diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1070 @@
1
+ # Copyright 2024 Stability AI, Kwai-Kolors Team and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import inspect
15
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
16
+
17
+ import torch
18
+ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
19
+
20
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
21
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
22
+ from ...loaders import IPAdapterMixin, StableDiffusionXLLoraLoaderMixin
23
+ from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
24
+ from ...models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor
25
+ from ...schedulers import KarrasDiffusionSchedulers
26
+ from ...utils import is_torch_xla_available, logging, replace_example_docstring
27
+ from ...utils.torch_utils import randn_tensor
28
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
29
+ from .pipeline_output import KolorsPipelineOutput
30
+ from .text_encoder import ChatGLMModel
31
+ from .tokenizer import ChatGLMTokenizer
32
+
33
+
34
+ if is_torch_xla_available():
35
+ import torch_xla.core.xla_model as xm
36
+
37
+ XLA_AVAILABLE = True
38
+ else:
39
+ XLA_AVAILABLE = False
40
+
41
+
42
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
43
+
44
+
45
+ EXAMPLE_DOC_STRING = """
46
+ Examples:
47
+ ```py
48
+ >>> import torch
49
+ >>> from diffusers import KolorsPipeline
50
+
51
+ >>> pipe = KolorsPipeline.from_pretrained(
52
+ ... "Kwai-Kolors/Kolors-diffusers", variant="fp16", torch_dtype=torch.float16
53
+ ... )
54
+ >>> pipe = pipe.to("cuda")
55
+
56
+ >>> prompt = (
57
+ ... "A photo of a ladybug, macro, zoom, high quality, film, holding a wooden sign with the text 'KOLORS'"
58
+ ... )
59
+ >>> image = pipe(prompt).images[0]
60
+ ```
61
+ """
62
+
63
+
64
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
65
+ def retrieve_timesteps(
66
+ scheduler,
67
+ num_inference_steps: Optional[int] = None,
68
+ device: Optional[Union[str, torch.device]] = None,
69
+ timesteps: Optional[List[int]] = None,
70
+ sigmas: Optional[List[float]] = None,
71
+ **kwargs,
72
+ ):
73
+ r"""
74
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
75
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
76
+
77
+ Args:
78
+ scheduler (`SchedulerMixin`):
79
+ The scheduler to get timesteps from.
80
+ num_inference_steps (`int`):
81
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
82
+ must be `None`.
83
+ device (`str` or `torch.device`, *optional*):
84
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
85
+ timesteps (`List[int]`, *optional*):
86
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
87
+ `num_inference_steps` and `sigmas` must be `None`.
88
+ sigmas (`List[float]`, *optional*):
89
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
90
+ `num_inference_steps` and `timesteps` must be `None`.
91
+
92
+ Returns:
93
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
94
+ second element is the number of inference steps.
95
+ """
96
+ if timesteps is not None and sigmas is not None:
97
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
98
+ if timesteps is not None:
99
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
100
+ if not accepts_timesteps:
101
+ raise ValueError(
102
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
103
+ f" timestep schedules. Please check whether you are using the correct scheduler."
104
+ )
105
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
106
+ timesteps = scheduler.timesteps
107
+ num_inference_steps = len(timesteps)
108
+ elif sigmas is not None:
109
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
110
+ if not accept_sigmas:
111
+ raise ValueError(
112
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
113
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
114
+ )
115
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
116
+ timesteps = scheduler.timesteps
117
+ num_inference_steps = len(timesteps)
118
+ else:
119
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
120
+ timesteps = scheduler.timesteps
121
+ return timesteps, num_inference_steps
122
+
123
+
124
+ class KolorsPipeline(DiffusionPipeline, StableDiffusionMixin, StableDiffusionXLLoraLoaderMixin, IPAdapterMixin):
125
+ r"""
126
+ Pipeline for text-to-image generation using Kolors.
127
+
128
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
129
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
130
+
131
+ The pipeline also inherits the following loading methods:
132
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
133
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
134
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
135
+
136
+ Args:
137
+ vae ([`AutoencoderKL`]):
138
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
139
+ text_encoder ([`ChatGLMModel`]):
140
+ Frozen text-encoder. Kolors uses [ChatGLM3-6B](https://huggingface.co/THUDM/chatglm3-6b).
141
+ tokenizer (`ChatGLMTokenizer`):
142
+ Tokenizer of class
143
+ [ChatGLMTokenizer](https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py).
144
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
145
+ scheduler ([`SchedulerMixin`]):
146
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
147
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
148
+ force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"False"`):
149
+ Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
150
+ `Kwai-Kolors/Kolors-diffusers`.
151
+ """
152
+
153
+ model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
154
+ _optional_components = [
155
+ "image_encoder",
156
+ "feature_extractor",
157
+ ]
158
+ _callback_tensor_inputs = [
159
+ "latents",
160
+ "prompt_embeds",
161
+ "negative_prompt_embeds",
162
+ "add_text_embeds",
163
+ "add_time_ids",
164
+ "negative_pooled_prompt_embeds",
165
+ "negative_add_time_ids",
166
+ ]
167
+
168
+ def __init__(
169
+ self,
170
+ vae: AutoencoderKL,
171
+ text_encoder: ChatGLMModel,
172
+ tokenizer: ChatGLMTokenizer,
173
+ unet: UNet2DConditionModel,
174
+ scheduler: KarrasDiffusionSchedulers,
175
+ image_encoder: CLIPVisionModelWithProjection = None,
176
+ feature_extractor: CLIPImageProcessor = None,
177
+ force_zeros_for_empty_prompt: bool = False,
178
+ ):
179
+ super().__init__()
180
+
181
+ self.register_modules(
182
+ vae=vae,
183
+ text_encoder=text_encoder,
184
+ tokenizer=tokenizer,
185
+ unet=unet,
186
+ scheduler=scheduler,
187
+ image_encoder=image_encoder,
188
+ feature_extractor=feature_extractor,
189
+ )
190
+ self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
191
+ self.vae_scale_factor = (
192
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
193
+ )
194
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
195
+
196
+ self.default_sample_size = self.unet.config.sample_size
197
+
198
+ def encode_prompt(
199
+ self,
200
+ prompt,
201
+ device: Optional[torch.device] = None,
202
+ num_images_per_prompt: int = 1,
203
+ do_classifier_free_guidance: bool = True,
204
+ negative_prompt=None,
205
+ prompt_embeds: Optional[torch.FloatTensor] = None,
206
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
207
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
208
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
209
+ max_sequence_length: int = 256,
210
+ ):
211
+ r"""
212
+ Encodes the prompt into text encoder hidden states.
213
+
214
+ Args:
215
+ prompt (`str` or `List[str]`, *optional*):
216
+ prompt to be encoded
217
+ device: (`torch.device`):
218
+ torch device
219
+ num_images_per_prompt (`int`):
220
+ number of images that should be generated per prompt
221
+ do_classifier_free_guidance (`bool`):
222
+ whether to use classifier free guidance or not
223
+ negative_prompt (`str` or `List[str]`, *optional*):
224
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
225
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
226
+ less than `1`).
227
+ prompt_embeds (`torch.FloatTensor`, *optional*):
228
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
229
+ provided, text embeddings will be generated from `prompt` input argument.
230
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
231
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
232
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
233
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
234
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
235
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
236
+ argument.
237
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
238
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
239
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
240
+ input argument.
241
+ max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
242
+ """
243
+ # from IPython import embed; embed(); exit()
244
+ device = device or self._execution_device
245
+
246
+ if prompt is not None and isinstance(prompt, str):
247
+ batch_size = 1
248
+ elif prompt is not None and isinstance(prompt, list):
249
+ batch_size = len(prompt)
250
+ else:
251
+ batch_size = prompt_embeds.shape[0]
252
+
253
+ # Define tokenizers and text encoders
254
+ tokenizers = [self.tokenizer]
255
+ text_encoders = [self.text_encoder]
256
+
257
+ if prompt_embeds is None:
258
+ prompt_embeds_list = []
259
+ for tokenizer, text_encoder in zip(tokenizers, text_encoders):
260
+ text_inputs = tokenizer(
261
+ prompt,
262
+ padding="max_length",
263
+ max_length=max_sequence_length,
264
+ truncation=True,
265
+ return_tensors="pt",
266
+ ).to(device)
267
+ output = text_encoder(
268
+ input_ids=text_inputs["input_ids"],
269
+ attention_mask=text_inputs["attention_mask"],
270
+ position_ids=text_inputs["position_ids"],
271
+ output_hidden_states=True,
272
+ )
273
+
274
+ # [max_sequence_length, batch, hidden_size] -> [batch, max_sequence_length, hidden_size]
275
+ # clone to have a contiguous tensor
276
+ prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
277
+ # [max_sequence_length, batch, hidden_size] -> [batch, hidden_size]
278
+ pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone()
279
+ bs_embed, seq_len, _ = prompt_embeds.shape
280
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
281
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
282
+
283
+ prompt_embeds_list.append(prompt_embeds)
284
+
285
+ prompt_embeds = prompt_embeds_list[0]
286
+
287
+ # get unconditional embeddings for classifier free guidance
288
+ zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
289
+
290
+ if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
291
+ negative_prompt_embeds = torch.zeros_like(prompt_embeds)
292
+ elif do_classifier_free_guidance and negative_prompt_embeds is None:
293
+ uncond_tokens: List[str]
294
+ if negative_prompt is None:
295
+ uncond_tokens = [""] * batch_size
296
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
297
+ raise TypeError(
298
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
299
+ f" {type(prompt)}."
300
+ )
301
+ elif isinstance(negative_prompt, str):
302
+ uncond_tokens = [negative_prompt]
303
+ elif batch_size != len(negative_prompt):
304
+ raise ValueError(
305
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
306
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
307
+ " the batch size of `prompt`."
308
+ )
309
+ else:
310
+ uncond_tokens = negative_prompt
311
+
312
+ negative_prompt_embeds_list = []
313
+
314
+ for tokenizer, text_encoder in zip(tokenizers, text_encoders):
315
+ uncond_input = tokenizer(
316
+ uncond_tokens,
317
+ padding="max_length",
318
+ max_length=max_sequence_length,
319
+ truncation=True,
320
+ return_tensors="pt",
321
+ ).to(device)
322
+ output = text_encoder(
323
+ input_ids=uncond_input["input_ids"],
324
+ attention_mask=uncond_input["attention_mask"],
325
+ position_ids=uncond_input["position_ids"],
326
+ output_hidden_states=True,
327
+ )
328
+
329
+ # [max_sequence_length, batch, hidden_size] -> [batch, max_sequence_length, hidden_size]
330
+ # clone to have a contiguous tensor
331
+ negative_prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
332
+ # [max_sequence_length, batch, hidden_size] -> [batch, hidden_size]
333
+ negative_pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone()
334
+
335
+ if do_classifier_free_guidance:
336
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
337
+ seq_len = negative_prompt_embeds.shape[1]
338
+
339
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device)
340
+
341
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
342
+ negative_prompt_embeds = negative_prompt_embeds.view(
343
+ batch_size * num_images_per_prompt, seq_len, -1
344
+ )
345
+
346
+ negative_prompt_embeds_list.append(negative_prompt_embeds)
347
+
348
+ negative_prompt_embeds = negative_prompt_embeds_list[0]
349
+
350
+ bs_embed = pooled_prompt_embeds.shape[0]
351
+ pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
352
+ bs_embed * num_images_per_prompt, -1
353
+ )
354
+
355
+ if do_classifier_free_guidance:
356
+ negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
357
+ bs_embed * num_images_per_prompt, -1
358
+ )
359
+
360
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
361
+
362
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
363
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
364
+ dtype = next(self.image_encoder.parameters()).dtype
365
+
366
+ if not isinstance(image, torch.Tensor):
367
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
368
+
369
+ image = image.to(device=device, dtype=dtype)
370
+ if output_hidden_states:
371
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
372
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
373
+ uncond_image_enc_hidden_states = self.image_encoder(
374
+ torch.zeros_like(image), output_hidden_states=True
375
+ ).hidden_states[-2]
376
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
377
+ num_images_per_prompt, dim=0
378
+ )
379
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
380
+ else:
381
+ image_embeds = self.image_encoder(image).image_embeds
382
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
383
+ uncond_image_embeds = torch.zeros_like(image_embeds)
384
+
385
+ return image_embeds, uncond_image_embeds
386
+
387
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
388
+ def prepare_ip_adapter_image_embeds(
389
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
390
+ ):
391
+ image_embeds = []
392
+ if do_classifier_free_guidance:
393
+ negative_image_embeds = []
394
+ if ip_adapter_image_embeds is None:
395
+ if not isinstance(ip_adapter_image, list):
396
+ ip_adapter_image = [ip_adapter_image]
397
+
398
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
399
+ raise ValueError(
400
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
401
+ )
402
+
403
+ for single_ip_adapter_image, image_proj_layer in zip(
404
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
405
+ ):
406
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
407
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
408
+ single_ip_adapter_image, device, 1, output_hidden_state
409
+ )
410
+
411
+ image_embeds.append(single_image_embeds[None, :])
412
+ if do_classifier_free_guidance:
413
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
414
+ else:
415
+ for single_image_embeds in ip_adapter_image_embeds:
416
+ if do_classifier_free_guidance:
417
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
418
+ negative_image_embeds.append(single_negative_image_embeds)
419
+ image_embeds.append(single_image_embeds)
420
+
421
+ ip_adapter_image_embeds = []
422
+ for i, single_image_embeds in enumerate(image_embeds):
423
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
424
+ if do_classifier_free_guidance:
425
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
426
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
427
+
428
+ single_image_embeds = single_image_embeds.to(device=device)
429
+ ip_adapter_image_embeds.append(single_image_embeds)
430
+
431
+ return ip_adapter_image_embeds
432
+
433
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
434
+ def prepare_extra_step_kwargs(self, generator, eta):
435
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
436
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
437
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
438
+ # and should be between [0, 1]
439
+
440
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
441
+ extra_step_kwargs = {}
442
+ if accepts_eta:
443
+ extra_step_kwargs["eta"] = eta
444
+
445
+ # check if the scheduler accepts generator
446
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
447
+ if accepts_generator:
448
+ extra_step_kwargs["generator"] = generator
449
+ return extra_step_kwargs
450
+
451
+ def check_inputs(
452
+ self,
453
+ prompt,
454
+ num_inference_steps,
455
+ height,
456
+ width,
457
+ negative_prompt=None,
458
+ prompt_embeds=None,
459
+ pooled_prompt_embeds=None,
460
+ negative_prompt_embeds=None,
461
+ negative_pooled_prompt_embeds=None,
462
+ ip_adapter_image=None,
463
+ ip_adapter_image_embeds=None,
464
+ callback_on_step_end_tensor_inputs=None,
465
+ max_sequence_length=None,
466
+ ):
467
+ if not isinstance(num_inference_steps, int) or num_inference_steps <= 0:
468
+ raise ValueError(
469
+ f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type"
470
+ f" {type(num_inference_steps)}."
471
+ )
472
+
473
+ if height % 8 != 0 or width % 8 != 0:
474
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
475
+
476
+ if callback_on_step_end_tensor_inputs is not None and not all(
477
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
478
+ ):
479
+ raise ValueError(
480
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
481
+ )
482
+
483
+ if prompt is not None and prompt_embeds is not None:
484
+ raise ValueError(
485
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
486
+ " only forward one of the two."
487
+ )
488
+ elif prompt is None and prompt_embeds is None:
489
+ raise ValueError(
490
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
491
+ )
492
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
493
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
494
+
495
+ if negative_prompt is not None and negative_prompt_embeds is not None:
496
+ raise ValueError(
497
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
498
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
499
+ )
500
+
501
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
502
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
503
+ raise ValueError(
504
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
505
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
506
+ f" {negative_prompt_embeds.shape}."
507
+ )
508
+
509
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
510
+ raise ValueError(
511
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
512
+ )
513
+
514
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
515
+ raise ValueError(
516
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
517
+ )
518
+
519
+ if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
520
+ raise ValueError(
521
+ "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
522
+ )
523
+
524
+ if ip_adapter_image_embeds is not None:
525
+ if not isinstance(ip_adapter_image_embeds, list):
526
+ raise ValueError(
527
+ f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
528
+ )
529
+ elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
530
+ raise ValueError(
531
+ f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
532
+ )
533
+
534
+ if max_sequence_length is not None and max_sequence_length > 256:
535
+ raise ValueError(f"`max_sequence_length` cannot be greater than 256 but is {max_sequence_length}")
536
+
537
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
538
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
539
+ shape = (
540
+ batch_size,
541
+ num_channels_latents,
542
+ int(height) // self.vae_scale_factor,
543
+ int(width) // self.vae_scale_factor,
544
+ )
545
+ if isinstance(generator, list) and len(generator) != batch_size:
546
+ raise ValueError(
547
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
548
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
549
+ )
550
+
551
+ if latents is None:
552
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
553
+ else:
554
+ latents = latents.to(device)
555
+
556
+ # scale the initial noise by the standard deviation required by the scheduler
557
+ latents = latents * self.scheduler.init_noise_sigma
558
+ return latents
559
+
560
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids
561
+ def _get_add_time_ids(
562
+ self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
563
+ ):
564
+ add_time_ids = list(original_size + crops_coords_top_left + target_size)
565
+
566
+ passed_add_embed_dim = (
567
+ self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
568
+ )
569
+ expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
570
+
571
+ if expected_add_embed_dim != passed_add_embed_dim:
572
+ raise ValueError(
573
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
574
+ )
575
+
576
+ add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
577
+ return add_time_ids
578
+
579
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.upcast_vae
580
+ def upcast_vae(self):
581
+ dtype = self.vae.dtype
582
+ self.vae.to(dtype=torch.float32)
583
+ use_torch_2_0_or_xformers = isinstance(
584
+ self.vae.decoder.mid_block.attentions[0].processor,
585
+ (
586
+ AttnProcessor2_0,
587
+ XFormersAttnProcessor,
588
+ FusedAttnProcessor2_0,
589
+ ),
590
+ )
591
+ # if xformers or torch_2_0 is used attention block does not need
592
+ # to be in float32 which can save lots of memory
593
+ if use_torch_2_0_or_xformers:
594
+ self.vae.post_quant_conv.to(dtype)
595
+ self.vae.decoder.conv_in.to(dtype)
596
+ self.vae.decoder.mid_block.to(dtype)
597
+
598
+ # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
599
+ def get_guidance_scale_embedding(
600
+ self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
601
+ ) -> torch.Tensor:
602
+ """
603
+ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
604
+
605
+ Args:
606
+ w (`torch.Tensor`):
607
+ Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
608
+ embedding_dim (`int`, *optional*, defaults to 512):
609
+ Dimension of the embeddings to generate.
610
+ dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
611
+ Data type of the generated embeddings.
612
+
613
+ Returns:
614
+ `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
615
+ """
616
+ assert len(w.shape) == 1
617
+ w = w * 1000.0
618
+
619
+ half_dim = embedding_dim // 2
620
+ emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
621
+ emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
622
+ emb = w.to(dtype)[:, None] * emb[None, :]
623
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
624
+ if embedding_dim % 2 == 1: # zero pad
625
+ emb = torch.nn.functional.pad(emb, (0, 1))
626
+ assert emb.shape == (w.shape[0], embedding_dim)
627
+ return emb
628
+
629
+ @property
630
+ def guidance_scale(self):
631
+ return self._guidance_scale
632
+
633
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
634
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
635
+ # corresponds to doing no classifier free guidance.
636
+ @property
637
+ def do_classifier_free_guidance(self):
638
+ return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
639
+
640
+ @property
641
+ def cross_attention_kwargs(self):
642
+ return self._cross_attention_kwargs
643
+
644
+ @property
645
+ def denoising_end(self):
646
+ return self._denoising_end
647
+
648
+ @property
649
+ def num_timesteps(self):
650
+ return self._num_timesteps
651
+
652
+ @property
653
+ def interrupt(self):
654
+ return self._interrupt
655
+
656
+ @torch.no_grad()
657
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
658
+ def __call__(
659
+ self,
660
+ prompt: Union[str, List[str]] = None,
661
+ height: Optional[int] = None,
662
+ width: Optional[int] = None,
663
+ num_inference_steps: int = 50,
664
+ timesteps: List[int] = None,
665
+ sigmas: List[float] = None,
666
+ denoising_end: Optional[float] = None,
667
+ guidance_scale: float = 5.0,
668
+ negative_prompt: Optional[Union[str, List[str]]] = None,
669
+ num_images_per_prompt: Optional[int] = 1,
670
+ eta: float = 0.0,
671
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
672
+ latents: Optional[torch.Tensor] = None,
673
+ prompt_embeds: Optional[torch.Tensor] = None,
674
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
675
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
676
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
677
+ ip_adapter_image: Optional[PipelineImageInput] = None,
678
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
679
+ output_type: Optional[str] = "pil",
680
+ return_dict: bool = True,
681
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
682
+ original_size: Optional[Tuple[int, int]] = None,
683
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
684
+ target_size: Optional[Tuple[int, int]] = None,
685
+ negative_original_size: Optional[Tuple[int, int]] = None,
686
+ negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
687
+ negative_target_size: Optional[Tuple[int, int]] = None,
688
+ callback_on_step_end: Optional[
689
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
690
+ ] = None,
691
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
692
+ max_sequence_length: int = 256,
693
+ ):
694
+ r"""
695
+ Function invoked when calling the pipeline for generation.
696
+
697
+ Args:
698
+ prompt (`str` or `List[str]`, *optional*):
699
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
700
+ instead.
701
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
702
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
703
+ Anything below 512 pixels won't work well for
704
+ [Kwai-Kolors/Kolors-diffusers](https://huggingface.co/Kwai-Kolors/Kolors-diffusers) and checkpoints
705
+ that are not specifically fine-tuned on low resolutions.
706
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
707
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
708
+ Anything below 512 pixels won't work well for
709
+ [Kwai-Kolors/Kolors-diffusers](https://huggingface.co/Kwai-Kolors/Kolors-diffusers) and checkpoints
710
+ that are not specifically fine-tuned on low resolutions.
711
+ num_inference_steps (`int`, *optional*, defaults to 50):
712
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
713
+ expense of slower inference.
714
+ timesteps (`List[int]`, *optional*):
715
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
716
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
717
+ passed will be used. Must be in descending order.
718
+ sigmas (`List[float]`, *optional*):
719
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
720
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
721
+ will be used.
722
+ denoising_end (`float`, *optional*):
723
+ When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
724
+ completed before it is intentionally prematurely terminated. As a result, the returned sample will
725
+ still retain a substantial amount of noise as determined by the discrete timesteps selected by the
726
+ scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
727
+ "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
728
+ Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
729
+ guidance_scale (`float`, *optional*, defaults to 5.0):
730
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
731
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
732
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
733
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
734
+ usually at the expense of lower image quality.
735
+ negative_prompt (`str` or `List[str]`, *optional*):
736
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
737
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
738
+ less than `1`).
739
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
740
+ The number of images to generate per prompt.
741
+ eta (`float`, *optional*, defaults to 0.0):
742
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
743
+ [`schedulers.DDIMScheduler`], will be ignored for others.
744
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
745
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
746
+ to make generation deterministic.
747
+ latents (`torch.Tensor`, *optional*):
748
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
749
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
750
+ tensor will ge generated by sampling using the supplied random `generator`.
751
+ prompt_embeds (`torch.Tensor`, *optional*):
752
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
753
+ provided, text embeddings will be generated from `prompt` input argument.
754
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
755
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
756
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
757
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
758
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
759
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
760
+ argument.
761
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
762
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
763
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
764
+ input argument.
765
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
766
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
767
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
768
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
769
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
770
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
771
+ output_type (`str`, *optional*, defaults to `"pil"`):
772
+ The output format of the generate image. Choose between
773
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
774
+ return_dict (`bool`, *optional*, defaults to `True`):
775
+ Whether or not to return a [`~pipelines.kolors.KolorsPipelineOutput`] instead of a plain tuple.
776
+ cross_attention_kwargs (`dict`, *optional*):
777
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
778
+ `self.processor` in
779
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
780
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
781
+ If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
782
+ `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
783
+ explained in section 2.2 of
784
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
785
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
786
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
787
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
788
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
789
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
790
+ target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
791
+ For most cases, `target_size` should be set to the desired height and width of the generated image. If
792
+ not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
793
+ section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
794
+ negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
795
+ To negatively condition the generation process based on a specific image resolution. Part of SDXL's
796
+ micro-conditioning as explained in section 2.2 of
797
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
798
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
799
+ negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
800
+ To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
801
+ micro-conditioning as explained in section 2.2 of
802
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
803
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
804
+ negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
805
+ To negatively condition the generation process based on a target image resolution. It should be as same
806
+ as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
807
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
808
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
809
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
810
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
811
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
812
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
813
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
814
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
815
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
816
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
817
+ `._callback_tensor_inputs` attribute of your pipeline class.
818
+ max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
819
+
820
+ Examples:
821
+
822
+ Returns:
823
+ [`~pipelines.kolors.KolorsPipelineOutput`] or `tuple`: [`~pipelines.kolors.KolorsPipelineOutput`] if
824
+ `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the
825
+ generated images.
826
+ """
827
+
828
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
829
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
830
+
831
+ # 0. Default height and width to unet
832
+ height = height or self.default_sample_size * self.vae_scale_factor
833
+ width = width or self.default_sample_size * self.vae_scale_factor
834
+
835
+ original_size = original_size or (height, width)
836
+ target_size = target_size or (height, width)
837
+
838
+ # 1. Check inputs. Raise error if not correct
839
+ self.check_inputs(
840
+ prompt,
841
+ num_inference_steps,
842
+ height,
843
+ width,
844
+ negative_prompt,
845
+ prompt_embeds,
846
+ pooled_prompt_embeds,
847
+ negative_prompt_embeds,
848
+ negative_pooled_prompt_embeds,
849
+ ip_adapter_image,
850
+ ip_adapter_image_embeds,
851
+ callback_on_step_end_tensor_inputs,
852
+ max_sequence_length=max_sequence_length,
853
+ )
854
+
855
+ self._guidance_scale = guidance_scale
856
+ self._cross_attention_kwargs = cross_attention_kwargs
857
+ self._denoising_end = denoising_end
858
+ self._interrupt = False
859
+
860
+ # 2. Define call parameters
861
+ if prompt is not None and isinstance(prompt, str):
862
+ batch_size = 1
863
+ elif prompt is not None and isinstance(prompt, list):
864
+ batch_size = len(prompt)
865
+ else:
866
+ batch_size = prompt_embeds.shape[0]
867
+
868
+ device = self._execution_device
869
+
870
+ # 3. Encode input prompt
871
+ (
872
+ prompt_embeds,
873
+ negative_prompt_embeds,
874
+ pooled_prompt_embeds,
875
+ negative_pooled_prompt_embeds,
876
+ ) = self.encode_prompt(
877
+ prompt=prompt,
878
+ device=device,
879
+ num_images_per_prompt=num_images_per_prompt,
880
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
881
+ negative_prompt=negative_prompt,
882
+ prompt_embeds=prompt_embeds,
883
+ pooled_prompt_embeds=pooled_prompt_embeds,
884
+ negative_prompt_embeds=negative_prompt_embeds,
885
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
886
+ )
887
+
888
+ # 4. Prepare timesteps
889
+ timesteps, num_inference_steps = retrieve_timesteps(
890
+ self.scheduler, num_inference_steps, device, timesteps, sigmas
891
+ )
892
+
893
+ # 5. Prepare latent variables
894
+ num_channels_latents = self.unet.config.in_channels
895
+ latents = self.prepare_latents(
896
+ batch_size * num_images_per_prompt,
897
+ num_channels_latents,
898
+ height,
899
+ width,
900
+ prompt_embeds.dtype,
901
+ device,
902
+ generator,
903
+ latents,
904
+ )
905
+
906
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
907
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
908
+
909
+ # 7. Prepare added time ids & embeddings
910
+ add_text_embeds = pooled_prompt_embeds
911
+ text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
912
+
913
+ add_time_ids = self._get_add_time_ids(
914
+ original_size,
915
+ crops_coords_top_left,
916
+ target_size,
917
+ dtype=prompt_embeds.dtype,
918
+ text_encoder_projection_dim=text_encoder_projection_dim,
919
+ )
920
+ if negative_original_size is not None and negative_target_size is not None:
921
+ negative_add_time_ids = self._get_add_time_ids(
922
+ negative_original_size,
923
+ negative_crops_coords_top_left,
924
+ negative_target_size,
925
+ dtype=prompt_embeds.dtype,
926
+ text_encoder_projection_dim=text_encoder_projection_dim,
927
+ )
928
+ else:
929
+ negative_add_time_ids = add_time_ids
930
+
931
+ if self.do_classifier_free_guidance:
932
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
933
+ add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
934
+ add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
935
+
936
+ prompt_embeds = prompt_embeds.to(device)
937
+ add_text_embeds = add_text_embeds.to(device)
938
+ add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
939
+
940
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
941
+ image_embeds = self.prepare_ip_adapter_image_embeds(
942
+ ip_adapter_image,
943
+ ip_adapter_image_embeds,
944
+ device,
945
+ batch_size * num_images_per_prompt,
946
+ self.do_classifier_free_guidance,
947
+ )
948
+
949
+ # 8. Denoising loop
950
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
951
+
952
+ # 8.1 Apply denoising_end
953
+ if (
954
+ self.denoising_end is not None
955
+ and isinstance(self.denoising_end, float)
956
+ and self.denoising_end > 0
957
+ and self.denoising_end < 1
958
+ ):
959
+ discrete_timestep_cutoff = int(
960
+ round(
961
+ self.scheduler.config.num_train_timesteps
962
+ - (self.denoising_end * self.scheduler.config.num_train_timesteps)
963
+ )
964
+ )
965
+ num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
966
+ timesteps = timesteps[:num_inference_steps]
967
+
968
+ # 9. Optionally get Guidance Scale Embedding
969
+ timestep_cond = None
970
+ if self.unet.config.time_cond_proj_dim is not None:
971
+ guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
972
+ timestep_cond = self.get_guidance_scale_embedding(
973
+ guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
974
+ ).to(device=device, dtype=latents.dtype)
975
+
976
+ self._num_timesteps = len(timesteps)
977
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
978
+ for i, t in enumerate(timesteps):
979
+ if self.interrupt:
980
+ continue
981
+
982
+ # expand the latents if we are doing classifier free guidance
983
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
984
+
985
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
986
+
987
+ # predict the noise residual
988
+ added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
989
+
990
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
991
+ added_cond_kwargs["image_embeds"] = image_embeds
992
+
993
+ noise_pred = self.unet(
994
+ latent_model_input,
995
+ t,
996
+ encoder_hidden_states=prompt_embeds,
997
+ timestep_cond=timestep_cond,
998
+ cross_attention_kwargs=self.cross_attention_kwargs,
999
+ added_cond_kwargs=added_cond_kwargs,
1000
+ return_dict=False,
1001
+ )[0]
1002
+
1003
+ # perform guidance
1004
+ if self.do_classifier_free_guidance:
1005
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1006
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
1007
+
1008
+ # compute the previous noisy sample x_t -> x_t-1
1009
+ latents_dtype = latents.dtype
1010
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1011
+ if latents.dtype != latents_dtype:
1012
+ if torch.backends.mps.is_available():
1013
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1014
+ latents = latents.to(latents_dtype)
1015
+
1016
+ if callback_on_step_end is not None:
1017
+ callback_kwargs = {}
1018
+ for k in callback_on_step_end_tensor_inputs:
1019
+ callback_kwargs[k] = locals()[k]
1020
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1021
+
1022
+ latents = callback_outputs.pop("latents", latents)
1023
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1024
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1025
+ add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
1026
+ negative_pooled_prompt_embeds = callback_outputs.pop(
1027
+ "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
1028
+ )
1029
+ add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
1030
+ negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids)
1031
+
1032
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1033
+ progress_bar.update()
1034
+
1035
+ if XLA_AVAILABLE:
1036
+ xm.mark_step()
1037
+
1038
+ if not output_type == "latent":
1039
+ # make sure the VAE is in float32 mode, as it overflows in float16
1040
+ needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
1041
+
1042
+ if needs_upcasting:
1043
+ self.upcast_vae()
1044
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
1045
+ elif latents.dtype != self.vae.dtype:
1046
+ if torch.backends.mps.is_available():
1047
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1048
+ self.vae = self.vae.to(latents.dtype)
1049
+
1050
+ # unscale/denormalize the latents
1051
+ latents = latents / self.vae.config.scaling_factor
1052
+
1053
+ image = self.vae.decode(latents, return_dict=False)[0]
1054
+
1055
+ # cast back to fp16 if needed
1056
+ if needs_upcasting:
1057
+ self.vae.to(dtype=torch.float16)
1058
+ else:
1059
+ image = latents
1060
+
1061
+ if not output_type == "latent":
1062
+ image = self.image_processor.postprocess(image, output_type=output_type)
1063
+
1064
+ # Offload all models
1065
+ self.maybe_free_model_hooks()
1066
+
1067
+ if not return_dict:
1068
+ return (image,)
1069
+
1070
+ return KolorsPipelineOutput(images=image)