diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1250 @@
1
+ # Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Callable, Dict, List, Optional, Union
17
+
18
+ import torch
19
+ from transformers import (
20
+ CLIPTextModelWithProjection,
21
+ CLIPTokenizer,
22
+ T5EncoderModel,
23
+ T5TokenizerFast,
24
+ )
25
+
26
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
27
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
28
+ from ...loaders import FromSingleFileMixin, SD3LoraLoaderMixin
29
+ from ...models.autoencoders import AutoencoderKL
30
+ from ...models.transformers import SD3Transformer2DModel
31
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
32
+ from ...utils import (
33
+ USE_PEFT_BACKEND,
34
+ is_torch_xla_available,
35
+ logging,
36
+ replace_example_docstring,
37
+ scale_lora_layers,
38
+ unscale_lora_layers,
39
+ )
40
+ from ...utils.torch_utils import randn_tensor
41
+ from ..pipeline_utils import DiffusionPipeline
42
+ from .pipeline_output import StableDiffusion3PipelineOutput
43
+
44
+
45
+ if is_torch_xla_available():
46
+ import torch_xla.core.xla_model as xm
47
+
48
+ XLA_AVAILABLE = True
49
+ else:
50
+ XLA_AVAILABLE = False
51
+
52
+
53
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
54
+
55
+ EXAMPLE_DOC_STRING = """
56
+ Examples:
57
+ ```py
58
+ >>> import torch
59
+ >>> from diffusers import StableDiffusion3InpaintPipeline
60
+ >>> from diffusers.utils import load_image
61
+
62
+ >>> pipe = StableDiffusion3InpaintPipeline.from_pretrained(
63
+ ... "stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16
64
+ ... )
65
+ >>> pipe.to("cuda")
66
+ >>> prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
67
+ >>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
68
+ >>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
69
+ >>> source = load_image(img_url)
70
+ >>> mask = load_image(mask_url)
71
+ >>> image = pipe(prompt=prompt, image=source, mask_image=mask).images[0]
72
+ >>> image.save("sd3_inpainting.png")
73
+ ```
74
+ """
75
+
76
+
77
+ # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
78
+ def calculate_shift(
79
+ image_seq_len,
80
+ base_seq_len: int = 256,
81
+ max_seq_len: int = 4096,
82
+ base_shift: float = 0.5,
83
+ max_shift: float = 1.16,
84
+ ):
85
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
86
+ b = base_shift - m * base_seq_len
87
+ mu = image_seq_len * m + b
88
+ return mu
89
+
90
+
91
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
92
+ def retrieve_latents(
93
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
94
+ ):
95
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
96
+ return encoder_output.latent_dist.sample(generator)
97
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
98
+ return encoder_output.latent_dist.mode()
99
+ elif hasattr(encoder_output, "latents"):
100
+ return encoder_output.latents
101
+ else:
102
+ raise AttributeError("Could not access latents of provided encoder_output")
103
+
104
+
105
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
106
+ def retrieve_timesteps(
107
+ scheduler,
108
+ num_inference_steps: Optional[int] = None,
109
+ device: Optional[Union[str, torch.device]] = None,
110
+ timesteps: Optional[List[int]] = None,
111
+ sigmas: Optional[List[float]] = None,
112
+ **kwargs,
113
+ ):
114
+ r"""
115
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
116
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
117
+
118
+ Args:
119
+ scheduler (`SchedulerMixin`):
120
+ The scheduler to get timesteps from.
121
+ num_inference_steps (`int`):
122
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
123
+ must be `None`.
124
+ device (`str` or `torch.device`, *optional*):
125
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
126
+ timesteps (`List[int]`, *optional*):
127
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
128
+ `num_inference_steps` and `sigmas` must be `None`.
129
+ sigmas (`List[float]`, *optional*):
130
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
131
+ `num_inference_steps` and `timesteps` must be `None`.
132
+
133
+ Returns:
134
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
135
+ second element is the number of inference steps.
136
+ """
137
+ if timesteps is not None and sigmas is not None:
138
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
139
+ if timesteps is not None:
140
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
141
+ if not accepts_timesteps:
142
+ raise ValueError(
143
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
144
+ f" timestep schedules. Please check whether you are using the correct scheduler."
145
+ )
146
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
147
+ timesteps = scheduler.timesteps
148
+ num_inference_steps = len(timesteps)
149
+ elif sigmas is not None:
150
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
151
+ if not accept_sigmas:
152
+ raise ValueError(
153
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
154
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
155
+ )
156
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
157
+ timesteps = scheduler.timesteps
158
+ num_inference_steps = len(timesteps)
159
+ else:
160
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
161
+ timesteps = scheduler.timesteps
162
+ return timesteps, num_inference_steps
163
+
164
+
165
+ class StableDiffusion3InpaintPipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingleFileMixin):
166
+ r"""
167
+ Args:
168
+ transformer ([`SD3Transformer2DModel`]):
169
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
170
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
171
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
172
+ vae ([`AutoencoderKL`]):
173
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
174
+ text_encoder ([`CLIPTextModelWithProjection`]):
175
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
176
+ specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant,
177
+ with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size`
178
+ as its dimension.
179
+ text_encoder_2 ([`CLIPTextModelWithProjection`]):
180
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
181
+ specifically the
182
+ [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
183
+ variant.
184
+ text_encoder_3 ([`T5EncoderModel`]):
185
+ Frozen text-encoder. Stable Diffusion 3 uses
186
+ [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
187
+ [t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
188
+ tokenizer (`CLIPTokenizer`):
189
+ Tokenizer of class
190
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
191
+ tokenizer_2 (`CLIPTokenizer`):
192
+ Second Tokenizer of class
193
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
194
+ tokenizer_3 (`T5TokenizerFast`):
195
+ Tokenizer of class
196
+ [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
197
+ """
198
+
199
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->transformer->vae"
200
+ _optional_components = []
201
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"]
202
+
203
+ def __init__(
204
+ self,
205
+ transformer: SD3Transformer2DModel,
206
+ scheduler: FlowMatchEulerDiscreteScheduler,
207
+ vae: AutoencoderKL,
208
+ text_encoder: CLIPTextModelWithProjection,
209
+ tokenizer: CLIPTokenizer,
210
+ text_encoder_2: CLIPTextModelWithProjection,
211
+ tokenizer_2: CLIPTokenizer,
212
+ text_encoder_3: T5EncoderModel,
213
+ tokenizer_3: T5TokenizerFast,
214
+ ):
215
+ super().__init__()
216
+
217
+ self.register_modules(
218
+ vae=vae,
219
+ text_encoder=text_encoder,
220
+ text_encoder_2=text_encoder_2,
221
+ text_encoder_3=text_encoder_3,
222
+ tokenizer=tokenizer,
223
+ tokenizer_2=tokenizer_2,
224
+ tokenizer_3=tokenizer_3,
225
+ transformer=transformer,
226
+ scheduler=scheduler,
227
+ )
228
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
229
+ self.image_processor = VaeImageProcessor(
230
+ vae_scale_factor=self.vae_scale_factor, vae_latent_channels=self.vae.config.latent_channels
231
+ )
232
+ self.mask_processor = VaeImageProcessor(
233
+ vae_scale_factor=self.vae_scale_factor,
234
+ vae_latent_channels=self.vae.config.latent_channels,
235
+ do_normalize=False,
236
+ do_binarize=True,
237
+ do_convert_grayscale=True,
238
+ )
239
+ self.tokenizer_max_length = self.tokenizer.model_max_length
240
+ self.default_sample_size = self.transformer.config.sample_size
241
+ self.patch_size = (
242
+ self.transformer.config.patch_size if hasattr(self, "transformer") and self.transformer is not None else 2
243
+ )
244
+
245
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_t5_prompt_embeds
246
+ def _get_t5_prompt_embeds(
247
+ self,
248
+ prompt: Union[str, List[str]] = None,
249
+ num_images_per_prompt: int = 1,
250
+ max_sequence_length: int = 256,
251
+ device: Optional[torch.device] = None,
252
+ dtype: Optional[torch.dtype] = None,
253
+ ):
254
+ device = device or self._execution_device
255
+ dtype = dtype or self.text_encoder.dtype
256
+
257
+ prompt = [prompt] if isinstance(prompt, str) else prompt
258
+ batch_size = len(prompt)
259
+
260
+ if self.text_encoder_3 is None:
261
+ return torch.zeros(
262
+ (
263
+ batch_size * num_images_per_prompt,
264
+ self.tokenizer_max_length,
265
+ self.transformer.config.joint_attention_dim,
266
+ ),
267
+ device=device,
268
+ dtype=dtype,
269
+ )
270
+
271
+ text_inputs = self.tokenizer_3(
272
+ prompt,
273
+ padding="max_length",
274
+ max_length=max_sequence_length,
275
+ truncation=True,
276
+ add_special_tokens=True,
277
+ return_tensors="pt",
278
+ )
279
+ text_input_ids = text_inputs.input_ids
280
+ untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids
281
+
282
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
283
+ removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
284
+ logger.warning(
285
+ "The following part of your input was truncated because `max_sequence_length` is set to "
286
+ f" {max_sequence_length} tokens: {removed_text}"
287
+ )
288
+
289
+ prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0]
290
+
291
+ dtype = self.text_encoder_3.dtype
292
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
293
+
294
+ _, seq_len, _ = prompt_embeds.shape
295
+
296
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
297
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
298
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
299
+
300
+ return prompt_embeds
301
+
302
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_clip_prompt_embeds
303
+ def _get_clip_prompt_embeds(
304
+ self,
305
+ prompt: Union[str, List[str]],
306
+ num_images_per_prompt: int = 1,
307
+ device: Optional[torch.device] = None,
308
+ clip_skip: Optional[int] = None,
309
+ clip_model_index: int = 0,
310
+ ):
311
+ device = device or self._execution_device
312
+
313
+ clip_tokenizers = [self.tokenizer, self.tokenizer_2]
314
+ clip_text_encoders = [self.text_encoder, self.text_encoder_2]
315
+
316
+ tokenizer = clip_tokenizers[clip_model_index]
317
+ text_encoder = clip_text_encoders[clip_model_index]
318
+
319
+ prompt = [prompt] if isinstance(prompt, str) else prompt
320
+ batch_size = len(prompt)
321
+
322
+ text_inputs = tokenizer(
323
+ prompt,
324
+ padding="max_length",
325
+ max_length=self.tokenizer_max_length,
326
+ truncation=True,
327
+ return_tensors="pt",
328
+ )
329
+
330
+ text_input_ids = text_inputs.input_ids
331
+ untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
332
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
333
+ removed_text = tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
334
+ logger.warning(
335
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
336
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
337
+ )
338
+ prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
339
+ pooled_prompt_embeds = prompt_embeds[0]
340
+
341
+ if clip_skip is None:
342
+ prompt_embeds = prompt_embeds.hidden_states[-2]
343
+ else:
344
+ prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
345
+
346
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
347
+
348
+ _, seq_len, _ = prompt_embeds.shape
349
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
350
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
351
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
352
+
353
+ pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1)
354
+ pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1)
355
+
356
+ return prompt_embeds, pooled_prompt_embeds
357
+
358
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.encode_prompt
359
+ def encode_prompt(
360
+ self,
361
+ prompt: Union[str, List[str]],
362
+ prompt_2: Union[str, List[str]],
363
+ prompt_3: Union[str, List[str]],
364
+ device: Optional[torch.device] = None,
365
+ num_images_per_prompt: int = 1,
366
+ do_classifier_free_guidance: bool = True,
367
+ negative_prompt: Optional[Union[str, List[str]]] = None,
368
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
369
+ negative_prompt_3: Optional[Union[str, List[str]]] = None,
370
+ prompt_embeds: Optional[torch.FloatTensor] = None,
371
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
372
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
373
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
374
+ clip_skip: Optional[int] = None,
375
+ max_sequence_length: int = 256,
376
+ lora_scale: Optional[float] = None,
377
+ ):
378
+ r"""
379
+
380
+ Args:
381
+ prompt (`str` or `List[str]`, *optional*):
382
+ prompt to be encoded
383
+ prompt_2 (`str` or `List[str]`, *optional*):
384
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
385
+ used in all text-encoders
386
+ prompt_3 (`str` or `List[str]`, *optional*):
387
+ The prompt or prompts to be sent to the `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
388
+ used in all text-encoders
389
+ device: (`torch.device`):
390
+ torch device
391
+ num_images_per_prompt (`int`):
392
+ number of images that should be generated per prompt
393
+ do_classifier_free_guidance (`bool`):
394
+ whether to use classifier free guidance or not
395
+ negative_prompt (`str` or `List[str]`, *optional*):
396
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
397
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
398
+ less than `1`).
399
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
400
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
401
+ `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
402
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
403
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
404
+ `text_encoder_3`. If not defined, `negative_prompt` is used in both text-encoders
405
+ prompt_embeds (`torch.FloatTensor`, *optional*):
406
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
407
+ provided, text embeddings will be generated from `prompt` input argument.
408
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
409
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
410
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
411
+ argument.
412
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
413
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
414
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
415
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
416
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
417
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
418
+ input argument.
419
+ clip_skip (`int`, *optional*):
420
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
421
+ the output of the pre-final layer will be used for computing the prompt embeddings.
422
+ lora_scale (`float`, *optional*):
423
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
424
+ """
425
+ device = device or self._execution_device
426
+
427
+ # set lora scale so that monkey patched LoRA
428
+ # function of text encoder can correctly access it
429
+ if lora_scale is not None and isinstance(self, SD3LoraLoaderMixin):
430
+ self._lora_scale = lora_scale
431
+
432
+ # dynamically adjust the LoRA scale
433
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
434
+ scale_lora_layers(self.text_encoder, lora_scale)
435
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
436
+ scale_lora_layers(self.text_encoder_2, lora_scale)
437
+
438
+ prompt = [prompt] if isinstance(prompt, str) else prompt
439
+ if prompt is not None:
440
+ batch_size = len(prompt)
441
+ else:
442
+ batch_size = prompt_embeds.shape[0]
443
+
444
+ if prompt_embeds is None:
445
+ prompt_2 = prompt_2 or prompt
446
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
447
+
448
+ prompt_3 = prompt_3 or prompt
449
+ prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3
450
+
451
+ prompt_embed, pooled_prompt_embed = self._get_clip_prompt_embeds(
452
+ prompt=prompt,
453
+ device=device,
454
+ num_images_per_prompt=num_images_per_prompt,
455
+ clip_skip=clip_skip,
456
+ clip_model_index=0,
457
+ )
458
+ prompt_2_embed, pooled_prompt_2_embed = self._get_clip_prompt_embeds(
459
+ prompt=prompt_2,
460
+ device=device,
461
+ num_images_per_prompt=num_images_per_prompt,
462
+ clip_skip=clip_skip,
463
+ clip_model_index=1,
464
+ )
465
+ clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1)
466
+
467
+ t5_prompt_embed = self._get_t5_prompt_embeds(
468
+ prompt=prompt_3,
469
+ num_images_per_prompt=num_images_per_prompt,
470
+ max_sequence_length=max_sequence_length,
471
+ device=device,
472
+ )
473
+
474
+ clip_prompt_embeds = torch.nn.functional.pad(
475
+ clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1])
476
+ )
477
+
478
+ prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2)
479
+ pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1)
480
+
481
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
482
+ negative_prompt = negative_prompt or ""
483
+ negative_prompt_2 = negative_prompt_2 or negative_prompt
484
+ negative_prompt_3 = negative_prompt_3 or negative_prompt
485
+
486
+ # normalize str to list
487
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
488
+ negative_prompt_2 = (
489
+ batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
490
+ )
491
+ negative_prompt_3 = (
492
+ batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3
493
+ )
494
+
495
+ if prompt is not None and type(prompt) is not type(negative_prompt):
496
+ raise TypeError(
497
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
498
+ f" {type(prompt)}."
499
+ )
500
+ elif batch_size != len(negative_prompt):
501
+ raise ValueError(
502
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
503
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
504
+ " the batch size of `prompt`."
505
+ )
506
+
507
+ negative_prompt_embed, negative_pooled_prompt_embed = self._get_clip_prompt_embeds(
508
+ negative_prompt,
509
+ device=device,
510
+ num_images_per_prompt=num_images_per_prompt,
511
+ clip_skip=None,
512
+ clip_model_index=0,
513
+ )
514
+ negative_prompt_2_embed, negative_pooled_prompt_2_embed = self._get_clip_prompt_embeds(
515
+ negative_prompt_2,
516
+ device=device,
517
+ num_images_per_prompt=num_images_per_prompt,
518
+ clip_skip=None,
519
+ clip_model_index=1,
520
+ )
521
+ negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1)
522
+
523
+ t5_negative_prompt_embed = self._get_t5_prompt_embeds(
524
+ prompt=negative_prompt_3,
525
+ num_images_per_prompt=num_images_per_prompt,
526
+ max_sequence_length=max_sequence_length,
527
+ device=device,
528
+ )
529
+
530
+ negative_clip_prompt_embeds = torch.nn.functional.pad(
531
+ negative_clip_prompt_embeds,
532
+ (0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1]),
533
+ )
534
+
535
+ negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2)
536
+ negative_pooled_prompt_embeds = torch.cat(
537
+ [negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1
538
+ )
539
+
540
+ if self.text_encoder is not None:
541
+ if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
542
+ # Retrieve the original scale by scaling back the LoRA layers
543
+ unscale_lora_layers(self.text_encoder, lora_scale)
544
+
545
+ if self.text_encoder_2 is not None:
546
+ if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
547
+ # Retrieve the original scale by scaling back the LoRA layers
548
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
549
+
550
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
551
+
552
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.check_inputs
553
+ def check_inputs(
554
+ self,
555
+ prompt,
556
+ prompt_2,
557
+ prompt_3,
558
+ height,
559
+ width,
560
+ strength,
561
+ negative_prompt=None,
562
+ negative_prompt_2=None,
563
+ negative_prompt_3=None,
564
+ prompt_embeds=None,
565
+ negative_prompt_embeds=None,
566
+ pooled_prompt_embeds=None,
567
+ negative_pooled_prompt_embeds=None,
568
+ callback_on_step_end_tensor_inputs=None,
569
+ max_sequence_length=None,
570
+ ):
571
+ if (
572
+ height % (self.vae_scale_factor * self.patch_size) != 0
573
+ or width % (self.vae_scale_factor * self.patch_size) != 0
574
+ ):
575
+ raise ValueError(
576
+ f"`height` and `width` have to be divisible by {self.vae_scale_factor * self.patch_size} but are {height} and {width}."
577
+ f"You can use height {height - height % (self.vae_scale_factor * self.patch_size)} and width {width - width % (self.vae_scale_factor * self.patch_size)}."
578
+ )
579
+
580
+ if strength < 0 or strength > 1:
581
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
582
+
583
+ if callback_on_step_end_tensor_inputs is not None and not all(
584
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
585
+ ):
586
+ raise ValueError(
587
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
588
+ )
589
+
590
+ if prompt is not None and prompt_embeds is not None:
591
+ raise ValueError(
592
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
593
+ " only forward one of the two."
594
+ )
595
+ elif prompt_2 is not None and prompt_embeds is not None:
596
+ raise ValueError(
597
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
598
+ " only forward one of the two."
599
+ )
600
+ elif prompt_3 is not None and prompt_embeds is not None:
601
+ raise ValueError(
602
+ f"Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
603
+ " only forward one of the two."
604
+ )
605
+ elif prompt is None and prompt_embeds is None:
606
+ raise ValueError(
607
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
608
+ )
609
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
610
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
611
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
612
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
613
+ elif prompt_3 is not None and (not isinstance(prompt_3, str) and not isinstance(prompt_3, list)):
614
+ raise ValueError(f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}")
615
+
616
+ if negative_prompt is not None and negative_prompt_embeds is not None:
617
+ raise ValueError(
618
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
619
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
620
+ )
621
+ elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
622
+ raise ValueError(
623
+ f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
624
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
625
+ )
626
+ elif negative_prompt_3 is not None and negative_prompt_embeds is not None:
627
+ raise ValueError(
628
+ f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`:"
629
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
630
+ )
631
+
632
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
633
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
634
+ raise ValueError(
635
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
636
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
637
+ f" {negative_prompt_embeds.shape}."
638
+ )
639
+
640
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
641
+ raise ValueError(
642
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
643
+ )
644
+
645
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
646
+ raise ValueError(
647
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
648
+ )
649
+
650
+ if max_sequence_length is not None and max_sequence_length > 512:
651
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
652
+
653
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps
654
+ def get_timesteps(self, num_inference_steps, strength, device):
655
+ # get the original timestep using init_timestep
656
+ init_timestep = min(num_inference_steps * strength, num_inference_steps)
657
+
658
+ t_start = int(max(num_inference_steps - init_timestep, 0))
659
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
660
+ if hasattr(self.scheduler, "set_begin_index"):
661
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
662
+
663
+ return timesteps, num_inference_steps - t_start
664
+
665
+ def prepare_latents(
666
+ self,
667
+ batch_size,
668
+ num_channels_latents,
669
+ height,
670
+ width,
671
+ dtype,
672
+ device,
673
+ generator,
674
+ latents=None,
675
+ image=None,
676
+ timestep=None,
677
+ is_strength_max=True,
678
+ return_noise=False,
679
+ return_image_latents=False,
680
+ ):
681
+ shape = (
682
+ batch_size,
683
+ num_channels_latents,
684
+ int(height) // self.vae_scale_factor,
685
+ int(width) // self.vae_scale_factor,
686
+ )
687
+ if isinstance(generator, list) and len(generator) != batch_size:
688
+ raise ValueError(
689
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
690
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
691
+ )
692
+
693
+ if (image is None or timestep is None) and not is_strength_max:
694
+ raise ValueError(
695
+ "Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
696
+ "However, either the image or the noise timestep has not been provided."
697
+ )
698
+
699
+ if return_image_latents or (latents is None and not is_strength_max):
700
+ image = image.to(device=device, dtype=dtype)
701
+
702
+ if image.shape[1] == 16:
703
+ image_latents = image
704
+ else:
705
+ image_latents = self._encode_vae_image(image=image, generator=generator)
706
+ image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
707
+
708
+ if latents is None:
709
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
710
+ # if strength is 1. then initialise the latents to noise, else initial to image + noise
711
+ latents = noise if is_strength_max else self.scheduler.scale_noise(image_latents, timestep, noise)
712
+ else:
713
+ noise = latents.to(device)
714
+ latents = noise
715
+
716
+ outputs = (latents,)
717
+
718
+ if return_noise:
719
+ outputs += (noise,)
720
+
721
+ if return_image_latents:
722
+ outputs += (image_latents,)
723
+
724
+ return outputs
725
+
726
+ def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
727
+ if isinstance(generator, list):
728
+ image_latents = [
729
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
730
+ for i in range(image.shape[0])
731
+ ]
732
+ image_latents = torch.cat(image_latents, dim=0)
733
+ else:
734
+ image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
735
+
736
+ image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
737
+
738
+ return image_latents
739
+
740
+ def prepare_mask_latents(
741
+ self,
742
+ mask,
743
+ masked_image,
744
+ batch_size,
745
+ num_images_per_prompt,
746
+ height,
747
+ width,
748
+ dtype,
749
+ device,
750
+ generator,
751
+ do_classifier_free_guidance,
752
+ ):
753
+ # resize the mask to latents shape as we concatenate the mask to the latents
754
+ # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
755
+ # and half precision
756
+ mask = torch.nn.functional.interpolate(
757
+ mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
758
+ )
759
+ mask = mask.to(device=device, dtype=dtype)
760
+
761
+ batch_size = batch_size * num_images_per_prompt
762
+
763
+ masked_image = masked_image.to(device=device, dtype=dtype)
764
+
765
+ if masked_image.shape[1] == 16:
766
+ masked_image_latents = masked_image
767
+ else:
768
+ masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator)
769
+
770
+ masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
771
+
772
+ # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
773
+ if mask.shape[0] < batch_size:
774
+ if not batch_size % mask.shape[0] == 0:
775
+ raise ValueError(
776
+ "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
777
+ f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
778
+ " of masks that you pass is divisible by the total requested batch size."
779
+ )
780
+ mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
781
+ if masked_image_latents.shape[0] < batch_size:
782
+ if not batch_size % masked_image_latents.shape[0] == 0:
783
+ raise ValueError(
784
+ "The passed images and the required batch size don't match. Images are supposed to be duplicated"
785
+ f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
786
+ " Make sure the number of images that you pass is divisible by the total requested batch size."
787
+ )
788
+ masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
789
+
790
+ mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
791
+ masked_image_latents = (
792
+ torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
793
+ )
794
+
795
+ # aligning device to prevent device errors when concating it with the latent model input
796
+ masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
797
+ return mask, masked_image_latents
798
+
799
+ @property
800
+ def guidance_scale(self):
801
+ return self._guidance_scale
802
+
803
+ @property
804
+ def clip_skip(self):
805
+ return self._clip_skip
806
+
807
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
808
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
809
+ # corresponds to doing no classifier free guidance.
810
+ @property
811
+ def do_classifier_free_guidance(self):
812
+ return self._guidance_scale > 1
813
+
814
+ @property
815
+ def num_timesteps(self):
816
+ return self._num_timesteps
817
+
818
+ @property
819
+ def interrupt(self):
820
+ return self._interrupt
821
+
822
+ @torch.no_grad()
823
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
824
+ def __call__(
825
+ self,
826
+ prompt: Union[str, List[str]] = None,
827
+ prompt_2: Optional[Union[str, List[str]]] = None,
828
+ prompt_3: Optional[Union[str, List[str]]] = None,
829
+ image: PipelineImageInput = None,
830
+ mask_image: PipelineImageInput = None,
831
+ masked_image_latents: PipelineImageInput = None,
832
+ height: int = None,
833
+ width: int = None,
834
+ padding_mask_crop: Optional[int] = None,
835
+ strength: float = 0.6,
836
+ num_inference_steps: int = 50,
837
+ sigmas: Optional[List[float]] = None,
838
+ guidance_scale: float = 7.0,
839
+ negative_prompt: Optional[Union[str, List[str]]] = None,
840
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
841
+ negative_prompt_3: Optional[Union[str, List[str]]] = None,
842
+ num_images_per_prompt: Optional[int] = 1,
843
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
844
+ latents: Optional[torch.Tensor] = None,
845
+ prompt_embeds: Optional[torch.Tensor] = None,
846
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
847
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
848
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
849
+ output_type: Optional[str] = "pil",
850
+ return_dict: bool = True,
851
+ clip_skip: Optional[int] = None,
852
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
853
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
854
+ max_sequence_length: int = 256,
855
+ mu: Optional[float] = None,
856
+ ):
857
+ r"""
858
+ Function invoked when calling the pipeline for generation.
859
+
860
+ Args:
861
+ prompt (`str` or `List[str]`, *optional*):
862
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
863
+ instead.
864
+ prompt_2 (`str` or `List[str]`, *optional*):
865
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
866
+ will be used instead
867
+ prompt_3 (`str` or `List[str]`, *optional*):
868
+ The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
869
+ will be used instead
870
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
871
+ `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
872
+ numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
873
+ or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
874
+ list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
875
+ latents as `image`, but if passing latents directly it is not encoded again.
876
+ mask_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
877
+ `Image`, numpy array or tensor representing an image batch to mask `image`. White pixels in the mask
878
+ are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
879
+ single channel (luminance) before use. If it's a numpy array or pytorch tensor, it should contain one
880
+ color channel (L) instead of 3, so the expected shape for pytorch tensor would be `(B, 1, H, W)`, `(B,
881
+ H, W)`, `(1, H, W)`, `(H, W)`. And for numpy array would be for `(B, H, W, 1)`, `(B, H, W)`, `(H, W,
882
+ 1)`, or `(H, W)`.
883
+ mask_image_latent (`torch.Tensor`, `List[torch.Tensor]`):
884
+ `Tensor` representing an image batch to mask `image` generated by VAE. If not provided, the mask
885
+ latents tensor will ge generated by `mask_image`.
886
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
887
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
888
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
889
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
890
+ padding_mask_crop (`int`, *optional*, defaults to `None`):
891
+ The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
892
+ image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region
893
+ with the same aspect ration of the image and contains all masked area, and then expand that area based
894
+ on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before
895
+ resizing to the original image size for inpainting. This is useful when the masked area is small while
896
+ the image is large and contain information irrelevant for inpainting, such as background.
897
+ strength (`float`, *optional*, defaults to 1.0):
898
+ Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
899
+ starting point and more noise is added the higher the `strength`. The number of denoising steps depends
900
+ on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
901
+ process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
902
+ essentially ignores `image`.
903
+ num_inference_steps (`int`, *optional*, defaults to 50):
904
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
905
+ expense of slower inference.
906
+ sigmas (`List[float]`, *optional*):
907
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
908
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
909
+ will be used.
910
+ guidance_scale (`float`, *optional*, defaults to 7.0):
911
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
912
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
913
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
914
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
915
+ usually at the expense of lower image quality.
916
+ negative_prompt (`str` or `List[str]`, *optional*):
917
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
918
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
919
+ less than `1`).
920
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
921
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
922
+ `text_encoder_2`. If not defined, `negative_prompt` is used instead
923
+ negative_prompt_3 (`str` or `List[str]`, *optional*):
924
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
925
+ `text_encoder_3`. If not defined, `negative_prompt` is used instead
926
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
927
+ The number of images to generate per prompt.
928
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
929
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
930
+ to make generation deterministic.
931
+ latents (`torch.FloatTensor`, *optional*):
932
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
933
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
934
+ tensor will ge generated by sampling using the supplied random `generator`.
935
+ prompt_embeds (`torch.FloatTensor`, *optional*):
936
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
937
+ provided, text embeddings will be generated from `prompt` input argument.
938
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
939
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
940
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
941
+ argument.
942
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
943
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
944
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
945
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
946
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
947
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
948
+ input argument.
949
+ output_type (`str`, *optional*, defaults to `"pil"`):
950
+ The output format of the generate image. Choose between
951
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
952
+ return_dict (`bool`, *optional*, defaults to `True`):
953
+ Whether or not to return a [`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] instead of
954
+ a plain tuple.
955
+ callback_on_step_end (`Callable`, *optional*):
956
+ A function that calls at the end of each denoising steps during the inference. The function is called
957
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
958
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
959
+ `callback_on_step_end_tensor_inputs`.
960
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
961
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
962
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
963
+ `._callback_tensor_inputs` attribute of your pipeline class.
964
+ max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
965
+ mu (`float`, *optional*): `mu` value used for `dynamic_shifting`.
966
+
967
+ Examples:
968
+
969
+ Returns:
970
+ [`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] or `tuple`:
971
+ [`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] if `return_dict` is True, otherwise a
972
+ `tuple`. When returning a tuple, the first element is a list with the generated images.
973
+ """
974
+
975
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
976
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
977
+
978
+ height = height or self.transformer.config.sample_size * self.vae_scale_factor
979
+ width = width or self.transformer.config.sample_size * self.vae_scale_factor
980
+
981
+ # 1. Check inputs. Raise error if not correct
982
+ self.check_inputs(
983
+ prompt,
984
+ prompt_2,
985
+ prompt_3,
986
+ height,
987
+ width,
988
+ strength,
989
+ negative_prompt=negative_prompt,
990
+ negative_prompt_2=negative_prompt_2,
991
+ negative_prompt_3=negative_prompt_3,
992
+ prompt_embeds=prompt_embeds,
993
+ negative_prompt_embeds=negative_prompt_embeds,
994
+ pooled_prompt_embeds=pooled_prompt_embeds,
995
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
996
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
997
+ max_sequence_length=max_sequence_length,
998
+ )
999
+
1000
+ self._guidance_scale = guidance_scale
1001
+ self._clip_skip = clip_skip
1002
+ self._interrupt = False
1003
+
1004
+ # 2. Define call parameters
1005
+ if prompt is not None and isinstance(prompt, str):
1006
+ batch_size = 1
1007
+ elif prompt is not None and isinstance(prompt, list):
1008
+ batch_size = len(prompt)
1009
+ else:
1010
+ batch_size = prompt_embeds.shape[0]
1011
+
1012
+ device = self._execution_device
1013
+
1014
+ (
1015
+ prompt_embeds,
1016
+ negative_prompt_embeds,
1017
+ pooled_prompt_embeds,
1018
+ negative_pooled_prompt_embeds,
1019
+ ) = self.encode_prompt(
1020
+ prompt=prompt,
1021
+ prompt_2=prompt_2,
1022
+ prompt_3=prompt_3,
1023
+ negative_prompt=negative_prompt,
1024
+ negative_prompt_2=negative_prompt_2,
1025
+ negative_prompt_3=negative_prompt_3,
1026
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1027
+ prompt_embeds=prompt_embeds,
1028
+ negative_prompt_embeds=negative_prompt_embeds,
1029
+ pooled_prompt_embeds=pooled_prompt_embeds,
1030
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
1031
+ device=device,
1032
+ clip_skip=self.clip_skip,
1033
+ num_images_per_prompt=num_images_per_prompt,
1034
+ max_sequence_length=max_sequence_length,
1035
+ )
1036
+
1037
+ if self.do_classifier_free_guidance:
1038
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
1039
+ pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
1040
+
1041
+ # 3. Prepare timesteps
1042
+ scheduler_kwargs = {}
1043
+ if self.scheduler.config.get("use_dynamic_shifting", None) and mu is None:
1044
+ image_seq_len = (int(height) // self.vae_scale_factor // self.transformer.config.patch_size) * (
1045
+ int(width) // self.vae_scale_factor // self.transformer.config.patch_size
1046
+ )
1047
+ mu = calculate_shift(
1048
+ image_seq_len,
1049
+ self.scheduler.config.base_image_seq_len,
1050
+ self.scheduler.config.max_image_seq_len,
1051
+ self.scheduler.config.base_shift,
1052
+ self.scheduler.config.max_shift,
1053
+ )
1054
+ scheduler_kwargs["mu"] = mu
1055
+ elif mu is not None:
1056
+ scheduler_kwargs["mu"] = mu
1057
+ timesteps, num_inference_steps = retrieve_timesteps(
1058
+ self.scheduler, num_inference_steps, device, sigmas=sigmas, **scheduler_kwargs
1059
+ )
1060
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
1061
+ # check that number of inference steps is not < 1 - as this doesn't make sense
1062
+ if num_inference_steps < 1:
1063
+ raise ValueError(
1064
+ f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
1065
+ f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
1066
+ )
1067
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
1068
+
1069
+ # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
1070
+ is_strength_max = strength == 1.0
1071
+
1072
+ # 4. Preprocess mask and image
1073
+ if padding_mask_crop is not None:
1074
+ crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
1075
+ resize_mode = "fill"
1076
+ else:
1077
+ crops_coords = None
1078
+ resize_mode = "default"
1079
+
1080
+ original_image = image
1081
+ init_image = self.image_processor.preprocess(
1082
+ image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
1083
+ )
1084
+ init_image = init_image.to(dtype=torch.float32)
1085
+
1086
+ # 5. Prepare latent variables
1087
+ num_channels_latents = self.vae.config.latent_channels
1088
+ num_channels_transformer = self.transformer.config.in_channels
1089
+ return_image_latents = num_channels_transformer == 16
1090
+
1091
+ latents_outputs = self.prepare_latents(
1092
+ batch_size * num_images_per_prompt,
1093
+ num_channels_latents,
1094
+ height,
1095
+ width,
1096
+ prompt_embeds.dtype,
1097
+ device,
1098
+ generator,
1099
+ latents,
1100
+ image=init_image,
1101
+ timestep=latent_timestep,
1102
+ is_strength_max=is_strength_max,
1103
+ return_noise=True,
1104
+ return_image_latents=return_image_latents,
1105
+ )
1106
+
1107
+ if return_image_latents:
1108
+ latents, noise, image_latents = latents_outputs
1109
+ else:
1110
+ latents, noise = latents_outputs
1111
+
1112
+ # 6. Prepare mask latent variables
1113
+ mask_condition = self.mask_processor.preprocess(
1114
+ mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
1115
+ )
1116
+
1117
+ if masked_image_latents is None:
1118
+ masked_image = init_image * (mask_condition < 0.5)
1119
+ else:
1120
+ masked_image = masked_image_latents
1121
+
1122
+ mask, masked_image_latents = self.prepare_mask_latents(
1123
+ mask_condition,
1124
+ masked_image,
1125
+ batch_size,
1126
+ num_images_per_prompt,
1127
+ height,
1128
+ width,
1129
+ prompt_embeds.dtype,
1130
+ device,
1131
+ generator,
1132
+ self.do_classifier_free_guidance,
1133
+ )
1134
+
1135
+ # match the inpainting pipeline and will be updated with input + mask inpainting model later
1136
+ if num_channels_transformer == 33:
1137
+ # default case for runwayml/stable-diffusion-inpainting
1138
+ num_channels_mask = mask.shape[1]
1139
+ num_channels_masked_image = masked_image_latents.shape[1]
1140
+ if (
1141
+ num_channels_latents + num_channels_mask + num_channels_masked_image
1142
+ != self.transformer.config.in_channels
1143
+ ):
1144
+ raise ValueError(
1145
+ f"Incorrect configuration settings! The config of `pipeline.transformer`: {self.transformer.config} expects"
1146
+ f" {self.transformer.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
1147
+ f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
1148
+ f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
1149
+ " `pipeline.transformer` or your `mask_image` or `image` input."
1150
+ )
1151
+ elif num_channels_transformer != 16:
1152
+ raise ValueError(
1153
+ f"The transformer {self.transformer.__class__} should have 16 input channels or 33 input channels, not {self.transformer.config.in_channels}."
1154
+ )
1155
+
1156
+ # 7. Denoising loop
1157
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
1158
+ self._num_timesteps = len(timesteps)
1159
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1160
+ for i, t in enumerate(timesteps):
1161
+ if self.interrupt:
1162
+ continue
1163
+
1164
+ # expand the latents if we are doing classifier free guidance
1165
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1166
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
1167
+ timestep = t.expand(latent_model_input.shape[0])
1168
+
1169
+ if num_channels_transformer == 33:
1170
+ latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
1171
+
1172
+ noise_pred = self.transformer(
1173
+ hidden_states=latent_model_input,
1174
+ timestep=timestep,
1175
+ encoder_hidden_states=prompt_embeds,
1176
+ pooled_projections=pooled_prompt_embeds,
1177
+ return_dict=False,
1178
+ )[0]
1179
+
1180
+ # perform guidance
1181
+ if self.do_classifier_free_guidance:
1182
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1183
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
1184
+
1185
+ # compute the previous noisy sample x_t -> x_t-1
1186
+ latents_dtype = latents.dtype
1187
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
1188
+ if num_channels_transformer == 16:
1189
+ init_latents_proper = image_latents
1190
+ if self.do_classifier_free_guidance:
1191
+ init_mask, _ = mask.chunk(2)
1192
+ else:
1193
+ init_mask = mask
1194
+
1195
+ if i < len(timesteps) - 1:
1196
+ noise_timestep = timesteps[i + 1]
1197
+ init_latents_proper = self.scheduler.scale_noise(
1198
+ init_latents_proper, torch.tensor([noise_timestep]), noise
1199
+ )
1200
+
1201
+ latents = (1 - init_mask) * init_latents_proper + init_mask * latents
1202
+
1203
+ if latents.dtype != latents_dtype:
1204
+ if torch.backends.mps.is_available():
1205
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1206
+ latents = latents.to(latents_dtype)
1207
+
1208
+ if callback_on_step_end is not None:
1209
+ callback_kwargs = {}
1210
+ for k in callback_on_step_end_tensor_inputs:
1211
+ callback_kwargs[k] = locals()[k]
1212
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1213
+
1214
+ latents = callback_outputs.pop("latents", latents)
1215
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1216
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1217
+ negative_pooled_prompt_embeds = callback_outputs.pop(
1218
+ "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
1219
+ )
1220
+ mask = callback_outputs.pop("mask", mask)
1221
+ masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents)
1222
+
1223
+ # call the callback, if provided
1224
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1225
+ progress_bar.update()
1226
+
1227
+ if XLA_AVAILABLE:
1228
+ xm.mark_step()
1229
+
1230
+ if not output_type == "latent":
1231
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
1232
+ 0
1233
+ ]
1234
+ else:
1235
+ image = latents
1236
+
1237
+ do_denormalize = [True] * image.shape[0]
1238
+
1239
+ image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
1240
+
1241
+ if padding_mask_crop is not None:
1242
+ image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image]
1243
+
1244
+ # Offload all models
1245
+ self.maybe_free_model_hooks()
1246
+
1247
+ if not return_dict:
1248
+ return (image,)
1249
+
1250
+ return StableDiffusion3PipelineOutput(images=image)