diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,890 @@
1
+ # Copyright 2024 Alpha-VLLM and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import html
16
+ import inspect
17
+ import math
18
+ import re
19
+ import urllib.parse as ul
20
+ from typing import List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ from transformers import AutoModel, AutoTokenizer
24
+
25
+ from ...image_processor import VaeImageProcessor
26
+ from ...models import AutoencoderKL
27
+ from ...models.embeddings import get_2d_rotary_pos_embed_lumina
28
+ from ...models.transformers.lumina_nextdit2d import LuminaNextDiT2DModel
29
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
30
+ from ...utils import (
31
+ BACKENDS_MAPPING,
32
+ is_bs4_available,
33
+ is_ftfy_available,
34
+ logging,
35
+ replace_example_docstring,
36
+ )
37
+ from ...utils.torch_utils import randn_tensor
38
+ from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
39
+
40
+
41
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
42
+
43
+ if is_bs4_available():
44
+ from bs4 import BeautifulSoup
45
+
46
+ if is_ftfy_available():
47
+ import ftfy
48
+
49
+ EXAMPLE_DOC_STRING = """
50
+ Examples:
51
+ ```py
52
+ >>> import torch
53
+ >>> from diffusers import LuminaText2ImgPipeline
54
+
55
+ >>> pipe = LuminaText2ImgPipeline.from_pretrained(
56
+ ... "Alpha-VLLM/Lumina-Next-SFT-diffusers", torch_dtype=torch.bfloat16
57
+ ... )
58
+ >>> # Enable memory optimizations.
59
+ >>> pipe.enable_model_cpu_offload()
60
+
61
+ >>> prompt = "Upper body of a young woman in a Victorian-era outfit with brass goggles and leather straps. Background shows an industrial revolution cityscape with smoky skies and tall, metal structures"
62
+ >>> image = pipe(prompt).images[0]
63
+ ```
64
+ """
65
+
66
+
67
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
68
+ def retrieve_timesteps(
69
+ scheduler,
70
+ num_inference_steps: Optional[int] = None,
71
+ device: Optional[Union[str, torch.device]] = None,
72
+ timesteps: Optional[List[int]] = None,
73
+ sigmas: Optional[List[float]] = None,
74
+ **kwargs,
75
+ ):
76
+ r"""
77
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
78
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
79
+
80
+ Args:
81
+ scheduler (`SchedulerMixin`):
82
+ The scheduler to get timesteps from.
83
+ num_inference_steps (`int`):
84
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
85
+ must be `None`.
86
+ device (`str` or `torch.device`, *optional*):
87
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
88
+ timesteps (`List[int]`, *optional*):
89
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
90
+ `num_inference_steps` and `sigmas` must be `None`.
91
+ sigmas (`List[float]`, *optional*):
92
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
93
+ `num_inference_steps` and `timesteps` must be `None`.
94
+
95
+ Returns:
96
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
97
+ second element is the number of inference steps.
98
+ """
99
+ if timesteps is not None and sigmas is not None:
100
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
101
+ if timesteps is not None:
102
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
103
+ if not accepts_timesteps:
104
+ raise ValueError(
105
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
106
+ f" timestep schedules. Please check whether you are using the correct scheduler."
107
+ )
108
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
109
+ timesteps = scheduler.timesteps
110
+ num_inference_steps = len(timesteps)
111
+ elif sigmas is not None:
112
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
113
+ if not accept_sigmas:
114
+ raise ValueError(
115
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
116
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
117
+ )
118
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
119
+ timesteps = scheduler.timesteps
120
+ num_inference_steps = len(timesteps)
121
+ else:
122
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
123
+ timesteps = scheduler.timesteps
124
+ return timesteps, num_inference_steps
125
+
126
+
127
+ class LuminaText2ImgPipeline(DiffusionPipeline):
128
+ r"""
129
+ Pipeline for text-to-image generation using Lumina-T2I.
130
+
131
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
132
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
133
+
134
+ Args:
135
+ vae ([`AutoencoderKL`]):
136
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
137
+ text_encoder ([`AutoModel`]):
138
+ Frozen text-encoder. Lumina-T2I uses
139
+ [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.AutoModel), specifically the
140
+ [t5-v1_1-xxl](https://huggingface.co/Alpha-VLLM/tree/main/t5-v1_1-xxl) variant.
141
+ tokenizer (`AutoModel`):
142
+ Tokenizer of class
143
+ [AutoModel](https://huggingface.co/docs/transformers/model_doc/t5#transformers.AutoModel).
144
+ transformer ([`Transformer2DModel`]):
145
+ A text conditioned `Transformer2DModel` to denoise the encoded image latents.
146
+ scheduler ([`SchedulerMixin`]):
147
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
148
+ """
149
+
150
+ bad_punct_regex = re.compile(
151
+ r"["
152
+ + "#®•©™&@·º½¾¿¡§~"
153
+ + r"\)"
154
+ + r"\("
155
+ + r"\]"
156
+ + r"\["
157
+ + r"\}"
158
+ + r"\{"
159
+ + r"\|"
160
+ + "\\"
161
+ + r"\/"
162
+ + r"\*"
163
+ + r"]{1,}"
164
+ ) # noqa
165
+
166
+ _optional_components = []
167
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
168
+
169
+ def __init__(
170
+ self,
171
+ transformer: LuminaNextDiT2DModel,
172
+ scheduler: FlowMatchEulerDiscreteScheduler,
173
+ vae: AutoencoderKL,
174
+ text_encoder: AutoModel,
175
+ tokenizer: AutoTokenizer,
176
+ ):
177
+ super().__init__()
178
+
179
+ self.register_modules(
180
+ vae=vae,
181
+ text_encoder=text_encoder,
182
+ tokenizer=tokenizer,
183
+ transformer=transformer,
184
+ scheduler=scheduler,
185
+ )
186
+ self.vae_scale_factor = 8
187
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
188
+ self.max_sequence_length = 256
189
+ self.default_sample_size = (
190
+ self.transformer.config.sample_size
191
+ if hasattr(self, "transformer") and self.transformer is not None
192
+ else 128
193
+ )
194
+ self.default_image_size = self.default_sample_size * self.vae_scale_factor
195
+
196
+ def _get_gemma_prompt_embeds(
197
+ self,
198
+ prompt: Union[str, List[str]],
199
+ num_images_per_prompt: int = 1,
200
+ device: Optional[torch.device] = None,
201
+ clean_caption: Optional[bool] = False,
202
+ max_length: Optional[int] = None,
203
+ ):
204
+ device = device or self._execution_device
205
+ prompt = [prompt] if isinstance(prompt, str) else prompt
206
+ batch_size = len(prompt)
207
+
208
+ prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
209
+ text_inputs = self.tokenizer(
210
+ prompt,
211
+ pad_to_multiple_of=8,
212
+ max_length=self.max_sequence_length,
213
+ truncation=True,
214
+ padding=True,
215
+ return_tensors="pt",
216
+ )
217
+ text_input_ids = text_inputs.input_ids.to(device)
218
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids.to(device)
219
+
220
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
221
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.max_sequence_length - 1 : -1])
222
+ logger.warning(
223
+ "The following part of your input was truncated because Gemma can only handle sequences up to"
224
+ f" {self.max_sequence_length} tokens: {removed_text}"
225
+ )
226
+
227
+ prompt_attention_mask = text_inputs.attention_mask.to(device)
228
+ prompt_embeds = self.text_encoder(
229
+ text_input_ids, attention_mask=prompt_attention_mask, output_hidden_states=True
230
+ )
231
+ prompt_embeds = prompt_embeds.hidden_states[-2]
232
+
233
+ if self.text_encoder is not None:
234
+ dtype = self.text_encoder.dtype
235
+ elif self.transformer is not None:
236
+ dtype = self.transformer.dtype
237
+ else:
238
+ dtype = None
239
+
240
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
241
+
242
+ _, seq_len, _ = prompt_embeds.shape
243
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
244
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
245
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
246
+ prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
247
+ prompt_attention_mask = prompt_attention_mask.view(batch_size * num_images_per_prompt, -1)
248
+
249
+ return prompt_embeds, prompt_attention_mask
250
+
251
+ # Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt
252
+ def encode_prompt(
253
+ self,
254
+ prompt: Union[str, List[str]],
255
+ do_classifier_free_guidance: bool = True,
256
+ negative_prompt: Union[str, List[str]] = None,
257
+ num_images_per_prompt: int = 1,
258
+ device: Optional[torch.device] = None,
259
+ prompt_embeds: Optional[torch.Tensor] = None,
260
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
261
+ prompt_attention_mask: Optional[torch.Tensor] = None,
262
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
263
+ clean_caption: bool = False,
264
+ **kwargs,
265
+ ):
266
+ r"""
267
+ Encodes the prompt into text encoder hidden states.
268
+
269
+ Args:
270
+ prompt (`str` or `List[str]`, *optional*):
271
+ prompt to be encoded
272
+ negative_prompt (`str` or `List[str]`, *optional*):
273
+ The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
274
+ instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
275
+ Lumina-T2I, this should be "".
276
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
277
+ whether to use classifier free guidance or not
278
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
279
+ number of images that should be generated per prompt
280
+ device: (`torch.device`, *optional*):
281
+ torch device to place the resulting embeddings on
282
+ prompt_embeds (`torch.Tensor`, *optional*):
283
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
284
+ provided, text embeddings will be generated from `prompt` input argument.
285
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
286
+ Pre-generated negative text embeddings. For Lumina-T2I, it's should be the embeddings of the "" string.
287
+ clean_caption (`bool`, defaults to `False`):
288
+ If `True`, the function will preprocess and clean the provided caption before encoding.
289
+ max_sequence_length (`int`, defaults to 256): Maximum sequence length to use for the prompt.
290
+ """
291
+ if device is None:
292
+ device = self._execution_device
293
+
294
+ prompt = [prompt] if isinstance(prompt, str) else prompt
295
+ if prompt is not None:
296
+ batch_size = len(prompt)
297
+ else:
298
+ batch_size = prompt_embeds.shape[0]
299
+
300
+ if prompt_embeds is None:
301
+ prompt_embeds, prompt_attention_mask = self._get_gemma_prompt_embeds(
302
+ prompt=prompt,
303
+ num_images_per_prompt=num_images_per_prompt,
304
+ device=device,
305
+ clean_caption=clean_caption,
306
+ )
307
+
308
+ # Get negative embeddings for classifier free guidance
309
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
310
+ negative_prompt = negative_prompt if negative_prompt is not None else ""
311
+
312
+ # Normalize str to list
313
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
314
+
315
+ if prompt is not None and type(prompt) is not type(negative_prompt):
316
+ raise TypeError(
317
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
318
+ f" {type(prompt)}."
319
+ )
320
+ elif isinstance(negative_prompt, str):
321
+ negative_prompt = [negative_prompt]
322
+ elif batch_size != len(negative_prompt):
323
+ raise ValueError(
324
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
325
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
326
+ " the batch size of `prompt`."
327
+ )
328
+ # Padding negative prompt to the same length with prompt
329
+ prompt_max_length = prompt_embeds.shape[1]
330
+ negative_text_inputs = self.tokenizer(
331
+ negative_prompt,
332
+ padding="max_length",
333
+ max_length=prompt_max_length,
334
+ truncation=True,
335
+ return_tensors="pt",
336
+ )
337
+ negative_text_input_ids = negative_text_inputs.input_ids.to(device)
338
+ negative_prompt_attention_mask = negative_text_inputs.attention_mask.to(device)
339
+ # Get the negative prompt embeddings
340
+ negative_prompt_embeds = self.text_encoder(
341
+ negative_text_input_ids,
342
+ attention_mask=negative_prompt_attention_mask,
343
+ output_hidden_states=True,
344
+ )
345
+
346
+ negative_dtype = self.text_encoder.dtype
347
+ negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
348
+ _, seq_len, _ = negative_prompt_embeds.shape
349
+
350
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=negative_dtype, device=device)
351
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
352
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
353
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
354
+ negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
355
+ negative_prompt_attention_mask = negative_prompt_attention_mask.view(
356
+ batch_size * num_images_per_prompt, -1
357
+ )
358
+
359
+ return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
360
+
361
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
362
+ def prepare_extra_step_kwargs(self, generator, eta):
363
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
364
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
365
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
366
+ # and should be between [0, 1]
367
+
368
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
369
+ extra_step_kwargs = {}
370
+ if accepts_eta:
371
+ extra_step_kwargs["eta"] = eta
372
+
373
+ # check if the scheduler accepts generator
374
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
375
+ if accepts_generator:
376
+ extra_step_kwargs["generator"] = generator
377
+ return extra_step_kwargs
378
+
379
+ def check_inputs(
380
+ self,
381
+ prompt,
382
+ height,
383
+ width,
384
+ negative_prompt,
385
+ prompt_embeds=None,
386
+ negative_prompt_embeds=None,
387
+ prompt_attention_mask=None,
388
+ negative_prompt_attention_mask=None,
389
+ ):
390
+ if height % 8 != 0 or width % 8 != 0:
391
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
392
+
393
+ if prompt is not None and prompt_embeds is not None:
394
+ raise ValueError(
395
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
396
+ " only forward one of the two."
397
+ )
398
+ elif prompt is None and prompt_embeds is None:
399
+ raise ValueError(
400
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
401
+ )
402
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
403
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
404
+
405
+ if prompt is not None and negative_prompt_embeds is not None:
406
+ raise ValueError(
407
+ f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
408
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
409
+ )
410
+
411
+ if negative_prompt is not None and negative_prompt_embeds is not None:
412
+ raise ValueError(
413
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
414
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
415
+ )
416
+
417
+ if prompt_embeds is not None and prompt_attention_mask is None:
418
+ raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
419
+
420
+ if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
421
+ raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
422
+
423
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
424
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
425
+ raise ValueError(
426
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
427
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
428
+ f" {negative_prompt_embeds.shape}."
429
+ )
430
+ if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
431
+ raise ValueError(
432
+ "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
433
+ f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
434
+ f" {negative_prompt_attention_mask.shape}."
435
+ )
436
+
437
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
438
+ def _text_preprocessing(self, text, clean_caption=False):
439
+ if clean_caption and not is_bs4_available():
440
+ logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
441
+ logger.warning("Setting `clean_caption` to False...")
442
+ clean_caption = False
443
+
444
+ if clean_caption and not is_ftfy_available():
445
+ logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
446
+ logger.warning("Setting `clean_caption` to False...")
447
+ clean_caption = False
448
+
449
+ if not isinstance(text, (tuple, list)):
450
+ text = [text]
451
+
452
+ def process(text: str):
453
+ if clean_caption:
454
+ text = self._clean_caption(text)
455
+ text = self._clean_caption(text)
456
+ else:
457
+ text = text.lower().strip()
458
+ return text
459
+
460
+ return [process(t) for t in text]
461
+
462
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
463
+ def _clean_caption(self, caption):
464
+ caption = str(caption)
465
+ caption = ul.unquote_plus(caption)
466
+ caption = caption.strip().lower()
467
+ caption = re.sub("<person>", "person", caption)
468
+ # urls:
469
+ caption = re.sub(
470
+ r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
471
+ "",
472
+ caption,
473
+ ) # regex for urls
474
+ caption = re.sub(
475
+ r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
476
+ "",
477
+ caption,
478
+ ) # regex for urls
479
+ # html:
480
+ caption = BeautifulSoup(caption, features="html.parser").text
481
+
482
+ # @<nickname>
483
+ caption = re.sub(r"@[\w\d]+\b", "", caption)
484
+
485
+ # 31C0—31EF CJK Strokes
486
+ # 31F0—31FF Katakana Phonetic Extensions
487
+ # 3200—32FF Enclosed CJK Letters and Months
488
+ # 3300—33FF CJK Compatibility
489
+ # 3400—4DBF CJK Unified Ideographs Extension A
490
+ # 4DC0—4DFF Yijing Hexagram Symbols
491
+ # 4E00—9FFF CJK Unified Ideographs
492
+ caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
493
+ caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
494
+ caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
495
+ caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
496
+ caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
497
+ caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
498
+ caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
499
+ #######################################################
500
+
501
+ # все виды тире / all types of dash --> "-"
502
+ caption = re.sub(
503
+ r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
504
+ "-",
505
+ caption,
506
+ )
507
+
508
+ # кавычки к одному стандарту
509
+ caption = re.sub(r"[`´«»“”¨]", '"', caption)
510
+ caption = re.sub(r"[‘’]", "'", caption)
511
+
512
+ # &quot;
513
+ caption = re.sub(r"&quot;?", "", caption)
514
+ # &amp
515
+ caption = re.sub(r"&amp", "", caption)
516
+
517
+ # ip adresses:
518
+ caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
519
+
520
+ # article ids:
521
+ caption = re.sub(r"\d:\d\d\s+$", "", caption)
522
+
523
+ # \n
524
+ caption = re.sub(r"\\n", " ", caption)
525
+
526
+ # "#123"
527
+ caption = re.sub(r"#\d{1,3}\b", "", caption)
528
+ # "#12345.."
529
+ caption = re.sub(r"#\d{5,}\b", "", caption)
530
+ # "123456.."
531
+ caption = re.sub(r"\b\d{6,}\b", "", caption)
532
+ # filenames:
533
+ caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
534
+
535
+ #
536
+ caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
537
+ caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
538
+
539
+ caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
540
+ caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
541
+
542
+ # this-is-my-cute-cat / this_is_my_cute_cat
543
+ regex2 = re.compile(r"(?:\-|\_)")
544
+ if len(re.findall(regex2, caption)) > 3:
545
+ caption = re.sub(regex2, " ", caption)
546
+
547
+ caption = ftfy.fix_text(caption)
548
+ caption = html.unescape(html.unescape(caption))
549
+
550
+ caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
551
+ caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
552
+ caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
553
+
554
+ caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
555
+ caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
556
+ caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
557
+ caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
558
+ caption = re.sub(r"\bpage\s+\d+\b", "", caption)
559
+
560
+ caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
561
+
562
+ caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
563
+
564
+ caption = re.sub(r"\b\s+\:\s+", r": ", caption)
565
+ caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
566
+ caption = re.sub(r"\s+", " ", caption)
567
+
568
+ caption.strip()
569
+
570
+ caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
571
+ caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
572
+ caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
573
+ caption = re.sub(r"^\.\S+$", "", caption)
574
+
575
+ return caption.strip()
576
+
577
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
578
+ shape = (
579
+ batch_size,
580
+ num_channels_latents,
581
+ int(height) // self.vae_scale_factor,
582
+ int(width) // self.vae_scale_factor,
583
+ )
584
+ if isinstance(generator, list) and len(generator) != batch_size:
585
+ raise ValueError(
586
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
587
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
588
+ )
589
+
590
+ if latents is None:
591
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
592
+ else:
593
+ latents = latents.to(device)
594
+
595
+ return latents
596
+
597
+ @property
598
+ def guidance_scale(self):
599
+ return self._guidance_scale
600
+
601
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
602
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
603
+ # corresponds to doing no classifier free guidance.
604
+ @property
605
+ def do_classifier_free_guidance(self):
606
+ return self._guidance_scale > 1
607
+
608
+ @property
609
+ def num_timesteps(self):
610
+ return self._num_timesteps
611
+
612
+ @torch.no_grad()
613
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
614
+ def __call__(
615
+ self,
616
+ prompt: Union[str, List[str]] = None,
617
+ width: Optional[int] = None,
618
+ height: Optional[int] = None,
619
+ num_inference_steps: int = 30,
620
+ guidance_scale: float = 4.0,
621
+ negative_prompt: Union[str, List[str]] = None,
622
+ sigmas: List[float] = None,
623
+ num_images_per_prompt: Optional[int] = 1,
624
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
625
+ latents: Optional[torch.Tensor] = None,
626
+ prompt_embeds: Optional[torch.Tensor] = None,
627
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
628
+ prompt_attention_mask: Optional[torch.Tensor] = None,
629
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
630
+ output_type: Optional[str] = "pil",
631
+ return_dict: bool = True,
632
+ clean_caption: bool = True,
633
+ max_sequence_length: int = 256,
634
+ scaling_watershed: Optional[float] = 1.0,
635
+ proportional_attn: Optional[bool] = True,
636
+ ) -> Union[ImagePipelineOutput, Tuple]:
637
+ """
638
+ Function invoked when calling the pipeline for generation.
639
+
640
+ Args:
641
+ prompt (`str` or `List[str]`, *optional*):
642
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
643
+ instead.
644
+ negative_prompt (`str` or `List[str]`, *optional*):
645
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
646
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
647
+ less than `1`).
648
+ num_inference_steps (`int`, *optional*, defaults to 30):
649
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
650
+ expense of slower inference.
651
+ sigmas (`List[float]`, *optional*):
652
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
653
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
654
+ will be used.
655
+ guidance_scale (`float`, *optional*, defaults to 4.0):
656
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
657
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
658
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
659
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
660
+ usually at the expense of lower image quality.
661
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
662
+ The number of images to generate per prompt.
663
+ height (`int`, *optional*, defaults to self.unet.config.sample_size):
664
+ The height in pixels of the generated image.
665
+ width (`int`, *optional*, defaults to self.unet.config.sample_size):
666
+ The width in pixels of the generated image.
667
+ eta (`float`, *optional*, defaults to 0.0):
668
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
669
+ [`schedulers.DDIMScheduler`], will be ignored for others.
670
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
671
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
672
+ to make generation deterministic.
673
+ latents (`torch.Tensor`, *optional*):
674
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
675
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
676
+ tensor will ge generated by sampling using the supplied random `generator`.
677
+ prompt_embeds (`torch.Tensor`, *optional*):
678
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
679
+ provided, text embeddings will be generated from `prompt` input argument.
680
+ prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings.
681
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
682
+ Pre-generated negative text embeddings. For Lumina-T2I this negative prompt should be "". If not
683
+ provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
684
+ negative_prompt_attention_mask (`torch.Tensor`, *optional*):
685
+ Pre-generated attention mask for negative text embeddings.
686
+ output_type (`str`, *optional*, defaults to `"pil"`):
687
+ The output format of the generate image. Choose between
688
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
689
+ return_dict (`bool`, *optional*, defaults to `True`):
690
+ Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
691
+ clean_caption (`bool`, *optional*, defaults to `True`):
692
+ Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
693
+ be installed. If the dependencies are not installed, the embeddings will be created from the raw
694
+ prompt.
695
+ max_sequence_length (`int` defaults to 120):
696
+ Maximum sequence length to use with the `prompt`.
697
+ callback_on_step_end (`Callable`, *optional*):
698
+ A function that calls at the end of each denoising steps during the inference. The function is called
699
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
700
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
701
+ `callback_on_step_end_tensor_inputs`.
702
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
703
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
704
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
705
+ `._callback_tensor_inputs` attribute of your pipeline class.
706
+
707
+ Examples:
708
+
709
+ Returns:
710
+ [`~pipelines.ImagePipelineOutput`] or `tuple`:
711
+ If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
712
+ returned where the first element is a list with the generated images
713
+ """
714
+ height = height or self.default_sample_size * self.vae_scale_factor
715
+ width = width or self.default_sample_size * self.vae_scale_factor
716
+
717
+ # 1. Check inputs. Raise error if not correct
718
+ self.check_inputs(
719
+ prompt,
720
+ height,
721
+ width,
722
+ negative_prompt,
723
+ prompt_embeds=prompt_embeds,
724
+ negative_prompt_embeds=negative_prompt_embeds,
725
+ prompt_attention_mask=prompt_attention_mask,
726
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
727
+ )
728
+ cross_attention_kwargs = {}
729
+
730
+ # 2. Define call parameters
731
+ if prompt is not None and isinstance(prompt, str):
732
+ batch_size = 1
733
+ elif prompt is not None and isinstance(prompt, list):
734
+ batch_size = len(prompt)
735
+ else:
736
+ batch_size = prompt_embeds.shape[0]
737
+
738
+ if proportional_attn:
739
+ cross_attention_kwargs["base_sequence_length"] = (self.default_image_size // 16) ** 2
740
+
741
+ scaling_factor = math.sqrt(width * height / self.default_image_size**2)
742
+
743
+ device = self._execution_device
744
+
745
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
746
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
747
+ # corresponds to doing no classifier free guidance.
748
+ do_classifier_free_guidance = guidance_scale > 1.0
749
+
750
+ # 3. Encode input prompt
751
+ (
752
+ prompt_embeds,
753
+ prompt_attention_mask,
754
+ negative_prompt_embeds,
755
+ negative_prompt_attention_mask,
756
+ ) = self.encode_prompt(
757
+ prompt,
758
+ do_classifier_free_guidance,
759
+ negative_prompt=negative_prompt,
760
+ num_images_per_prompt=num_images_per_prompt,
761
+ device=device,
762
+ prompt_embeds=prompt_embeds,
763
+ negative_prompt_embeds=negative_prompt_embeds,
764
+ prompt_attention_mask=prompt_attention_mask,
765
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
766
+ clean_caption=clean_caption,
767
+ max_sequence_length=max_sequence_length,
768
+ )
769
+ if do_classifier_free_guidance:
770
+ prompt_embeds = torch.cat([prompt_embeds, negative_prompt_embeds], dim=0)
771
+ prompt_attention_mask = torch.cat([prompt_attention_mask, negative_prompt_attention_mask], dim=0)
772
+
773
+ # 4. Prepare timesteps
774
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, sigmas=sigmas)
775
+
776
+ # 5. Prepare latents.
777
+ latent_channels = self.transformer.config.in_channels
778
+ latents = self.prepare_latents(
779
+ batch_size * num_images_per_prompt,
780
+ latent_channels,
781
+ height,
782
+ width,
783
+ prompt_embeds.dtype,
784
+ device,
785
+ generator,
786
+ latents,
787
+ )
788
+
789
+ # 6. Denoising loop
790
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
791
+ for i, t in enumerate(timesteps):
792
+ # expand the latents if we are doing classifier free guidance
793
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
794
+
795
+ current_timestep = t
796
+ if not torch.is_tensor(current_timestep):
797
+ # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
798
+ # This would be a good case for the `match` statement (Python 3.10+)
799
+ is_mps = latent_model_input.device.type == "mps"
800
+ if isinstance(current_timestep, float):
801
+ dtype = torch.float32 if is_mps else torch.float64
802
+ else:
803
+ dtype = torch.int32 if is_mps else torch.int64
804
+ current_timestep = torch.tensor(
805
+ [current_timestep],
806
+ dtype=dtype,
807
+ device=latent_model_input.device,
808
+ )
809
+ elif len(current_timestep.shape) == 0:
810
+ current_timestep = current_timestep[None].to(latent_model_input.device)
811
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
812
+ current_timestep = current_timestep.expand(latent_model_input.shape[0])
813
+
814
+ # reverse the timestep since Lumina uses t=0 as the noise and t=1 as the image
815
+ current_timestep = 1 - current_timestep / self.scheduler.config.num_train_timesteps
816
+
817
+ # prepare image_rotary_emb for positional encoding
818
+ # dynamic scaling_factor for different resolution.
819
+ # NOTE: For `Time-aware` denosing mechanism from Lumina-Next
820
+ # https://arxiv.org/abs/2406.18583, Sec 2.3
821
+ # NOTE: We should compute different image_rotary_emb with different timestep.
822
+ if current_timestep[0] < scaling_watershed:
823
+ linear_factor = scaling_factor
824
+ ntk_factor = 1.0
825
+ else:
826
+ linear_factor = 1.0
827
+ ntk_factor = scaling_factor
828
+ image_rotary_emb = get_2d_rotary_pos_embed_lumina(
829
+ self.transformer.head_dim,
830
+ 384,
831
+ 384,
832
+ linear_factor=linear_factor,
833
+ ntk_factor=ntk_factor,
834
+ )
835
+
836
+ noise_pred = self.transformer(
837
+ hidden_states=latent_model_input,
838
+ timestep=current_timestep,
839
+ encoder_hidden_states=prompt_embeds,
840
+ encoder_mask=prompt_attention_mask,
841
+ image_rotary_emb=image_rotary_emb,
842
+ cross_attention_kwargs=cross_attention_kwargs,
843
+ return_dict=False,
844
+ )[0]
845
+ noise_pred = noise_pred.chunk(2, dim=1)[0]
846
+
847
+ # perform guidance scale
848
+ # NOTE: For exact reproducibility reasons, we apply classifier-free guidance on only
849
+ # three channels by default. The standard approach to cfg applies it to all channels.
850
+ # This can be done by uncommenting the following line and commenting-out the line following that.
851
+ # eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:]
852
+ if do_classifier_free_guidance:
853
+ noise_pred_eps, noise_pred_rest = noise_pred[:, :3], noise_pred[:, 3:]
854
+ noise_pred_cond_eps, noise_pred_uncond_eps = torch.split(
855
+ noise_pred_eps, len(noise_pred_eps) // 2, dim=0
856
+ )
857
+ noise_pred_half = noise_pred_uncond_eps + guidance_scale * (
858
+ noise_pred_cond_eps - noise_pred_uncond_eps
859
+ )
860
+ noise_pred_eps = torch.cat([noise_pred_half, noise_pred_half], dim=0)
861
+
862
+ noise_pred = torch.cat([noise_pred_eps, noise_pred_rest], dim=1)
863
+ noise_pred, _ = noise_pred.chunk(2, dim=0)
864
+
865
+ # compute the previous noisy sample x_t -> x_t-1
866
+ latents_dtype = latents.dtype
867
+ noise_pred = -noise_pred
868
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
869
+
870
+ if latents.dtype != latents_dtype:
871
+ if torch.backends.mps.is_available():
872
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
873
+ latents = latents.to(latents_dtype)
874
+
875
+ progress_bar.update()
876
+
877
+ if not output_type == "latent":
878
+ latents = latents / self.vae.config.scaling_factor
879
+ image = self.vae.decode(latents, return_dict=False)[0]
880
+ image = self.image_processor.postprocess(image, output_type=output_type)
881
+ else:
882
+ image = latents
883
+
884
+ # Offload all models
885
+ self.maybe_free_model_hooks()
886
+
887
+ if not return_dict:
888
+ return (image,)
889
+
890
+ return ImagePipelineOutput(images=image)