diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1010 @@
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
17
+
18
+ import numpy as np
19
+ import PIL
20
+ import torch
21
+ import torch.nn.functional as F
22
+ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
23
+
24
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
25
+ from ...loaders import IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
26
+ from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel, UNetMotionModel
27
+ from ...models.controlnets.controlnet_sparsectrl import SparseControlNetModel
28
+ from ...models.lora import adjust_lora_scale_text_encoder
29
+ from ...models.unets.unet_motion_model import MotionAdapter
30
+ from ...schedulers import KarrasDiffusionSchedulers
31
+ from ...utils import (
32
+ USE_PEFT_BACKEND,
33
+ logging,
34
+ replace_example_docstring,
35
+ scale_lora_layers,
36
+ unscale_lora_layers,
37
+ )
38
+ from ...utils.torch_utils import is_compiled_module, randn_tensor
39
+ from ...video_processor import VideoProcessor
40
+ from ..free_init_utils import FreeInitMixin
41
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
42
+ from .pipeline_output import AnimateDiffPipelineOutput
43
+
44
+
45
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
46
+
47
+ EXAMPLE_DOC_STRING = """
48
+ Examples:
49
+ ```python
50
+ >>> import torch
51
+ >>> from diffusers import AnimateDiffSparseControlNetPipeline
52
+ >>> from diffusers.models import AutoencoderKL, MotionAdapter, SparseControlNetModel
53
+ >>> from diffusers.schedulers import DPMSolverMultistepScheduler
54
+ >>> from diffusers.utils import export_to_gif, load_image
55
+
56
+ >>> model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
57
+ >>> motion_adapter_id = "guoyww/animatediff-motion-adapter-v1-5-3"
58
+ >>> controlnet_id = "guoyww/animatediff-sparsectrl-scribble"
59
+ >>> lora_adapter_id = "guoyww/animatediff-motion-lora-v1-5-3"
60
+ >>> vae_id = "stabilityai/sd-vae-ft-mse"
61
+ >>> device = "cuda"
62
+
63
+ >>> motion_adapter = MotionAdapter.from_pretrained(motion_adapter_id, torch_dtype=torch.float16).to(device)
64
+ >>> controlnet = SparseControlNetModel.from_pretrained(controlnet_id, torch_dtype=torch.float16).to(device)
65
+ >>> vae = AutoencoderKL.from_pretrained(vae_id, torch_dtype=torch.float16).to(device)
66
+ >>> scheduler = DPMSolverMultistepScheduler.from_pretrained(
67
+ ... model_id,
68
+ ... subfolder="scheduler",
69
+ ... beta_schedule="linear",
70
+ ... algorithm_type="dpmsolver++",
71
+ ... use_karras_sigmas=True,
72
+ ... )
73
+ >>> pipe = AnimateDiffSparseControlNetPipeline.from_pretrained(
74
+ ... model_id,
75
+ ... motion_adapter=motion_adapter,
76
+ ... controlnet=controlnet,
77
+ ... vae=vae,
78
+ ... scheduler=scheduler,
79
+ ... torch_dtype=torch.float16,
80
+ ... ).to(device)
81
+ >>> pipe.load_lora_weights(lora_adapter_id, adapter_name="motion_lora")
82
+ >>> pipe.fuse_lora(lora_scale=1.0)
83
+
84
+ >>> prompt = "an aerial view of a cyberpunk city, night time, neon lights, masterpiece, high quality"
85
+ >>> negative_prompt = "low quality, worst quality, letterboxed"
86
+
87
+ >>> image_files = [
88
+ ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-1.png",
89
+ ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-2.png",
90
+ ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-3.png",
91
+ ... ]
92
+ >>> condition_frame_indices = [0, 8, 15]
93
+ >>> conditioning_frames = [load_image(img_file) for img_file in image_files]
94
+
95
+ >>> video = pipe(
96
+ ... prompt=prompt,
97
+ ... negative_prompt=negative_prompt,
98
+ ... num_inference_steps=25,
99
+ ... conditioning_frames=conditioning_frames,
100
+ ... controlnet_conditioning_scale=1.0,
101
+ ... controlnet_frame_indices=condition_frame_indices,
102
+ ... generator=torch.Generator().manual_seed(1337),
103
+ ... ).frames[0]
104
+ >>> export_to_gif(video, "output.gif")
105
+ ```
106
+ """
107
+
108
+
109
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
110
+ def retrieve_latents(
111
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
112
+ ):
113
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
114
+ return encoder_output.latent_dist.sample(generator)
115
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
116
+ return encoder_output.latent_dist.mode()
117
+ elif hasattr(encoder_output, "latents"):
118
+ return encoder_output.latents
119
+ else:
120
+ raise AttributeError("Could not access latents of provided encoder_output")
121
+
122
+
123
+ class AnimateDiffSparseControlNetPipeline(
124
+ DiffusionPipeline,
125
+ StableDiffusionMixin,
126
+ TextualInversionLoaderMixin,
127
+ IPAdapterMixin,
128
+ StableDiffusionLoraLoaderMixin,
129
+ FreeInitMixin,
130
+ ):
131
+ r"""
132
+ Pipeline for controlled text-to-video generation using the method described in [SparseCtrl: Adding Sparse Controls
133
+ to Text-to-Video Diffusion Models](https://arxiv.org/abs/2311.16933).
134
+
135
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
136
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
137
+
138
+ The pipeline also inherits the following loading methods:
139
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
140
+ - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
141
+ - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
142
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
143
+
144
+ Args:
145
+ vae ([`AutoencoderKL`]):
146
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
147
+ text_encoder ([`CLIPTextModel`]):
148
+ Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
149
+ tokenizer (`CLIPTokenizer`):
150
+ A [`~transformers.CLIPTokenizer`] to tokenize text.
151
+ unet ([`UNet2DConditionModel`]):
152
+ A [`UNet2DConditionModel`] used to create a UNetMotionModel to denoise the encoded video latents.
153
+ motion_adapter ([`MotionAdapter`]):
154
+ A [`MotionAdapter`] to be used in combination with `unet` to denoise the encoded video latents.
155
+ scheduler ([`SchedulerMixin`]):
156
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
157
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
158
+ """
159
+
160
+ model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
161
+ _optional_components = ["feature_extractor", "image_encoder", "motion_adapter"]
162
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
163
+
164
+ def __init__(
165
+ self,
166
+ vae: AutoencoderKL,
167
+ text_encoder: CLIPTextModel,
168
+ tokenizer: CLIPTokenizer,
169
+ unet: Union[UNet2DConditionModel, UNetMotionModel],
170
+ motion_adapter: MotionAdapter,
171
+ controlnet: SparseControlNetModel,
172
+ scheduler: KarrasDiffusionSchedulers,
173
+ feature_extractor: CLIPImageProcessor = None,
174
+ image_encoder: CLIPVisionModelWithProjection = None,
175
+ ):
176
+ super().__init__()
177
+ if isinstance(unet, UNet2DConditionModel):
178
+ unet = UNetMotionModel.from_unet2d(unet, motion_adapter)
179
+
180
+ self.register_modules(
181
+ vae=vae,
182
+ text_encoder=text_encoder,
183
+ tokenizer=tokenizer,
184
+ unet=unet,
185
+ motion_adapter=motion_adapter,
186
+ controlnet=controlnet,
187
+ scheduler=scheduler,
188
+ feature_extractor=feature_extractor,
189
+ image_encoder=image_encoder,
190
+ )
191
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
192
+ self.video_processor = VideoProcessor(do_resize=False, vae_scale_factor=self.vae_scale_factor)
193
+ self.control_image_processor = VaeImageProcessor(
194
+ vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
195
+ )
196
+
197
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt with num_images_per_prompt -> num_videos_per_prompt
198
+ def encode_prompt(
199
+ self,
200
+ prompt,
201
+ device,
202
+ num_images_per_prompt,
203
+ do_classifier_free_guidance,
204
+ negative_prompt=None,
205
+ prompt_embeds: Optional[torch.Tensor] = None,
206
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
207
+ lora_scale: Optional[float] = None,
208
+ clip_skip: Optional[int] = None,
209
+ ):
210
+ r"""
211
+ Encodes the prompt into text encoder hidden states.
212
+
213
+ Args:
214
+ prompt (`str` or `List[str]`, *optional*):
215
+ prompt to be encoded
216
+ device: (`torch.device`):
217
+ torch device
218
+ num_images_per_prompt (`int`):
219
+ number of images that should be generated per prompt
220
+ do_classifier_free_guidance (`bool`):
221
+ whether to use classifier free guidance or not
222
+ negative_prompt (`str` or `List[str]`, *optional*):
223
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
224
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
225
+ less than `1`).
226
+ prompt_embeds (`torch.Tensor`, *optional*):
227
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
228
+ provided, text embeddings will be generated from `prompt` input argument.
229
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
230
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
231
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
232
+ argument.
233
+ lora_scale (`float`, *optional*):
234
+ A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
235
+ clip_skip (`int`, *optional*):
236
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
237
+ the output of the pre-final layer will be used for computing the prompt embeddings.
238
+ """
239
+ # set lora scale so that monkey patched LoRA
240
+ # function of text encoder can correctly access it
241
+ if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
242
+ self._lora_scale = lora_scale
243
+
244
+ # dynamically adjust the LoRA scale
245
+ if not USE_PEFT_BACKEND:
246
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
247
+ else:
248
+ scale_lora_layers(self.text_encoder, lora_scale)
249
+
250
+ if prompt is not None and isinstance(prompt, str):
251
+ batch_size = 1
252
+ elif prompt is not None and isinstance(prompt, list):
253
+ batch_size = len(prompt)
254
+ else:
255
+ batch_size = prompt_embeds.shape[0]
256
+
257
+ if prompt_embeds is None:
258
+ # textual inversion: process multi-vector tokens if necessary
259
+ if isinstance(self, TextualInversionLoaderMixin):
260
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
261
+
262
+ text_inputs = self.tokenizer(
263
+ prompt,
264
+ padding="max_length",
265
+ max_length=self.tokenizer.model_max_length,
266
+ truncation=True,
267
+ return_tensors="pt",
268
+ )
269
+ text_input_ids = text_inputs.input_ids
270
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
271
+
272
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
273
+ text_input_ids, untruncated_ids
274
+ ):
275
+ removed_text = self.tokenizer.batch_decode(
276
+ untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
277
+ )
278
+ logger.warning(
279
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
280
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
281
+ )
282
+
283
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
284
+ attention_mask = text_inputs.attention_mask.to(device)
285
+ else:
286
+ attention_mask = None
287
+
288
+ if clip_skip is None:
289
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
290
+ prompt_embeds = prompt_embeds[0]
291
+ else:
292
+ prompt_embeds = self.text_encoder(
293
+ text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
294
+ )
295
+ # Access the `hidden_states` first, that contains a tuple of
296
+ # all the hidden states from the encoder layers. Then index into
297
+ # the tuple to access the hidden states from the desired layer.
298
+ prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
299
+ # We also need to apply the final LayerNorm here to not mess with the
300
+ # representations. The `last_hidden_states` that we typically use for
301
+ # obtaining the final prompt representations passes through the LayerNorm
302
+ # layer.
303
+ prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
304
+
305
+ if self.text_encoder is not None:
306
+ prompt_embeds_dtype = self.text_encoder.dtype
307
+ elif self.unet is not None:
308
+ prompt_embeds_dtype = self.unet.dtype
309
+ else:
310
+ prompt_embeds_dtype = prompt_embeds.dtype
311
+
312
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
313
+
314
+ bs_embed, seq_len, _ = prompt_embeds.shape
315
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
316
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
317
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
318
+
319
+ # get unconditional embeddings for classifier free guidance
320
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
321
+ uncond_tokens: List[str]
322
+ if negative_prompt is None:
323
+ uncond_tokens = [""] * batch_size
324
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
325
+ raise TypeError(
326
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
327
+ f" {type(prompt)}."
328
+ )
329
+ elif isinstance(negative_prompt, str):
330
+ uncond_tokens = [negative_prompt]
331
+ elif batch_size != len(negative_prompt):
332
+ raise ValueError(
333
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
334
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
335
+ " the batch size of `prompt`."
336
+ )
337
+ else:
338
+ uncond_tokens = negative_prompt
339
+
340
+ # textual inversion: process multi-vector tokens if necessary
341
+ if isinstance(self, TextualInversionLoaderMixin):
342
+ uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
343
+
344
+ max_length = prompt_embeds.shape[1]
345
+ uncond_input = self.tokenizer(
346
+ uncond_tokens,
347
+ padding="max_length",
348
+ max_length=max_length,
349
+ truncation=True,
350
+ return_tensors="pt",
351
+ )
352
+
353
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
354
+ attention_mask = uncond_input.attention_mask.to(device)
355
+ else:
356
+ attention_mask = None
357
+
358
+ negative_prompt_embeds = self.text_encoder(
359
+ uncond_input.input_ids.to(device),
360
+ attention_mask=attention_mask,
361
+ )
362
+ negative_prompt_embeds = negative_prompt_embeds[0]
363
+
364
+ if do_classifier_free_guidance:
365
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
366
+ seq_len = negative_prompt_embeds.shape[1]
367
+
368
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
369
+
370
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
371
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
372
+
373
+ if self.text_encoder is not None:
374
+ if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
375
+ # Retrieve the original scale by scaling back the LoRA layers
376
+ unscale_lora_layers(self.text_encoder, lora_scale)
377
+
378
+ return prompt_embeds, negative_prompt_embeds
379
+
380
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
381
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
382
+ dtype = next(self.image_encoder.parameters()).dtype
383
+
384
+ if not isinstance(image, torch.Tensor):
385
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
386
+
387
+ image = image.to(device=device, dtype=dtype)
388
+ if output_hidden_states:
389
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
390
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
391
+ uncond_image_enc_hidden_states = self.image_encoder(
392
+ torch.zeros_like(image), output_hidden_states=True
393
+ ).hidden_states[-2]
394
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
395
+ num_images_per_prompt, dim=0
396
+ )
397
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
398
+ else:
399
+ image_embeds = self.image_encoder(image).image_embeds
400
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
401
+ uncond_image_embeds = torch.zeros_like(image_embeds)
402
+
403
+ return image_embeds, uncond_image_embeds
404
+
405
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
406
+ def prepare_ip_adapter_image_embeds(
407
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
408
+ ):
409
+ image_embeds = []
410
+ if do_classifier_free_guidance:
411
+ negative_image_embeds = []
412
+ if ip_adapter_image_embeds is None:
413
+ if not isinstance(ip_adapter_image, list):
414
+ ip_adapter_image = [ip_adapter_image]
415
+
416
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
417
+ raise ValueError(
418
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
419
+ )
420
+
421
+ for single_ip_adapter_image, image_proj_layer in zip(
422
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
423
+ ):
424
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
425
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
426
+ single_ip_adapter_image, device, 1, output_hidden_state
427
+ )
428
+
429
+ image_embeds.append(single_image_embeds[None, :])
430
+ if do_classifier_free_guidance:
431
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
432
+ else:
433
+ for single_image_embeds in ip_adapter_image_embeds:
434
+ if do_classifier_free_guidance:
435
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
436
+ negative_image_embeds.append(single_negative_image_embeds)
437
+ image_embeds.append(single_image_embeds)
438
+
439
+ ip_adapter_image_embeds = []
440
+ for i, single_image_embeds in enumerate(image_embeds):
441
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
442
+ if do_classifier_free_guidance:
443
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
444
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
445
+
446
+ single_image_embeds = single_image_embeds.to(device=device)
447
+ ip_adapter_image_embeds.append(single_image_embeds)
448
+
449
+ return ip_adapter_image_embeds
450
+
451
+ # Copied from diffusers.pipelines.text_to_video_synthesis/pipeline_text_to_video_synth.TextToVideoSDPipeline.decode_latents
452
+ def decode_latents(self, latents):
453
+ latents = 1 / self.vae.config.scaling_factor * latents
454
+
455
+ batch_size, channels, num_frames, height, width = latents.shape
456
+ latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)
457
+
458
+ image = self.vae.decode(latents).sample
459
+ video = image[None, :].reshape((batch_size, num_frames, -1) + image.shape[2:]).permute(0, 2, 1, 3, 4)
460
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
461
+ video = video.float()
462
+ return video
463
+
464
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
465
+ def prepare_extra_step_kwargs(self, generator, eta):
466
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
467
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
468
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
469
+ # and should be between [0, 1]
470
+
471
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
472
+ extra_step_kwargs = {}
473
+ if accepts_eta:
474
+ extra_step_kwargs["eta"] = eta
475
+
476
+ # check if the scheduler accepts generator
477
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
478
+ if accepts_generator:
479
+ extra_step_kwargs["generator"] = generator
480
+ return extra_step_kwargs
481
+
482
+ def check_inputs(
483
+ self,
484
+ prompt,
485
+ height,
486
+ width,
487
+ negative_prompt=None,
488
+ prompt_embeds=None,
489
+ negative_prompt_embeds=None,
490
+ ip_adapter_image=None,
491
+ ip_adapter_image_embeds=None,
492
+ callback_on_step_end_tensor_inputs=None,
493
+ image=None,
494
+ controlnet_conditioning_scale: float = 1.0,
495
+ ):
496
+ if height % 8 != 0 or width % 8 != 0:
497
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
498
+
499
+ if callback_on_step_end_tensor_inputs is not None and not all(
500
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
501
+ ):
502
+ raise ValueError(
503
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
504
+ )
505
+
506
+ if prompt is not None and prompt_embeds is not None:
507
+ raise ValueError(
508
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
509
+ " only forward one of the two."
510
+ )
511
+ elif prompt is None and prompt_embeds is None:
512
+ raise ValueError(
513
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
514
+ )
515
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
516
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
517
+
518
+ if negative_prompt is not None and negative_prompt_embeds is not None:
519
+ raise ValueError(
520
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
521
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
522
+ )
523
+
524
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
525
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
526
+ raise ValueError(
527
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
528
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
529
+ f" {negative_prompt_embeds.shape}."
530
+ )
531
+
532
+ if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
533
+ raise ValueError(
534
+ "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
535
+ )
536
+
537
+ if ip_adapter_image_embeds is not None:
538
+ if not isinstance(ip_adapter_image_embeds, list):
539
+ raise ValueError(
540
+ f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
541
+ )
542
+ elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
543
+ raise ValueError(
544
+ f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
545
+ )
546
+
547
+ is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
548
+ self.controlnet, torch._dynamo.eval_frame.OptimizedModule
549
+ )
550
+
551
+ # check `image`
552
+ if (
553
+ isinstance(self.controlnet, SparseControlNetModel)
554
+ or is_compiled
555
+ and isinstance(self.controlnet._orig_mod, SparseControlNetModel)
556
+ ):
557
+ if isinstance(image, list):
558
+ for image_ in image:
559
+ self.check_image(image_, prompt, prompt_embeds)
560
+ else:
561
+ self.check_image(image, prompt, prompt_embeds)
562
+ else:
563
+ assert False
564
+
565
+ # Check `controlnet_conditioning_scale`
566
+ if (
567
+ isinstance(self.controlnet, SparseControlNetModel)
568
+ or is_compiled
569
+ and isinstance(self.controlnet._orig_mod, SparseControlNetModel)
570
+ ):
571
+ if not isinstance(controlnet_conditioning_scale, float):
572
+ raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
573
+ else:
574
+ assert False
575
+
576
+ # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
577
+ def check_image(self, image, prompt, prompt_embeds):
578
+ image_is_pil = isinstance(image, PIL.Image.Image)
579
+ image_is_tensor = isinstance(image, torch.Tensor)
580
+ image_is_np = isinstance(image, np.ndarray)
581
+ image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
582
+ image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
583
+ image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
584
+
585
+ if (
586
+ not image_is_pil
587
+ and not image_is_tensor
588
+ and not image_is_np
589
+ and not image_is_pil_list
590
+ and not image_is_tensor_list
591
+ and not image_is_np_list
592
+ ):
593
+ raise TypeError(
594
+ f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
595
+ )
596
+
597
+ if image_is_pil:
598
+ image_batch_size = 1
599
+ else:
600
+ image_batch_size = len(image)
601
+
602
+ if prompt is not None and isinstance(prompt, str):
603
+ prompt_batch_size = 1
604
+ elif prompt is not None and isinstance(prompt, list):
605
+ prompt_batch_size = len(prompt)
606
+ elif prompt_embeds is not None:
607
+ prompt_batch_size = prompt_embeds.shape[0]
608
+
609
+ if image_batch_size != 1 and image_batch_size != prompt_batch_size:
610
+ raise ValueError(
611
+ f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
612
+ )
613
+
614
+ # Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_synth.TextToVideoSDPipeline.prepare_latents
615
+ def prepare_latents(
616
+ self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
617
+ ):
618
+ shape = (
619
+ batch_size,
620
+ num_channels_latents,
621
+ num_frames,
622
+ height // self.vae_scale_factor,
623
+ width // self.vae_scale_factor,
624
+ )
625
+ if isinstance(generator, list) and len(generator) != batch_size:
626
+ raise ValueError(
627
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
628
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
629
+ )
630
+
631
+ if latents is None:
632
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
633
+ else:
634
+ latents = latents.to(device)
635
+
636
+ # scale the initial noise by the standard deviation required by the scheduler
637
+ latents = latents * self.scheduler.init_noise_sigma
638
+ return latents
639
+
640
+ def prepare_image(self, image, width, height, device, dtype):
641
+ image = self.control_image_processor.preprocess(image, height=height, width=width)
642
+ controlnet_images = image.unsqueeze(0).to(device, dtype)
643
+ batch_size, num_frames, channels, height, width = controlnet_images.shape
644
+
645
+ # TODO: remove below line
646
+ assert controlnet_images.min() >= 0 and controlnet_images.max() <= 1
647
+
648
+ if self.controlnet.use_simplified_condition_embedding:
649
+ controlnet_images = controlnet_images.reshape(batch_size * num_frames, channels, height, width)
650
+ controlnet_images = 2 * controlnet_images - 1
651
+ conditioning_frames = retrieve_latents(self.vae.encode(controlnet_images)) * self.vae.config.scaling_factor
652
+ conditioning_frames = conditioning_frames.reshape(
653
+ batch_size, num_frames, 4, height // self.vae_scale_factor, width // self.vae_scale_factor
654
+ )
655
+ else:
656
+ conditioning_frames = controlnet_images
657
+
658
+ conditioning_frames = conditioning_frames.permute(0, 2, 1, 3, 4) # [b, c, f, h, w]
659
+ return conditioning_frames
660
+
661
+ def prepare_sparse_control_conditioning(
662
+ self,
663
+ conditioning_frames: torch.Tensor,
664
+ num_frames: int,
665
+ controlnet_frame_indices: int,
666
+ device: torch.device,
667
+ dtype: torch.dtype,
668
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
669
+ assert conditioning_frames.shape[2] >= len(controlnet_frame_indices)
670
+
671
+ batch_size, channels, _, height, width = conditioning_frames.shape
672
+ controlnet_cond = torch.zeros((batch_size, channels, num_frames, height, width), dtype=dtype, device=device)
673
+ controlnet_cond_mask = torch.zeros((batch_size, 1, num_frames, height, width), dtype=dtype, device=device)
674
+ controlnet_cond[:, :, controlnet_frame_indices] = conditioning_frames[:, :, : len(controlnet_frame_indices)]
675
+ controlnet_cond_mask[:, :, controlnet_frame_indices] = 1
676
+
677
+ return controlnet_cond, controlnet_cond_mask
678
+
679
+ @property
680
+ def guidance_scale(self):
681
+ return self._guidance_scale
682
+
683
+ @property
684
+ def clip_skip(self):
685
+ return self._clip_skip
686
+
687
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
688
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
689
+ # corresponds to doing no classifier free guidance.
690
+ @property
691
+ def do_classifier_free_guidance(self):
692
+ return self._guidance_scale > 1
693
+
694
+ @property
695
+ def cross_attention_kwargs(self):
696
+ return self._cross_attention_kwargs
697
+
698
+ @property
699
+ def num_timesteps(self):
700
+ return self._num_timesteps
701
+
702
+ @torch.no_grad()
703
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
704
+ def __call__(
705
+ self,
706
+ prompt: Optional[Union[str, List[str]]] = None,
707
+ height: Optional[int] = None,
708
+ width: Optional[int] = None,
709
+ num_frames: int = 16,
710
+ num_inference_steps: int = 50,
711
+ guidance_scale: float = 7.5,
712
+ negative_prompt: Optional[Union[str, List[str]]] = None,
713
+ num_videos_per_prompt: int = 1,
714
+ eta: float = 0.0,
715
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
716
+ latents: Optional[torch.Tensor] = None,
717
+ prompt_embeds: Optional[torch.Tensor] = None,
718
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
719
+ ip_adapter_image: Optional[PipelineImageInput] = None,
720
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
721
+ conditioning_frames: Optional[List[PipelineImageInput]] = None,
722
+ output_type: str = "pil",
723
+ return_dict: bool = True,
724
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
725
+ controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
726
+ controlnet_frame_indices: List[int] = [0],
727
+ guess_mode: bool = False,
728
+ clip_skip: Optional[int] = None,
729
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
730
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
731
+ ):
732
+ r"""
733
+ The call function to the pipeline for generation.
734
+
735
+ Args:
736
+ prompt (`str` or `List[str]`, *optional*):
737
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
738
+ height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
739
+ The height in pixels of the generated video.
740
+ width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
741
+ The width in pixels of the generated video.
742
+ num_frames (`int`, *optional*, defaults to 16):
743
+ The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
744
+ amounts to 2 seconds of video.
745
+ num_inference_steps (`int`, *optional*, defaults to 50):
746
+ The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
747
+ expense of slower inference.
748
+ guidance_scale (`float`, *optional*, defaults to 7.5):
749
+ A higher guidance scale value encourages the model to generate images closely linked to the text
750
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
751
+ negative_prompt (`str` or `List[str]`, *optional*):
752
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
753
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
754
+ eta (`float`, *optional*, defaults to 0.0):
755
+ Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
756
+ to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
757
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
758
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
759
+ generation deterministic.
760
+ latents (`torch.Tensor`, *optional*):
761
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
762
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
763
+ tensor is generated by sampling using the supplied random `generator`. Latents should be of shape
764
+ `(batch_size, num_channel, num_frames, height, width)`.
765
+ prompt_embeds (`torch.Tensor`, *optional*):
766
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
767
+ provided, text embeddings are generated from the `prompt` input argument.
768
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
769
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
770
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
771
+ ip_adapter_image: (`PipelineImageInput`, *optional*):
772
+ Optional image input to work with IP Adapters.
773
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
774
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
775
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
776
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
777
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
778
+ conditioning_frames (`List[PipelineImageInput]`, *optional*):
779
+ The SparseControlNet input to provide guidance to the `unet` for generation.
780
+ output_type (`str`, *optional*, defaults to `"pil"`):
781
+ The output format of the generated video. Choose between `torch.Tensor`, `PIL.Image` or `np.array`.
782
+ return_dict (`bool`, *optional*, defaults to `True`):
783
+ Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead
784
+ of a plain tuple.
785
+ cross_attention_kwargs (`dict`, *optional*):
786
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
787
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
788
+ controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
789
+ The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
790
+ to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
791
+ the corresponding scale as a list.
792
+ controlnet_frame_indices (`List[int]`):
793
+ The indices where the conditioning frames must be applied for generation. Multiple frames can be
794
+ provided to guide the model to generate similar structure outputs, where the `unet` can
795
+ "fill-in-the-gaps" for interpolation videos, or a single frame could be provided for general expected
796
+ structure. Must have the same length as `conditioning_frames`.
797
+ clip_skip (`int`, *optional*):
798
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
799
+ the output of the pre-final layer will be used for computing the prompt embeddings.
800
+ callback_on_step_end (`Callable`, *optional*):
801
+ A function that calls at the end of each denoising steps during the inference. The function is called
802
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
803
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
804
+ `callback_on_step_end_tensor_inputs`.
805
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
806
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
807
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
808
+ `._callback_tensor_inputs` attribute of your pipeline class.
809
+
810
+ Examples:
811
+
812
+ Returns:
813
+ [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] or `tuple`:
814
+ If `return_dict` is `True`, [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] is
815
+ returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
816
+ """
817
+ controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
818
+
819
+ # 0. Default height and width to unet
820
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
821
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
822
+ num_videos_per_prompt = 1
823
+
824
+ # 1. Check inputs. Raise error if not correct
825
+ self.check_inputs(
826
+ prompt=prompt,
827
+ height=height,
828
+ width=width,
829
+ negative_prompt=negative_prompt,
830
+ prompt_embeds=prompt_embeds,
831
+ negative_prompt_embeds=negative_prompt_embeds,
832
+ ip_adapter_image=ip_adapter_image,
833
+ ip_adapter_image_embeds=ip_adapter_image_embeds,
834
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
835
+ image=conditioning_frames,
836
+ controlnet_conditioning_scale=controlnet_conditioning_scale,
837
+ )
838
+
839
+ self._guidance_scale = guidance_scale
840
+ self._clip_skip = clip_skip
841
+ self._cross_attention_kwargs = cross_attention_kwargs
842
+
843
+ # 2. Define call parameters
844
+ if prompt is not None and isinstance(prompt, str):
845
+ batch_size = 1
846
+ elif prompt is not None and isinstance(prompt, list):
847
+ batch_size = len(prompt)
848
+ else:
849
+ batch_size = prompt_embeds.shape[0]
850
+
851
+ device = self._execution_device
852
+
853
+ global_pool_conditions = (
854
+ controlnet.config.global_pool_conditions
855
+ if isinstance(controlnet, SparseControlNetModel)
856
+ else controlnet.nets[0].config.global_pool_conditions
857
+ )
858
+ guess_mode = guess_mode or global_pool_conditions
859
+
860
+ # 3. Encode input prompt
861
+ text_encoder_lora_scale = (
862
+ self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
863
+ )
864
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
865
+ prompt,
866
+ device,
867
+ num_videos_per_prompt,
868
+ self.do_classifier_free_guidance,
869
+ negative_prompt,
870
+ prompt_embeds=prompt_embeds,
871
+ negative_prompt_embeds=negative_prompt_embeds,
872
+ lora_scale=text_encoder_lora_scale,
873
+ clip_skip=self.clip_skip,
874
+ )
875
+ # For classifier free guidance, we need to do two forward passes.
876
+ # Here we concatenate the unconditional and text embeddings into a single batch
877
+ # to avoid doing two forward passes
878
+ if self.do_classifier_free_guidance:
879
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
880
+
881
+ prompt_embeds = prompt_embeds.repeat_interleave(repeats=num_frames, dim=0)
882
+
883
+ # 4. Prepare IP-Adapter embeddings
884
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
885
+ image_embeds = self.prepare_ip_adapter_image_embeds(
886
+ ip_adapter_image,
887
+ ip_adapter_image_embeds,
888
+ device,
889
+ batch_size * num_videos_per_prompt,
890
+ self.do_classifier_free_guidance,
891
+ )
892
+
893
+ # 5. Prepare controlnet conditioning
894
+ conditioning_frames = self.prepare_image(conditioning_frames, width, height, device, controlnet.dtype)
895
+ controlnet_cond, controlnet_cond_mask = self.prepare_sparse_control_conditioning(
896
+ conditioning_frames, num_frames, controlnet_frame_indices, device, controlnet.dtype
897
+ )
898
+
899
+ # 6. Prepare timesteps
900
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
901
+ timesteps = self.scheduler.timesteps
902
+
903
+ # 7. Prepare latent variables
904
+ num_channels_latents = self.unet.config.in_channels
905
+ latents = self.prepare_latents(
906
+ batch_size * num_videos_per_prompt,
907
+ num_channels_latents,
908
+ num_frames,
909
+ height,
910
+ width,
911
+ prompt_embeds.dtype,
912
+ device,
913
+ generator,
914
+ latents,
915
+ )
916
+
917
+ # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
918
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
919
+
920
+ # 9. Add image embeds for IP-Adapter
921
+ added_cond_kwargs = (
922
+ {"image_embeds": image_embeds}
923
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None
924
+ else None
925
+ )
926
+
927
+ num_free_init_iters = self._free_init_num_iters if self.free_init_enabled else 1
928
+ for free_init_iter in range(num_free_init_iters):
929
+ if self.free_init_enabled:
930
+ latents, timesteps = self._apply_free_init(
931
+ latents, free_init_iter, num_inference_steps, device, latents.dtype, generator
932
+ )
933
+
934
+ self._num_timesteps = len(timesteps)
935
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
936
+
937
+ # 10. Denoising loop
938
+ with self.progress_bar(total=self._num_timesteps) as progress_bar:
939
+ for i, t in enumerate(timesteps):
940
+ # expand the latents if we are doing classifier free guidance
941
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
942
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
943
+
944
+ if guess_mode and self.do_classifier_free_guidance:
945
+ # Infer SparseControlNetModel only for the conditional batch.
946
+ control_model_input = latents
947
+ control_model_input = self.scheduler.scale_model_input(control_model_input, t)
948
+ controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
949
+ else:
950
+ control_model_input = latent_model_input
951
+ controlnet_prompt_embeds = prompt_embeds
952
+
953
+ down_block_res_samples, mid_block_res_sample = self.controlnet(
954
+ control_model_input,
955
+ t,
956
+ encoder_hidden_states=controlnet_prompt_embeds,
957
+ controlnet_cond=controlnet_cond,
958
+ conditioning_mask=controlnet_cond_mask,
959
+ conditioning_scale=controlnet_conditioning_scale,
960
+ guess_mode=guess_mode,
961
+ return_dict=False,
962
+ )
963
+
964
+ # predict the noise residual
965
+ noise_pred = self.unet(
966
+ latent_model_input,
967
+ t,
968
+ encoder_hidden_states=prompt_embeds,
969
+ cross_attention_kwargs=cross_attention_kwargs,
970
+ added_cond_kwargs=added_cond_kwargs,
971
+ down_block_additional_residuals=down_block_res_samples,
972
+ mid_block_additional_residual=mid_block_res_sample,
973
+ ).sample
974
+
975
+ # perform guidance
976
+ if self.do_classifier_free_guidance:
977
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
978
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
979
+
980
+ # compute the previous noisy sample x_t -> x_t-1
981
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
982
+
983
+ if callback_on_step_end is not None:
984
+ callback_kwargs = {}
985
+ for k in callback_on_step_end_tensor_inputs:
986
+ callback_kwargs[k] = locals()[k]
987
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
988
+
989
+ latents = callback_outputs.pop("latents", latents)
990
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
991
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
992
+
993
+ # call the callback, if provided
994
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
995
+ progress_bar.update()
996
+
997
+ # 11. Post processing
998
+ if output_type == "latent":
999
+ video = latents
1000
+ else:
1001
+ video_tensor = self.decode_latents(latents)
1002
+ video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type)
1003
+
1004
+ # 12. Offload all models
1005
+ self.maybe_free_model_hooks()
1006
+
1007
+ if not return_dict:
1008
+ return (video,)
1009
+
1010
+ return AnimateDiffPipelineOutput(frames=video)