+ isinstance(self.controlnet, MultiControlNetModel)
630
+ or is_compiled
631
+ and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
632
+ ):
633
+ if not isinstance(image, list):
634
+ raise TypeError("For multiple controlnets: `image` must be type `list`")
635
+
636
+ # When `image` is a nested list:
637
+ # (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
638
+ elif any(isinstance(i, list) for i in image):
639
+ raise ValueError("A single batch of multiple conditionings are supported at the moment.")
640
+ elif len(image) != len(self.controlnet.nets):
641
+ raise ValueError(
642
+ f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
643
+ )
644
+
645
+ for image_ in image:
646
+ self.check_image(image_, prompt, prompt_embeds)
647
+ else:
648
+ assert False
649
+
650
+ # Check `controlnet_conditioning_scale`
651
+ if (
652
+ isinstance(self.controlnet, ControlNetModel)
653
+ or is_compiled
654
+ and isinstance(self.controlnet._orig_mod, ControlNetModel)
655
+ ):
656
+ if not isinstance(controlnet_conditioning_scale, float):
657
+ raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
658
+ elif (
659
+ isinstance(self.controlnet, MultiControlNetModel)
660
+ or is_compiled
661
+ and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
662
+ ):
663
+ if isinstance(controlnet_conditioning_scale, list):
664
+ if any(isinstance(i, list) for i in controlnet_conditioning_scale):
665
+ raise ValueError("A single batch of multiple conditionings are supported at the moment.")
666
+ elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
667
+ self.controlnet.nets
668
+ ):
669
+ raise ValueError(
670
+ "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
671
+ " the same length as the number of controlnets"
672
+ )
673
+ else:
674
+ assert False
675
+
676
+ if len(control_guidance_start) != len(control_guidance_end):
677
+ raise ValueError(
678
+ f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
679
+ )
680
+
681
+ if isinstance(self.controlnet, MultiControlNetModel):
682
+ if len(control_guidance_start) != len(self.controlnet.nets):
683
+ raise ValueError(
684
+ f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
685
+ )
686
+
687
+ for start, end in zip(control_guidance_start, control_guidance_end):
688
+ if start >= end:
689
+ raise ValueError(
690
+ f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
691
+ )
692
+ if start < 0.0:
693
+ raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
694
+ if end > 1.0:
695
+ raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
696
+
697
+ if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
698
+ raise ValueError(
699
+ "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
700
+ )
701
+
702
+ if ip_adapter_image_embeds is not None:
703
+ if not isinstance(ip_adapter_image_embeds, list):
704
+ raise ValueError(
705
+ f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
706
+ )
707
+ elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
708
+ raise ValueError(
709
+ f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
710
+ )
711
+
712
+ # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
713
+ def check_image(self, image, prompt, prompt_embeds):
714
+ image_is_pil = isinstance(image, PIL.Image.Image)
715
+ image_is_tensor = isinstance(image, torch.Tensor)
716
+ image_is_np = isinstance(image, np.ndarray)
717
+ image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
718
+ image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
719
+ image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
720
+
721
+ if (
722
+ not image_is_pil
723
+ and not image_is_tensor
724
+ and not image_is_np
725
+ and not image_is_pil_list
726
+ and not image_is_tensor_list
727
+ and not image_is_np_list
728
+ ):
729
+ raise TypeError(
730
+ f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
731
+ )
732
+
733
+ if image_is_pil:
734
+ image_batch_size = 1
735
+ else:
736
+ image_batch_size = len(image)
737
+
738
+ if prompt is not None and isinstance(prompt, str):
739
+ prompt_batch_size = 1
740
+ elif prompt is not None and isinstance(prompt, list):
741
+ prompt_batch_size = len(prompt)
742
+ elif prompt_embeds is not None:
743
+ prompt_batch_size = prompt_embeds.shape[0]
744
+
745
+ if image_batch_size != 1 and image_batch_size != prompt_batch_size:
746
+ raise ValueError(
747
+ f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
748
+ )
749
+
750
+ # Copied from diffusers.pipelines.controlnet.pipeline_controlnet_inpaint.StableDiffusionControlNetInpaintPipeline.prepare_control_image
751
+ def prepare_control_image(
752
+ self,
753
+ image,
754
+ width,
755
+ height,
756
+ batch_size,
757
+ num_images_per_prompt,
758
+ device,
759
+ dtype,
760
+ crops_coords,
761
+ resize_mode,
762
+ do_classifier_free_guidance=False,
763
+ guess_mode=False,
764
+ ):
765
+ image = self.control_image_processor.preprocess(
766
+ image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
767
+ ).to(dtype=torch.float32)
768
+ image_batch_size = image.shape[0]
769
+
770
+ if image_batch_size == 1:
771
+ repeat_by = batch_size
772
+ else:
773
+ # image batch size is the same as prompt batch size
774
+ repeat_by = num_images_per_prompt
775
+
776
+ image = image.repeat_interleave(repeat_by, dim=0)
777
+
778
+ image = image.to(device=device, dtype=dtype)
779
+
780
+ if do_classifier_free_guidance and not guess_mode:
781
+ image = torch.cat([image] * 2)
782
+
783
+ return image
784
+
785
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_latents
786
+ def prepare_latents(
787
+ self,
788
+ batch_size,
789
+ num_channels_latents,
790
+ height,
791
+ width,
792
+ dtype,
793
+ device,
794
+ generator,
795
+ latents=None,
796
+ image=None,
797
+ timestep=None,
798
+ is_strength_max=True,
799
+ return_noise=False,
800
+ return_image_latents=False,
801
+ ):
802
+ shape = (
803
+ batch_size,
804
+ num_channels_latents,
805
+ int(height) // self.vae_scale_factor,
806
+ int(width) // self.vae_scale_factor,
807
+ )
808
+ if isinstance(generator, list) and len(generator) != batch_size:
809
+ raise ValueError(
810
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
811
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
812
+ )
813
+
814
+ if (image is None or timestep is None) and not is_strength_max:
815
+ raise ValueError(
816
+ "Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
817
+ "However, either the image or the noise timestep has not been provided."
818
+ )
819
+
820
+ if return_image_latents or (latents is None and not is_strength_max):
821
+ image = image.to(device=device, dtype=dtype)
822
+
823
+ if image.shape[1] == 4:
824
+ image_latents = image
825
+ else:
826
+ image_latents = self._encode_vae_image(image=image, generator=generator)
827
+ image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
828
+
829
+ if latents is None:
830
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
831
+ # if strength is 1. then initialise the latents to noise, else initial to image + noise
832
+ latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
833
+ # if pure noise then scale the initial latents by the Scheduler's init sigma
834
+ latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
835
+ else:
836
+ noise = latents.to(device)
837
+ latents = noise * self.scheduler.init_noise_sigma
838
+
839
+ outputs = (latents,)
840
+
841
+ if return_noise:
842
+ outputs += (noise,)
843
+
844
+ if return_image_latents:
845
+ outputs += (image_latents,)
846
+
847
+ return outputs
848
+
849
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_mask_latents
850
+ def prepare_mask_latents(
851
+ self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
852
+ ):
853
+ # resize the mask to latents shape as we concatenate the mask to the latents
854
+ # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
855
+ # and half precision
856
+ mask = torch.nn.functional.interpolate(
857
+ mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
858
+ )
859
+ mask = mask.to(device=device, dtype=dtype)
860
+
861
+ masked_image = masked_image.to(device=device, dtype=dtype)
862
+
863
+ if masked_image.shape[1] == 4:
864
+ masked_image_latents = masked_image
865
+ else:
866
+ masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
867
+
868
+ # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
869
+ if mask.shape[0] < batch_size:
870
+ if not batch_size % mask.shape[0] == 0:
871
+ raise ValueError(
872
+ "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
873
+ f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
874
+ " of masks that you pass is divisible by the total requested batch size."
875
+ )
876
+ mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
877
+ if masked_image_latents.shape[0] < batch_size:
878
+ if not batch_size % masked_image_latents.shape[0] == 0:
879
+ raise ValueError(
880
+ "The passed images and the required batch size don't match. Images are supposed to be duplicated"
881
+ f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
882
+ " Make sure the number of images that you pass is divisible by the total requested batch size."
883
+ )
884
+ masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
885
+
886
+ mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
887
+ masked_image_latents = (
888
+ torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
889
+ )
890
+
891
+ # aligning device to prevent device errors when concating it with the latent model input
892
+ masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
893
+ return mask, masked_image_latents
894
+
895
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline._encode_vae_image
896
+ def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
897
+ if isinstance(generator, list):
898
+ image_latents = [
899
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
900
+ for i in range(image.shape[0])
901
+ ]
902
+ image_latents = torch.cat(image_latents, dim=0)
903
+ else:
904
+ image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
905
+
906
+ image_latents = self.vae.config.scaling_factor * image_latents
907
+
908
+ return image_latents
909
+
910
+ # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
911
+ def get_guidance_scale_embedding(
912
+ self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
913
+ ) -> torch.Tensor:
914
+ """
915
+ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
916
+
917
+ Args:
918
+ w (`torch.Tensor`):
919
+ Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
920
+ embedding_dim (`int`, *optional*, defaults to 512):
921
+ Dimension of the embeddings to generate.
922
+ dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
923
+ Data type of the generated embeddings.
924
+
925
+ Returns:
926
+ `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
927
+ """
928
+ assert len(w.shape) == 1
929
+ w = w * 1000.0
930
+
931
+ half_dim = embedding_dim // 2
932
+ emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
933
+ emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
934
+ emb = w.to(dtype)[:, None] * emb[None, :]
935
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
936
+ if embedding_dim % 2 == 1: # zero pad
937
+ emb = torch.nn.functional.pad(emb, (0, 1))
938
+ assert emb.shape == (w.shape[0], embedding_dim)
939
+ return emb
940
+
941
+ @property
942
+ def guidance_scale(self):
943
+ return self._guidance_scale
944
+
945
+ @property
946
+ def clip_skip(self):
947
+ return self._clip_skip
948
+
949
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
950
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
951
+ # corresponds to doing no classifier free guidance.
952
+ @property
953
+ def do_classifier_free_guidance(self):
954
+ return self._guidance_scale > 1
955
+
956
+ @property
957
+ def cross_attention_kwargs(self):
958
+ return self._cross_attention_kwargs
959
+
960
+ @property
961
+ def num_timesteps(self):
962
+ return self._num_timesteps
963
+
964
+ @torch.no_grad()
965
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
966
+ def __call__(
967
+ self,
968
+ prompt: Union[str, List[str]] = None,
969
+ image: PipelineImageInput = None,
970
+ mask_image: PipelineImageInput = None,
971
+ control_image: PipelineImageInput = None,
972
+ height: Optional[int] = None,
973
+ width: Optional[int] = None,
974
+ padding_mask_crop: Optional[int] = None,
975
+ strength: float = 1.0,
976
+ num_inference_steps: int = 50,
977
+ guidance_scale: float = 7.5,
978
+ negative_prompt: Optional[Union[str, List[str]]] = None,
979
+ num_images_per_prompt: Optional[int] = 1,
980
+ eta: float = 0.0,
981
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
982
+ latents: Optional[torch.Tensor] = None,
983
+ prompt_embeds: Optional[torch.Tensor] = None,
984
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
985
+ ip_adapter_image: Optional[PipelineImageInput] = None,
986
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
987
+ output_type: Optional[str] = "pil",
988
+ return_dict: bool = True,
989
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
990
+ controlnet_conditioning_scale: Union[float, List[float]] = 0.5,
991
+ control_guidance_start: Union[float, List[float]] = 0.0,
992
+ control_guidance_end: Union[float, List[float]] = 1.0,
993
+ clip_skip: Optional[int] = None,
994
+ callback_on_step_end: Optional[
995
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
996
+ ] = None,
997
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
998
+ pag_scale: float = 3.0,
999
+ pag_adaptive_scale: float = 0.0,
1000
+ ):
1001
+ r"""
1002
+ The call function to the pipeline for generation.
1003
+
1004
+ Args:
1005
+ prompt (`str` or `List[str]`, *optional*):
1006
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
1007
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`,
1008
+ `List[PIL.Image.Image]`, or `List[np.ndarray]`):
1009
+ `Image`, NumPy array or tensor representing an image batch to be used as the starting point. For both
1010
+ NumPy array and PyTorch tensor, the expected value range is between `[0, 1]`. If it's a tensor or a
1011
+ list or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a NumPy array or
1012
+ a list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)`. It can also accept image
1013
+ latents as `image`, but if passing latents directly it is not encoded again.
1014
+ mask_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`,
1015
+ `List[PIL.Image.Image]`, or `List[np.ndarray]`):
1016
+ `Image`, NumPy array or tensor representing an image batch to mask `image`. White pixels in the mask
1017
+ are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
1018
+ single channel (luminance) before use. If it's a NumPy array or PyTorch tensor, it should contain one
1019
+ color channel (L) instead of 3, so the expected shape for PyTorch tensor would be `(B, 1, H, W)`, `(B,
1020
+ H, W)`, `(1, H, W)`, `(H, W)`. And for NumPy array, it would be for `(B, H, W, 1)`, `(B, H, W)`, `(H,
1021
+ W, 1)`, or `(H, W)`.
1022
+ control_image (`torch.Tensor`, `PIL.Image.Image`, `List[torch.Tensor]`, `List[PIL.Image.Image]`,
1023
+ `List[List[torch.Tensor]]`, or `List[List[PIL.Image.Image]]`):
1024
+ The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
1025
+ specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
1026
+ as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
1027
+ width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
1028
+ images must be passed as a list such that each element of the list can be correctly batched for input
1029
+ to a single ControlNet.
1030
+ height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
1031
+ The height in pixels of the generated image.
1032
+ width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
1033
+ The width in pixels of the generated image.
1034
+ padding_mask_crop (`int`, *optional*, defaults to `None`):
1035
+ The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
1036
+ image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region
1037
+ with the same aspect ration of the image and contains all masked area, and then expand that area based
1038
+ on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before
1039
+ resizing to the original image size for inpainting. This is useful when the masked area is small while
1040
+ the image is large and contain information irrelevant for inpainting, such as background.
1041
+ strength (`float`, *optional*, defaults to 1.0):
1042
+ Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
1043
+ starting point and more noise is added the higher the `strength`. The number of denoising steps depends
1044
+ on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
1045
+ process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
1046
+ essentially ignores `image`.
1047
+ num_inference_steps (`int`, *optional*, defaults to 50):
1048
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
1049
+ expense of slower inference.
1050
+ guidance_scale (`float`, *optional*, defaults to 7.5):
1051
+ A higher guidance scale value encourages the model to generate images closely linked to the text
1052
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
1053
+ negative_prompt (`str` or `List[str]`, *optional*):
1054
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
1055
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
1056
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
1057
+ The number of images to generate per prompt.
1058
+ eta (`float`, *optional*, defaults to 0.0):
1059
+ Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
1060
+ to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
1061
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
1062
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
1063
+ generation deterministic.
1064
+ latents (`torch.Tensor`, *optional*):
1065
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
1066
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
1067
+ tensor is generated by sampling using the supplied random `generator`.
1068
+ prompt_embeds (`torch.Tensor`, *optional*):
1069
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
1070
+ provided, text embeddings are generated from the `prompt` input argument.
1071
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
1072
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
1073
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
1074
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
1075
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
1076
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
1077
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
1078
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
1079
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
1080
+ output_type (`str`, *optional*, defaults to `"pil"`):
1081
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
1082
+ return_dict (`bool`, *optional*, defaults to `True`):
1083
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
1084
+ plain tuple.
1085
+ cross_attention_kwargs (`dict`, *optional*):
1086
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
1087
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
1088
+ controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 0.5):
1089
+ The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
1090
+ to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
1091
+ the corresponding scale as a list.
1092
+ control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
1093
+ The percentage of total steps at which the ControlNet starts applying.
1094
+ control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
1095
+ The percentage of total steps at which the ControlNet stops applying.
1096
+ clip_skip (`int`, *optional*):
1097
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
1098
+ the output of the pre-final layer will be used for computing the prompt embeddings.
1099
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
1100
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
1101
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
1102
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
1103
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
1104
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
1105
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
1106
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
1107
+ `._callback_tensor_inputs` attribute of your pipeline class.
1108
+ pag_scale (`float`, *optional*, defaults to 3.0):
1109
+ The scale factor for the perturbed attention guidance. If it is set to 0.0, the perturbed attention
1110
+ guidance will not be used.
1111
+ pag_adaptive_scale (`float`, *optional*, defaults to 0.0):
1112
+ The adaptive scale factor for the perturbed attention guidance. If it is set to 0.0, `pag_scale` is
1113
+ used.
1114
+
1115
+ Examples:
1116
+
1117
+ Returns:
1118
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
1119
+ If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
1120
+ otherwise a `tuple` is returned where the first element is a list with the generated images and the
1121
+ second element is a list of `bool`s indicating whether the corresponding generated image contains
1122
+ "not-safe-for-work" (nsfw) content.
1123
+ """
1124
+
1125
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
1126
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
1127
+
1128
+ controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
1129
+
1130
+ # align format for control guidance
1131
+ if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
1132
+ control_guidance_start = len(control_guidance_end) * [control_guidance_start]
1133
+ elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
1134
+ control_guidance_end = len(control_guidance_start) * [control_guidance_end]
1135
+ elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
1136
+ mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
1137
+ control_guidance_start, control_guidance_end = (
1138
+ mult * [control_guidance_start],
1139
+ mult * [control_guidance_end],
1140
+ )
1141
+
1142
+ # 1. Check inputs. Raise error if not correct
1143
+ self.check_inputs(
1144
+ prompt,
1145
+ control_image,
1146
+ mask_image,
1147
+ height,
1148
+ width,
1149
+ output_type,
1150
+ negative_prompt,
1151
+ prompt_embeds,
1152
+ negative_prompt_embeds,
1153
+ ip_adapter_image,
1154
+ ip_adapter_image_embeds,
1155
+ controlnet_conditioning_scale,
1156
+ control_guidance_start,
1157
+ control_guidance_end,
1158
+ callback_on_step_end_tensor_inputs,
1159
+ padding_mask_crop,
1160
+ )
1161
+
1162
+ self._guidance_scale = guidance_scale
1163
+ self._clip_skip = clip_skip
1164
+ self._cross_attention_kwargs = cross_attention_kwargs
1165
+ self._pag_scale = pag_scale
1166
+ self._pag_adaptive_scale = pag_adaptive_scale
1167
+
1168
+ # 2. Define call parameters
1169
+ if prompt is not None and isinstance(prompt, str):
1170
+ batch_size = 1
1171
+ elif prompt is not None and isinstance(prompt, list):
1172
+ batch_size = len(prompt)
1173
+ else:
1174
+ batch_size = prompt_embeds.shape[0]
1175
+
1176
+ if padding_mask_crop is not None:
1177
+ height, width = self.image_processor.get_default_height_width(image, height, width)
1178
+ crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
1179
+ resize_mode = "fill"
1180
+ else:
1181
+ crops_coords = None
1182
+ resize_mode = "default"
1183
+
1184
+ device = self._execution_device
1185
+
1186
+ if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
1187
+ controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
1188
+
1189
+ # 3. Encode input prompt
1190
+ text_encoder_lora_scale = (
1191
+ self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
1192
+ )
1193
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
1194
+ prompt,
1195
+ device,
1196
+ num_images_per_prompt,
1197
+ self.do_classifier_free_guidance,
1198
+ negative_prompt,
1199
+ prompt_embeds=prompt_embeds,
1200
+ negative_prompt_embeds=negative_prompt_embeds,
1201
+ lora_scale=text_encoder_lora_scale,
1202
+ clip_skip=self.clip_skip,
1203
+ )
1204
+ # For classifier free guidance, we need to do two forward passes.
1205
+ # Here we concatenate the unconditional and text embeddings into a single batch
1206
+ # to avoid doing two forward passes
1207
+ if self.do_perturbed_attention_guidance:
1208
+ prompt_embeds = self._prepare_perturbed_attention_guidance(
1209
+ prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance
1210
+ )
1211
+ elif self.do_classifier_free_guidance:
1212
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
1213
+
1214
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1215
+ ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds(
1216
+ ip_adapter_image,
1217
+ ip_adapter_image_embeds,
1218
+ device,
1219
+ batch_size * num_images_per_prompt,
1220
+ self.do_classifier_free_guidance,
1221
+ )
1222
+
1223
+ # 4. Prepare control image
1224
+ if isinstance(controlnet, ControlNetModel):
1225
+ control_image = self.prepare_control_image(
1226
+ image=control_image,
1227
+ width=width,
1228
+ height=height,
1229
+ batch_size=batch_size * num_images_per_prompt,
1230
+ num_images_per_prompt=num_images_per_prompt,
1231
+ device=device,
1232
+ dtype=controlnet.dtype,
1233
+ crops_coords=crops_coords,
1234
+ resize_mode=resize_mode,
1235
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1236
+ guess_mode=False,
1237
+ )
1238
+ elif isinstance(controlnet, MultiControlNetModel):
1239
+ control_images = []
1240
+
1241
+ for control_image_ in control_image:
1242
+ control_image_ = self.prepare_control_image(
1243
+ image=control_image_,
1244
+ width=width,
1245
+ height=height,
1246
+ batch_size=batch_size * num_images_per_prompt,
1247
+ num_images_per_prompt=num_images_per_prompt,
1248
+ device=device,
1249
+ dtype=controlnet.dtype,
1250
+ crops_coords=crops_coords,
1251
+ resize_mode=resize_mode,
1252
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1253
+ guess_mode=False,
1254
+ )
1255
+
1256
+ control_images.append(control_image_)
1257
+
1258
+ control_image = control_images
1259
+ else:
1260
+ assert False
1261
+
1262
+ # 4.1 Preprocess mask and image - resizes image and mask w.r.t height and width
1263
+ original_image = image
1264
+ init_image = self.image_processor.preprocess(
1265
+ image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
1266
+ )
1267
+ init_image = init_image.to(dtype=torch.float32)
1268
+
1269
+ mask = self.mask_processor.preprocess(
1270
+ mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
1271
+ )
1272
+
1273
+ masked_image = init_image * (mask < 0.5)
1274
+ _, _, height, width = init_image.shape
1275
+
1276
+ # 5. Prepare timesteps
1277
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
1278
+ timesteps, num_inference_steps = self.get_timesteps(
1279
+ num_inference_steps=num_inference_steps, strength=strength, device=device
1280
+ )
1281
+ # at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
1282
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
1283
+ # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
1284
+ is_strength_max = strength == 1.0
1285
+ self._num_timesteps = len(timesteps)
1286
+
1287
+ # 6. Prepare latent variables
1288
+ num_channels_latents = self.vae.config.latent_channels
1289
+ num_channels_unet = self.unet.config.in_channels
1290
+ return_image_latents = num_channels_unet == 4
1291
+ latents_outputs = self.prepare_latents(
1292
+ batch_size * num_images_per_prompt,
1293
+ num_channels_latents,
1294
+ height,
1295
+ width,
1296
+ prompt_embeds.dtype,
1297
+ device,
1298
+ generator,
1299
+ latents,
1300
+ image=init_image,
1301
+ timestep=latent_timestep,
1302
+ is_strength_max=is_strength_max,
1303
+ return_noise=True,
1304
+ return_image_latents=return_image_latents,
1305
+ )
1306
+
1307
+ if return_image_latents:
1308
+ latents, noise, image_latents = latents_outputs
1309
+ else:
1310
+ latents, noise = latents_outputs
1311
+
1312
+ # 7. Prepare mask latent variables
1313
+ mask, masked_image_latents = self.prepare_mask_latents(
1314
+ mask,
1315
+ masked_image,
1316
+ batch_size * num_images_per_prompt,
1317
+ height,
1318
+ width,
1319
+ prompt_embeds.dtype,
1320
+ device,
1321
+ generator,
1322
+ self.do_classifier_free_guidance,
1323
+ )
1324
+
1325
+ # 7.1 Check that sizes of mask, masked image and latents match
1326
+ if num_channels_unet == 9:
1327
+ # default case for runwayml/stable-diffusion-inpainting
1328
+ num_channels_mask = mask.shape[1]
1329
+ num_channels_masked_image = masked_image_latents.shape[1]
1330
+ if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
1331
+ raise ValueError(
1332
+ f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
1333
+ f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
1334
+ f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
1335
+ f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
1336
+ " `pipeline.unet` or your `mask_image` or `image` input."
1337
+ )
1338
+ elif num_channels_unet != 4:
1339
+ raise ValueError(
1340
+ f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
1341
+ )
1342
+
1343
+ # 7.2 Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
1344
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1345
+
1346
+ # 7.3 Prepare embeddings
1347
+ # ip-adapter
1348
+ if ip_adapter_image_embeds is not None:
1349
+ for i, image_embeds in enumerate(ip_adapter_image_embeds):
1350
+ negative_image_embeds = None
1351
+ if self.do_classifier_free_guidance:
1352
+ negative_image_embeds, image_embeds = image_embeds.chunk(2)
1353
+
1354
+ if self.do_perturbed_attention_guidance:
1355
+ image_embeds = self._prepare_perturbed_attention_guidance(
1356
+ image_embeds, negative_image_embeds, self.do_classifier_free_guidance
1357
+ )
1358
+ elif self.do_classifier_free_guidance:
1359
+ image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0)
1360
+ image_embeds = image_embeds.to(device)
1361
+ ip_adapter_image_embeds[i] = image_embeds
1362
+
1363
+ added_cond_kwargs = (
1364
+ {"image_embeds": ip_adapter_image_embeds}
1365
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None
1366
+ else None
1367
+ )
1368
+
1369
+ # control image
1370
+ control_images = control_image if isinstance(control_image, list) else [control_image]
1371
+ for i, single_control_image in enumerate(control_images):
1372
+ if self.do_classifier_free_guidance:
1373
+ single_control_image = single_control_image.chunk(2)[0]
1374
+
1375
+ if self.do_perturbed_attention_guidance:
1376
+ single_control_image = self._prepare_perturbed_attention_guidance(
1377
+ single_control_image, single_control_image, self.do_classifier_free_guidance
1378
+ )
1379
+ elif self.do_classifier_free_guidance:
1380
+ single_control_image = torch.cat([single_control_image] * 2)
1381
+ single_control_image = single_control_image.to(device)
1382
+ control_images[i] = single_control_image
1383
+
1384
+ control_image = control_images if isinstance(control_image, list) else control_images[0]
1385
+ controlnet_prompt_embeds = prompt_embeds
1386
+
1387
+ # 7.4 Create tensor stating which controlnets to keep
1388
+ controlnet_keep = []
1389
+ for i in range(len(timesteps)):
1390
+ keeps = [
1391
+ 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
1392
+ for s, e in zip(control_guidance_start, control_guidance_end)
1393
+ ]
1394
+ controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
1395
+
1396
+ # 7.5 Optionally get Guidance Scale Embedding
1397
+ timestep_cond = None
1398
+ if self.unet.config.time_cond_proj_dim is not None:
1399
+ guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
1400
+ timestep_cond = self.get_guidance_scale_embedding(
1401
+ guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
1402
+ ).to(device=device, dtype=latents.dtype)
1403
+
1404
+ # 8. Denoising loop
1405
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
1406
+ if self.do_perturbed_attention_guidance:
1407
+ original_attn_proc = self.unet.attn_processors
1408
+ self._set_pag_attn_processor(
1409
+ pag_applied_layers=self.pag_applied_layers,
1410
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1411
+ )
1412
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1413
+ for i, t in enumerate(timesteps):
1414
+ # expand the latents if we are doing classifier free guidance
1415
+ latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0]))
1416
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1417
+
1418
+ # controlnet(s) inference
1419
+ control_model_input = latent_model_input
1420
+
1421
+ if isinstance(controlnet_keep[i], list):
1422
+ cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
1423
+ else:
1424
+ controlnet_cond_scale = controlnet_conditioning_scale
1425
+ if isinstance(controlnet_cond_scale, list):
1426
+ controlnet_cond_scale = controlnet_cond_scale[0]
1427
+ cond_scale = controlnet_cond_scale * controlnet_keep[i]
1428
+
1429
+ down_block_res_samples, mid_block_res_sample = self.controlnet(
1430
+ control_model_input,
1431
+ t,
1432
+ encoder_hidden_states=controlnet_prompt_embeds,
1433
+ controlnet_cond=control_image,
1434
+ conditioning_scale=cond_scale,
1435
+ guess_mode=False,
1436
+ return_dict=False,
1437
+ )
1438
+
1439
+ # concat latents, mask, masked_image_latents in the channel dimension
1440
+ if num_channels_unet == 9:
1441
+ first_dim_size = latent_model_input.shape[0]
1442
+ # Ensure mask and masked_image_latents have the right dimensions
1443
+ if mask.shape[0] < first_dim_size:
1444
+ repeat_factor = (first_dim_size + mask.shape[0] - 1) // mask.shape[0]
1445
+ mask = mask.repeat(repeat_factor, 1, 1, 1)[:first_dim_size]
1446
+ if masked_image_latents.shape[0] < first_dim_size:
1447
+ repeat_factor = (
1448
+ first_dim_size + masked_image_latents.shape[0] - 1
1449
+ ) // masked_image_latents.shape[0]
1450
+ masked_image_latents = masked_image_latents.repeat(repeat_factor, 1, 1, 1)[:first_dim_size]
1451
+ # Perform the concatenation
1452
+ latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
1453
+
1454
+ # Predict noise residual
1455
+ noise_pred = self.unet(
1456
+ latent_model_input,
1457
+ t,
1458
+ encoder_hidden_states=prompt_embeds,
1459
+ timestep_cond=timestep_cond,
1460
+ cross_attention_kwargs=self.cross_attention_kwargs,
1461
+ down_block_additional_residuals=down_block_res_samples,
1462
+ mid_block_additional_residual=mid_block_res_sample,
1463
+ added_cond_kwargs=added_cond_kwargs,
1464
+ return_dict=False,
1465
+ )[0]
1466
+
1467
+ # perform guidance
1468
+ if self.do_perturbed_attention_guidance:
1469
+ noise_pred = self._apply_perturbed_attention_guidance(
1470
+ noise_pred, self.do_classifier_free_guidance, self.guidance_scale, t
1471
+ )
1472
+ elif self.do_classifier_free_guidance:
1473
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1474
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
1475
+
1476
+ # compute the previous noisy sample x_t -> x_t-1
1477
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1478
+
1479
+ if num_channels_unet == 4:
1480
+ init_latents_proper = image_latents
1481
+ if self.do_classifier_free_guidance:
1482
+ init_mask, _ = mask.chunk(2)
1483
+ else:
1484
+ init_mask = mask
1485
+
1486
+ if i < len(timesteps) - 1:
1487
+ noise_timestep = timesteps[i + 1]
1488
+ init_latents_proper = self.scheduler.add_noise(
1489
+ init_latents_proper, noise, torch.tensor([noise_timestep])
1490
+ )
1491
+
1492
+ latents = (1 - init_mask) * init_latents_proper + init_mask * latents
1493
+
1494
+ if callback_on_step_end is not None:
1495
+ callback_kwargs = {}
1496
+ for k in callback_on_step_end_tensor_inputs:
1497
+ callback_kwargs[k] = locals()[k]
1498
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1499
+
1500
+ latents = callback_outputs.pop("latents", latents)
1501
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1502
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1503
+
1504
+ # call the callback, if provided
1505
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1506
+ progress_bar.update()
1507
+
1508
+ # If we do sequential model offloading, let's offload unet and controlnet
1509
+ # manually for max memory savings
1510
+ if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
1511
+ self.unet.to("cpu")
1512
+ self.controlnet.to("cpu")
1513
+ torch.cuda.empty_cache()
1514
+
1515
+ if not output_type == "latent":
1516
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
1517
+ 0
1518
+ ]
1519
+ image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
1520
+ else:
1521
+ image = latents
1522
+ has_nsfw_concept = None
1523
+
1524
+ if has_nsfw_concept is None:
1525
+ do_denormalize = [True] * image.shape[0]
1526
+ else:
1527
+ do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
1528
+
1529
+ image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
1530
+
1531
+ if padding_mask_crop is not None:
1532
+ image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image]
1533
+
1534
+ # Offload all models
1535
+ self.maybe_free_model_hooks()
1536
+
1537
+ if self.do_perturbed_attention_guidance:
1538
+ self.unet.set_attn_processor(original_attn_proc)
1539
+
1540
+ if not return_dict:
1541
+ return (image, has_nsfw_concept)
1542
+
1543
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)