diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +50 -53
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.0.dist-info/RECORD +0 -399
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -13,14 +13,39 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
|
15
15
|
import math
|
16
|
+
from dataclasses import dataclass
|
16
17
|
from typing import List, Optional, Tuple, Union
|
17
18
|
|
18
19
|
import numpy as np
|
19
20
|
import torch
|
20
21
|
|
21
22
|
from ..configuration_utils import ConfigMixin, register_to_config
|
23
|
+
from ..utils import BaseOutput, is_scipy_available
|
22
24
|
from ..utils.torch_utils import randn_tensor
|
23
|
-
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
|
25
|
+
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
|
26
|
+
|
27
|
+
|
28
|
+
if is_scipy_available():
|
29
|
+
import scipy.stats
|
30
|
+
|
31
|
+
|
32
|
+
@dataclass
|
33
|
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->KDPM2AncestralDiscrete
|
34
|
+
class KDPM2AncestralDiscreteSchedulerOutput(BaseOutput):
|
35
|
+
"""
|
36
|
+
Output class for the scheduler's `step` function output.
|
37
|
+
|
38
|
+
Args:
|
39
|
+
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
40
|
+
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
41
|
+
denoising loop.
|
42
|
+
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
43
|
+
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
44
|
+
`pred_original_sample` can be used to preview progress or for guidance.
|
45
|
+
"""
|
46
|
+
|
47
|
+
prev_sample: torch.Tensor
|
48
|
+
pred_original_sample: Optional[torch.Tensor] = None
|
24
49
|
|
25
50
|
|
26
51
|
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
@@ -58,7 +83,7 @@ def betas_for_alpha_bar(
|
|
58
83
|
return math.exp(t * -12.0)
|
59
84
|
|
60
85
|
else:
|
61
|
-
raise ValueError(f"Unsupported
|
86
|
+
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
|
62
87
|
|
63
88
|
betas = []
|
64
89
|
for i in range(num_diffusion_timesteps):
|
@@ -91,6 +116,11 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
91
116
|
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
|
92
117
|
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
|
93
118
|
the sigmas are determined according to a sequence of noise levels {σi}.
|
119
|
+
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
|
120
|
+
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
|
121
|
+
use_beta_sigmas (`bool`, *optional*, defaults to `False`):
|
122
|
+
Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
|
123
|
+
Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
|
94
124
|
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
95
125
|
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
96
126
|
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
@@ -114,10 +144,18 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
114
144
|
beta_schedule: str = "linear",
|
115
145
|
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
116
146
|
use_karras_sigmas: Optional[bool] = False,
|
147
|
+
use_exponential_sigmas: Optional[bool] = False,
|
148
|
+
use_beta_sigmas: Optional[bool] = False,
|
117
149
|
prediction_type: str = "epsilon",
|
118
150
|
timestep_spacing: str = "linspace",
|
119
151
|
steps_offset: int = 0,
|
120
152
|
):
|
153
|
+
if self.config.use_beta_sigmas and not is_scipy_available():
|
154
|
+
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
|
155
|
+
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
|
156
|
+
raise ValueError(
|
157
|
+
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
|
158
|
+
)
|
121
159
|
if trained_betas is not None:
|
122
160
|
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
123
161
|
elif beta_schedule == "linear":
|
@@ -129,7 +167,7 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
129
167
|
# Glide cosine schedule
|
130
168
|
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
131
169
|
else:
|
132
|
-
raise NotImplementedError(f"{beta_schedule}
|
170
|
+
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
133
171
|
|
134
172
|
self.alphas = 1.0 - self.betas
|
135
173
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
@@ -151,7 +189,7 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
151
189
|
@property
|
152
190
|
def step_index(self):
|
153
191
|
"""
|
154
|
-
The index counter for current timestep. It will
|
192
|
+
The index counter for current timestep. It will increase 1 after each scheduler step.
|
155
193
|
"""
|
156
194
|
return self._step_index
|
157
195
|
|
@@ -175,21 +213,21 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
175
213
|
|
176
214
|
def scale_model_input(
|
177
215
|
self,
|
178
|
-
sample: torch.
|
179
|
-
timestep: Union[float, torch.
|
180
|
-
) -> torch.
|
216
|
+
sample: torch.Tensor,
|
217
|
+
timestep: Union[float, torch.Tensor],
|
218
|
+
) -> torch.Tensor:
|
181
219
|
"""
|
182
220
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
183
221
|
current timestep.
|
184
222
|
|
185
223
|
Args:
|
186
|
-
sample (`torch.
|
224
|
+
sample (`torch.Tensor`):
|
187
225
|
The input sample.
|
188
226
|
timestep (`int`, *optional*):
|
189
227
|
The current timestep in the diffusion chain.
|
190
228
|
|
191
229
|
Returns:
|
192
|
-
`torch.
|
230
|
+
`torch.Tensor`:
|
193
231
|
A scaled input sample.
|
194
232
|
"""
|
195
233
|
if self.step_index is None:
|
@@ -250,6 +288,12 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
250
288
|
if self.config.use_karras_sigmas:
|
251
289
|
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
252
290
|
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
|
291
|
+
elif self.config.use_exponential_sigmas:
|
292
|
+
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
293
|
+
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
294
|
+
elif self.config.use_beta_sigmas:
|
295
|
+
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
296
|
+
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
253
297
|
|
254
298
|
self.log_sigmas = torch.from_numpy(log_sigmas).to(device)
|
255
299
|
sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
|
@@ -321,7 +365,7 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
321
365
|
return t
|
322
366
|
|
323
367
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
|
324
|
-
def _convert_to_karras(self, in_sigmas: torch.
|
368
|
+
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
|
325
369
|
"""Constructs the noise schedule of Karras et al. (2022)."""
|
326
370
|
|
327
371
|
# Hack to make sure that other schedulers which copy this function don't break
|
@@ -346,6 +390,60 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
346
390
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
347
391
|
return sigmas
|
348
392
|
|
393
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
|
394
|
+
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
|
395
|
+
"""Constructs an exponential noise schedule."""
|
396
|
+
|
397
|
+
# Hack to make sure that other schedulers which copy this function don't break
|
398
|
+
# TODO: Add this logic to the other schedulers
|
399
|
+
if hasattr(self.config, "sigma_min"):
|
400
|
+
sigma_min = self.config.sigma_min
|
401
|
+
else:
|
402
|
+
sigma_min = None
|
403
|
+
|
404
|
+
if hasattr(self.config, "sigma_max"):
|
405
|
+
sigma_max = self.config.sigma_max
|
406
|
+
else:
|
407
|
+
sigma_max = None
|
408
|
+
|
409
|
+
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
410
|
+
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
411
|
+
|
412
|
+
sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
|
413
|
+
return sigmas
|
414
|
+
|
415
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
|
416
|
+
def _convert_to_beta(
|
417
|
+
self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
|
418
|
+
) -> torch.Tensor:
|
419
|
+
"""From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""
|
420
|
+
|
421
|
+
# Hack to make sure that other schedulers which copy this function don't break
|
422
|
+
# TODO: Add this logic to the other schedulers
|
423
|
+
if hasattr(self.config, "sigma_min"):
|
424
|
+
sigma_min = self.config.sigma_min
|
425
|
+
else:
|
426
|
+
sigma_min = None
|
427
|
+
|
428
|
+
if hasattr(self.config, "sigma_max"):
|
429
|
+
sigma_max = self.config.sigma_max
|
430
|
+
else:
|
431
|
+
sigma_max = None
|
432
|
+
|
433
|
+
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
434
|
+
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
435
|
+
|
436
|
+
sigmas = np.array(
|
437
|
+
[
|
438
|
+
sigma_min + (ppf * (sigma_max - sigma_min))
|
439
|
+
for ppf in [
|
440
|
+
scipy.stats.beta.ppf(timestep, alpha, beta)
|
441
|
+
for timestep in 1 - np.linspace(0, 1, num_inference_steps)
|
442
|
+
]
|
443
|
+
]
|
444
|
+
)
|
445
|
+
return sigmas
|
446
|
+
|
349
447
|
@property
|
350
448
|
def state_in_first_order(self):
|
351
449
|
return self.sample is None
|
@@ -376,32 +474,34 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
376
474
|
|
377
475
|
def step(
|
378
476
|
self,
|
379
|
-
model_output: Union[torch.
|
380
|
-
timestep: Union[float, torch.
|
381
|
-
sample: Union[torch.
|
477
|
+
model_output: Union[torch.Tensor, np.ndarray],
|
478
|
+
timestep: Union[float, torch.Tensor],
|
479
|
+
sample: Union[torch.Tensor, np.ndarray],
|
382
480
|
generator: Optional[torch.Generator] = None,
|
383
481
|
return_dict: bool = True,
|
384
|
-
) -> Union[
|
482
|
+
) -> Union[KDPM2AncestralDiscreteSchedulerOutput, Tuple]:
|
385
483
|
"""
|
386
484
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
387
485
|
process from the learned model outputs (most often the predicted noise).
|
388
486
|
|
389
487
|
Args:
|
390
|
-
model_output (`torch.
|
488
|
+
model_output (`torch.Tensor`):
|
391
489
|
The direct output from learned diffusion model.
|
392
490
|
timestep (`float`):
|
393
491
|
The current discrete timestep in the diffusion chain.
|
394
|
-
sample (`torch.
|
492
|
+
sample (`torch.Tensor`):
|
395
493
|
A current instance of a sample created by the diffusion process.
|
396
494
|
generator (`torch.Generator`, *optional*):
|
397
495
|
A random number generator.
|
398
496
|
return_dict (`bool`):
|
399
|
-
Whether or not to return a
|
497
|
+
Whether or not to return a
|
498
|
+
[`~schedulers.scheduling_k_dpm_2_ancestral_discrete.KDPM2AncestralDiscreteSchedulerOutput`] or tuple.
|
400
499
|
|
401
500
|
Returns:
|
402
|
-
[`~schedulers.
|
403
|
-
If return_dict is `True`,
|
404
|
-
|
501
|
+
[`~schedulers.scheduling_k_dpm_2_ancestral_discrete.KDPM2AncestralDiscreteSchedulerOutput`] or `tuple`:
|
502
|
+
If return_dict is `True`,
|
503
|
+
[`~schedulers.scheduling_k_dpm_2_ancestral_discrete.KDPM2AncestralDiscreteSchedulerOutput`] is
|
504
|
+
returned, otherwise a tuple is returned where the first element is the sample tensor.
|
405
505
|
"""
|
406
506
|
if self.step_index is None:
|
407
507
|
self._init_step_index(timestep)
|
@@ -424,9 +524,6 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
424
524
|
gamma = 0
|
425
525
|
sigma_hat = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
|
426
526
|
|
427
|
-
device = model_output.device
|
428
|
-
noise = randn_tensor(model_output.shape, dtype=model_output.dtype, device=device, generator=generator)
|
429
|
-
|
430
527
|
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
|
431
528
|
if self.config.prediction_type == "epsilon":
|
432
529
|
sigma_input = sigma_hat if self.state_in_first_order else sigma_interpol
|
@@ -464,23 +561,31 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
464
561
|
self.sample = None
|
465
562
|
|
466
563
|
prev_sample = sample + derivative * dt
|
564
|
+
noise = randn_tensor(
|
565
|
+
model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator
|
566
|
+
)
|
467
567
|
prev_sample = prev_sample + noise * sigma_up
|
468
568
|
|
469
569
|
# upon completion increase step index by one
|
470
570
|
self._step_index += 1
|
471
571
|
|
472
572
|
if not return_dict:
|
473
|
-
return (
|
573
|
+
return (
|
574
|
+
prev_sample,
|
575
|
+
pred_original_sample,
|
576
|
+
)
|
474
577
|
|
475
|
-
return
|
578
|
+
return KDPM2AncestralDiscreteSchedulerOutput(
|
579
|
+
prev_sample=prev_sample, pred_original_sample=pred_original_sample
|
580
|
+
)
|
476
581
|
|
477
582
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
|
478
583
|
def add_noise(
|
479
584
|
self,
|
480
|
-
original_samples: torch.
|
481
|
-
noise: torch.
|
482
|
-
timesteps: torch.
|
483
|
-
) -> torch.
|
585
|
+
original_samples: torch.Tensor,
|
586
|
+
noise: torch.Tensor,
|
587
|
+
timesteps: torch.Tensor,
|
588
|
+
) -> torch.Tensor:
|
484
589
|
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
485
590
|
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
|
486
591
|
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
@@ -494,7 +599,11 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
494
599
|
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
|
495
600
|
if self.begin_index is None:
|
496
601
|
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
|
602
|
+
elif self.step_index is not None:
|
603
|
+
# add_noise is called after first denoising step (for inpainting)
|
604
|
+
step_indices = [self.step_index] * timesteps.shape[0]
|
497
605
|
else:
|
606
|
+
# add noise is called before first denoising step to create initial latent(img2img)
|
498
607
|
step_indices = [self.begin_index] * timesteps.shape[0]
|
499
608
|
|
500
609
|
sigma = sigmas[step_indices].flatten()
|
@@ -13,13 +13,38 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
|
15
15
|
import math
|
16
|
+
from dataclasses import dataclass
|
16
17
|
from typing import List, Optional, Tuple, Union
|
17
18
|
|
18
19
|
import numpy as np
|
19
20
|
import torch
|
20
21
|
|
21
22
|
from ..configuration_utils import ConfigMixin, register_to_config
|
22
|
-
from
|
23
|
+
from ..utils import BaseOutput, is_scipy_available
|
24
|
+
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
|
25
|
+
|
26
|
+
|
27
|
+
if is_scipy_available():
|
28
|
+
import scipy.stats
|
29
|
+
|
30
|
+
|
31
|
+
@dataclass
|
32
|
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->KDPM2Discrete
|
33
|
+
class KDPM2DiscreteSchedulerOutput(BaseOutput):
|
34
|
+
"""
|
35
|
+
Output class for the scheduler's `step` function output.
|
36
|
+
|
37
|
+
Args:
|
38
|
+
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
39
|
+
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
40
|
+
denoising loop.
|
41
|
+
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
42
|
+
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
43
|
+
`pred_original_sample` can be used to preview progress or for guidance.
|
44
|
+
"""
|
45
|
+
|
46
|
+
prev_sample: torch.Tensor
|
47
|
+
pred_original_sample: Optional[torch.Tensor] = None
|
23
48
|
|
24
49
|
|
25
50
|
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
@@ -57,7 +82,7 @@ def betas_for_alpha_bar(
|
|
57
82
|
return math.exp(t * -12.0)
|
58
83
|
|
59
84
|
else:
|
60
|
-
raise ValueError(f"Unsupported
|
85
|
+
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
|
61
86
|
|
62
87
|
betas = []
|
63
88
|
for i in range(num_diffusion_timesteps):
|
@@ -90,6 +115,11 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
90
115
|
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
|
91
116
|
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
|
92
117
|
the sigmas are determined according to a sequence of noise levels {σi}.
|
118
|
+
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
|
119
|
+
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
|
120
|
+
use_beta_sigmas (`bool`, *optional*, defaults to `False`):
|
121
|
+
Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
|
122
|
+
Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
|
93
123
|
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
94
124
|
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
95
125
|
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
@@ -113,10 +143,18 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
113
143
|
beta_schedule: str = "linear",
|
114
144
|
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
115
145
|
use_karras_sigmas: Optional[bool] = False,
|
146
|
+
use_exponential_sigmas: Optional[bool] = False,
|
147
|
+
use_beta_sigmas: Optional[bool] = False,
|
116
148
|
prediction_type: str = "epsilon",
|
117
149
|
timestep_spacing: str = "linspace",
|
118
150
|
steps_offset: int = 0,
|
119
151
|
):
|
152
|
+
if self.config.use_beta_sigmas and not is_scipy_available():
|
153
|
+
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
|
154
|
+
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
|
155
|
+
raise ValueError(
|
156
|
+
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
|
157
|
+
)
|
120
158
|
if trained_betas is not None:
|
121
159
|
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
122
160
|
elif beta_schedule == "linear":
|
@@ -128,7 +166,7 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
128
166
|
# Glide cosine schedule
|
129
167
|
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
130
168
|
else:
|
131
|
-
raise NotImplementedError(f"{beta_schedule}
|
169
|
+
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
132
170
|
|
133
171
|
self.alphas = 1.0 - self.betas
|
134
172
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
@@ -151,7 +189,7 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
151
189
|
@property
|
152
190
|
def step_index(self):
|
153
191
|
"""
|
154
|
-
The index counter for current timestep. It will
|
192
|
+
The index counter for current timestep. It will increase 1 after each scheduler step.
|
155
193
|
"""
|
156
194
|
return self._step_index
|
157
195
|
|
@@ -175,21 +213,21 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
175
213
|
|
176
214
|
def scale_model_input(
|
177
215
|
self,
|
178
|
-
sample: torch.
|
179
|
-
timestep: Union[float, torch.
|
180
|
-
) -> torch.
|
216
|
+
sample: torch.Tensor,
|
217
|
+
timestep: Union[float, torch.Tensor],
|
218
|
+
) -> torch.Tensor:
|
181
219
|
"""
|
182
220
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
183
221
|
current timestep.
|
184
222
|
|
185
223
|
Args:
|
186
|
-
sample (`torch.
|
224
|
+
sample (`torch.Tensor`):
|
187
225
|
The input sample.
|
188
226
|
timestep (`int`, *optional*):
|
189
227
|
The current timestep in the diffusion chain.
|
190
228
|
|
191
229
|
Returns:
|
192
|
-
`torch.
|
230
|
+
`torch.Tensor`:
|
193
231
|
A scaled input sample.
|
194
232
|
"""
|
195
233
|
if self.step_index is None:
|
@@ -249,6 +287,12 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
249
287
|
if self.config.use_karras_sigmas:
|
250
288
|
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
251
289
|
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
|
290
|
+
elif self.config.use_exponential_sigmas:
|
291
|
+
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
292
|
+
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
293
|
+
elif self.config.use_beta_sigmas:
|
294
|
+
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
295
|
+
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
252
296
|
|
253
297
|
self.log_sigmas = torch.from_numpy(log_sigmas).to(device=device)
|
254
298
|
sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
|
@@ -334,7 +378,7 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
334
378
|
return t
|
335
379
|
|
336
380
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
|
337
|
-
def _convert_to_karras(self, in_sigmas: torch.
|
381
|
+
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
|
338
382
|
"""Constructs the noise schedule of Karras et al. (2022)."""
|
339
383
|
|
340
384
|
# Hack to make sure that other schedulers which copy this function don't break
|
@@ -359,31 +403,86 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
359
403
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
360
404
|
return sigmas
|
361
405
|
|
406
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
|
407
|
+
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
|
408
|
+
"""Constructs an exponential noise schedule."""
|
409
|
+
|
410
|
+
# Hack to make sure that other schedulers which copy this function don't break
|
411
|
+
# TODO: Add this logic to the other schedulers
|
412
|
+
if hasattr(self.config, "sigma_min"):
|
413
|
+
sigma_min = self.config.sigma_min
|
414
|
+
else:
|
415
|
+
sigma_min = None
|
416
|
+
|
417
|
+
if hasattr(self.config, "sigma_max"):
|
418
|
+
sigma_max = self.config.sigma_max
|
419
|
+
else:
|
420
|
+
sigma_max = None
|
421
|
+
|
422
|
+
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
423
|
+
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
424
|
+
|
425
|
+
sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
|
426
|
+
return sigmas
|
427
|
+
|
428
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
|
429
|
+
def _convert_to_beta(
|
430
|
+
self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
|
431
|
+
) -> torch.Tensor:
|
432
|
+
"""From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""
|
433
|
+
|
434
|
+
# Hack to make sure that other schedulers which copy this function don't break
|
435
|
+
# TODO: Add this logic to the other schedulers
|
436
|
+
if hasattr(self.config, "sigma_min"):
|
437
|
+
sigma_min = self.config.sigma_min
|
438
|
+
else:
|
439
|
+
sigma_min = None
|
440
|
+
|
441
|
+
if hasattr(self.config, "sigma_max"):
|
442
|
+
sigma_max = self.config.sigma_max
|
443
|
+
else:
|
444
|
+
sigma_max = None
|
445
|
+
|
446
|
+
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
447
|
+
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
448
|
+
|
449
|
+
sigmas = np.array(
|
450
|
+
[
|
451
|
+
sigma_min + (ppf * (sigma_max - sigma_min))
|
452
|
+
for ppf in [
|
453
|
+
scipy.stats.beta.ppf(timestep, alpha, beta)
|
454
|
+
for timestep in 1 - np.linspace(0, 1, num_inference_steps)
|
455
|
+
]
|
456
|
+
]
|
457
|
+
)
|
458
|
+
return sigmas
|
459
|
+
|
362
460
|
def step(
|
363
461
|
self,
|
364
|
-
model_output: Union[torch.
|
365
|
-
timestep: Union[float, torch.
|
366
|
-
sample: Union[torch.
|
462
|
+
model_output: Union[torch.Tensor, np.ndarray],
|
463
|
+
timestep: Union[float, torch.Tensor],
|
464
|
+
sample: Union[torch.Tensor, np.ndarray],
|
367
465
|
return_dict: bool = True,
|
368
|
-
) -> Union[
|
466
|
+
) -> Union[KDPM2DiscreteSchedulerOutput, Tuple]:
|
369
467
|
"""
|
370
468
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
371
469
|
process from the learned model outputs (most often the predicted noise).
|
372
470
|
|
373
471
|
Args:
|
374
|
-
model_output (`torch.
|
472
|
+
model_output (`torch.Tensor`):
|
375
473
|
The direct output from learned diffusion model.
|
376
474
|
timestep (`float`):
|
377
475
|
The current discrete timestep in the diffusion chain.
|
378
|
-
sample (`torch.
|
476
|
+
sample (`torch.Tensor`):
|
379
477
|
A current instance of a sample created by the diffusion process.
|
380
478
|
return_dict (`bool`):
|
381
|
-
Whether or not to return a [`~schedulers.
|
479
|
+
Whether or not to return a [`~schedulers.scheduling_k_dpm_2_discrete.KDPM2DiscreteSchedulerOutput`] or
|
480
|
+
tuple.
|
382
481
|
|
383
482
|
Returns:
|
384
|
-
[`~schedulers.
|
385
|
-
If return_dict is `True`, [`~schedulers.
|
386
|
-
tuple is returned where the first element is the sample tensor.
|
483
|
+
[`~schedulers.scheduling_k_dpm_2_discrete.KDPM2DiscreteSchedulerOutput`] or `tuple`:
|
484
|
+
If return_dict is `True`, [`~schedulers.scheduling_k_dpm_2_discrete.KDPM2DiscreteSchedulerOutput`] is
|
485
|
+
returned, otherwise a tuple is returned where the first element is the sample tensor.
|
387
486
|
"""
|
388
487
|
if self.step_index is None:
|
389
488
|
self._init_step_index(timestep)
|
@@ -445,17 +544,20 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
445
544
|
prev_sample = sample + derivative * dt
|
446
545
|
|
447
546
|
if not return_dict:
|
448
|
-
return (
|
547
|
+
return (
|
548
|
+
prev_sample,
|
549
|
+
pred_original_sample,
|
550
|
+
)
|
449
551
|
|
450
|
-
return
|
552
|
+
return KDPM2DiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
|
451
553
|
|
452
554
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
|
453
555
|
def add_noise(
|
454
556
|
self,
|
455
|
-
original_samples: torch.
|
456
|
-
noise: torch.
|
457
|
-
timesteps: torch.
|
458
|
-
) -> torch.
|
557
|
+
original_samples: torch.Tensor,
|
558
|
+
noise: torch.Tensor,
|
559
|
+
timesteps: torch.Tensor,
|
560
|
+
) -> torch.Tensor:
|
459
561
|
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
460
562
|
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
|
461
563
|
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
@@ -469,7 +571,11 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
469
571
|
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
|
470
572
|
if self.begin_index is None:
|
471
573
|
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
|
574
|
+
elif self.step_index is not None:
|
575
|
+
# add_noise is called after first denoising step (for inpainting)
|
576
|
+
step_indices = [self.step_index] * timesteps.shape[0]
|
472
577
|
else:
|
578
|
+
# add noise is called before first denoising step to create initial latent(img2img)
|
473
579
|
step_indices = [self.begin_index] * timesteps.shape[0]
|
474
580
|
|
475
581
|
sigma = sigmas[step_indices].flatten()
|
@@ -176,10 +176,10 @@ class FlaxKarrasVeScheduler(FlaxSchedulerMixin, ConfigMixin):
|
|
176
176
|
|
177
177
|
Args:
|
178
178
|
state (`KarrasVeSchedulerState`): the `FlaxKarrasVeScheduler` state data class.
|
179
|
-
model_output (`torch.
|
179
|
+
model_output (`torch.Tensor` or `np.ndarray`): direct output from learned diffusion model.
|
180
180
|
sigma_hat (`float`): TODO
|
181
181
|
sigma_prev (`float`): TODO
|
182
|
-
sample_hat (`torch.
|
182
|
+
sample_hat (`torch.Tensor` or `np.ndarray`): TODO
|
183
183
|
return_dict (`bool`): option for returning tuple rather than FlaxKarrasVeOutput class
|
184
184
|
|
185
185
|
Returns:
|
@@ -213,12 +213,12 @@ class FlaxKarrasVeScheduler(FlaxSchedulerMixin, ConfigMixin):
|
|
213
213
|
|
214
214
|
Args:
|
215
215
|
state (`KarrasVeSchedulerState`): the `FlaxKarrasVeScheduler` state data class.
|
216
|
-
model_output (`torch.
|
216
|
+
model_output (`torch.Tensor` or `np.ndarray`): direct output from learned diffusion model.
|
217
217
|
sigma_hat (`float`): TODO
|
218
218
|
sigma_prev (`float`): TODO
|
219
|
-
sample_hat (`torch.
|
220
|
-
sample_prev (`torch.
|
221
|
-
derivative (`torch.
|
219
|
+
sample_hat (`torch.Tensor` or `np.ndarray`): TODO
|
220
|
+
sample_prev (`torch.Tensor` or `np.ndarray`): TODO
|
221
|
+
derivative (`torch.Tensor` or `np.ndarray`): TODO
|
222
222
|
return_dict (`bool`): option for returning tuple rather than FlaxKarrasVeOutput class
|
223
223
|
|
224
224
|
Returns:
|