diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +50 -53
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.0.dist-info/RECORD +0 -399
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -27,17 +27,58 @@ from ..resnet import (
|
|
27
27
|
TemporalConvLayer,
|
28
28
|
Upsample2D,
|
29
29
|
)
|
30
|
-
from ..transformers.dual_transformer_2d import DualTransformer2DModel
|
31
30
|
from ..transformers.transformer_2d import Transformer2DModel
|
32
31
|
from ..transformers.transformer_temporal import (
|
33
32
|
TransformerSpatioTemporalModel,
|
34
33
|
TransformerTemporalModel,
|
35
34
|
)
|
35
|
+
from .unet_motion_model import (
|
36
|
+
CrossAttnDownBlockMotion,
|
37
|
+
CrossAttnUpBlockMotion,
|
38
|
+
DownBlockMotion,
|
39
|
+
UNetMidBlockCrossAttnMotion,
|
40
|
+
UpBlockMotion,
|
41
|
+
)
|
36
42
|
|
37
43
|
|
38
44
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
39
45
|
|
40
46
|
|
47
|
+
class DownBlockMotion(DownBlockMotion):
|
48
|
+
def __init__(self, *args, **kwargs):
|
49
|
+
deprecation_message = "Importing `DownBlockMotion` from `diffusers.models.unets.unet_3d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_motion_model import DownBlockMotion` instead."
|
50
|
+
deprecate("DownBlockMotion", "1.0.0", deprecation_message)
|
51
|
+
super().__init__(*args, **kwargs)
|
52
|
+
|
53
|
+
|
54
|
+
class CrossAttnDownBlockMotion(CrossAttnDownBlockMotion):
|
55
|
+
def __init__(self, *args, **kwargs):
|
56
|
+
deprecation_message = "Importing `CrossAttnDownBlockMotion` from `diffusers.models.unets.unet_3d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_motion_model import CrossAttnDownBlockMotion` instead."
|
57
|
+
deprecate("CrossAttnDownBlockMotion", "1.0.0", deprecation_message)
|
58
|
+
super().__init__(*args, **kwargs)
|
59
|
+
|
60
|
+
|
61
|
+
class UpBlockMotion(UpBlockMotion):
|
62
|
+
def __init__(self, *args, **kwargs):
|
63
|
+
deprecation_message = "Importing `UpBlockMotion` from `diffusers.models.unets.unet_3d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_motion_model import UpBlockMotion` instead."
|
64
|
+
deprecate("UpBlockMotion", "1.0.0", deprecation_message)
|
65
|
+
super().__init__(*args, **kwargs)
|
66
|
+
|
67
|
+
|
68
|
+
class CrossAttnUpBlockMotion(CrossAttnUpBlockMotion):
|
69
|
+
def __init__(self, *args, **kwargs):
|
70
|
+
deprecation_message = "Importing `CrossAttnUpBlockMotion` from `diffusers.models.unets.unet_3d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_motion_model import CrossAttnUpBlockMotion` instead."
|
71
|
+
deprecate("CrossAttnUpBlockMotion", "1.0.0", deprecation_message)
|
72
|
+
super().__init__(*args, **kwargs)
|
73
|
+
|
74
|
+
|
75
|
+
class UNetMidBlockCrossAttnMotion(UNetMidBlockCrossAttnMotion):
|
76
|
+
def __init__(self, *args, **kwargs):
|
77
|
+
deprecation_message = "Importing `UNetMidBlockCrossAttnMotion` from `diffusers.models.unets.unet_3d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_motion_model import UNetMidBlockCrossAttnMotion` instead."
|
78
|
+
deprecate("UNetMidBlockCrossAttnMotion", "1.0.0", deprecation_message)
|
79
|
+
super().__init__(*args, **kwargs)
|
80
|
+
|
81
|
+
|
41
82
|
def get_down_block(
|
42
83
|
down_block_type: str,
|
43
84
|
num_layers: int,
|
@@ -58,12 +99,12 @@ def get_down_block(
|
|
58
99
|
resnet_time_scale_shift: str = "default",
|
59
100
|
temporal_num_attention_heads: int = 8,
|
60
101
|
temporal_max_seq_length: int = 32,
|
61
|
-
transformer_layers_per_block: int = 1,
|
102
|
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
103
|
+
temporal_transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
104
|
+
dropout: float = 0.0,
|
62
105
|
) -> Union[
|
63
106
|
"DownBlock3D",
|
64
107
|
"CrossAttnDownBlock3D",
|
65
|
-
"DownBlockMotion",
|
66
|
-
"CrossAttnDownBlockMotion",
|
67
108
|
"DownBlockSpatioTemporal",
|
68
109
|
"CrossAttnDownBlockSpatioTemporal",
|
69
110
|
]:
|
@@ -79,6 +120,7 @@ def get_down_block(
|
|
79
120
|
resnet_groups=resnet_groups,
|
80
121
|
downsample_padding=downsample_padding,
|
81
122
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
123
|
+
dropout=dropout,
|
82
124
|
)
|
83
125
|
elif down_block_type == "CrossAttnDownBlock3D":
|
84
126
|
if cross_attention_dim is None:
|
@@ -100,44 +142,7 @@ def get_down_block(
|
|
100
142
|
only_cross_attention=only_cross_attention,
|
101
143
|
upcast_attention=upcast_attention,
|
102
144
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
103
|
-
|
104
|
-
if down_block_type == "DownBlockMotion":
|
105
|
-
return DownBlockMotion(
|
106
|
-
num_layers=num_layers,
|
107
|
-
in_channels=in_channels,
|
108
|
-
out_channels=out_channels,
|
109
|
-
temb_channels=temb_channels,
|
110
|
-
add_downsample=add_downsample,
|
111
|
-
resnet_eps=resnet_eps,
|
112
|
-
resnet_act_fn=resnet_act_fn,
|
113
|
-
resnet_groups=resnet_groups,
|
114
|
-
downsample_padding=downsample_padding,
|
115
|
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
116
|
-
temporal_num_attention_heads=temporal_num_attention_heads,
|
117
|
-
temporal_max_seq_length=temporal_max_seq_length,
|
118
|
-
)
|
119
|
-
elif down_block_type == "CrossAttnDownBlockMotion":
|
120
|
-
if cross_attention_dim is None:
|
121
|
-
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlockMotion")
|
122
|
-
return CrossAttnDownBlockMotion(
|
123
|
-
num_layers=num_layers,
|
124
|
-
in_channels=in_channels,
|
125
|
-
out_channels=out_channels,
|
126
|
-
temb_channels=temb_channels,
|
127
|
-
add_downsample=add_downsample,
|
128
|
-
resnet_eps=resnet_eps,
|
129
|
-
resnet_act_fn=resnet_act_fn,
|
130
|
-
resnet_groups=resnet_groups,
|
131
|
-
downsample_padding=downsample_padding,
|
132
|
-
cross_attention_dim=cross_attention_dim,
|
133
|
-
num_attention_heads=num_attention_heads,
|
134
|
-
dual_cross_attention=dual_cross_attention,
|
135
|
-
use_linear_projection=use_linear_projection,
|
136
|
-
only_cross_attention=only_cross_attention,
|
137
|
-
upcast_attention=upcast_attention,
|
138
|
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
139
|
-
temporal_num_attention_heads=temporal_num_attention_heads,
|
140
|
-
temporal_max_seq_length=temporal_max_seq_length,
|
145
|
+
dropout=dropout,
|
141
146
|
)
|
142
147
|
elif down_block_type == "DownBlockSpatioTemporal":
|
143
148
|
# added for SDV
|
@@ -188,13 +193,12 @@ def get_up_block(
|
|
188
193
|
temporal_num_attention_heads: int = 8,
|
189
194
|
temporal_cross_attention_dim: Optional[int] = None,
|
190
195
|
temporal_max_seq_length: int = 32,
|
191
|
-
transformer_layers_per_block: int = 1,
|
196
|
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
197
|
+
temporal_transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
192
198
|
dropout: float = 0.0,
|
193
199
|
) -> Union[
|
194
200
|
"UpBlock3D",
|
195
201
|
"CrossAttnUpBlock3D",
|
196
|
-
"UpBlockMotion",
|
197
|
-
"CrossAttnUpBlockMotion",
|
198
202
|
"UpBlockSpatioTemporal",
|
199
203
|
"CrossAttnUpBlockSpatioTemporal",
|
200
204
|
]:
|
@@ -211,6 +215,7 @@ def get_up_block(
|
|
211
215
|
resnet_groups=resnet_groups,
|
212
216
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
213
217
|
resolution_idx=resolution_idx,
|
218
|
+
dropout=dropout,
|
214
219
|
)
|
215
220
|
elif up_block_type == "CrossAttnUpBlock3D":
|
216
221
|
if cross_attention_dim is None:
|
@@ -233,46 +238,7 @@ def get_up_block(
|
|
233
238
|
upcast_attention=upcast_attention,
|
234
239
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
235
240
|
resolution_idx=resolution_idx,
|
236
|
-
|
237
|
-
if up_block_type == "UpBlockMotion":
|
238
|
-
return UpBlockMotion(
|
239
|
-
num_layers=num_layers,
|
240
|
-
in_channels=in_channels,
|
241
|
-
out_channels=out_channels,
|
242
|
-
prev_output_channel=prev_output_channel,
|
243
|
-
temb_channels=temb_channels,
|
244
|
-
add_upsample=add_upsample,
|
245
|
-
resnet_eps=resnet_eps,
|
246
|
-
resnet_act_fn=resnet_act_fn,
|
247
|
-
resnet_groups=resnet_groups,
|
248
|
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
249
|
-
resolution_idx=resolution_idx,
|
250
|
-
temporal_num_attention_heads=temporal_num_attention_heads,
|
251
|
-
temporal_max_seq_length=temporal_max_seq_length,
|
252
|
-
)
|
253
|
-
elif up_block_type == "CrossAttnUpBlockMotion":
|
254
|
-
if cross_attention_dim is None:
|
255
|
-
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlockMotion")
|
256
|
-
return CrossAttnUpBlockMotion(
|
257
|
-
num_layers=num_layers,
|
258
|
-
in_channels=in_channels,
|
259
|
-
out_channels=out_channels,
|
260
|
-
prev_output_channel=prev_output_channel,
|
261
|
-
temb_channels=temb_channels,
|
262
|
-
add_upsample=add_upsample,
|
263
|
-
resnet_eps=resnet_eps,
|
264
|
-
resnet_act_fn=resnet_act_fn,
|
265
|
-
resnet_groups=resnet_groups,
|
266
|
-
cross_attention_dim=cross_attention_dim,
|
267
|
-
num_attention_heads=num_attention_heads,
|
268
|
-
dual_cross_attention=dual_cross_attention,
|
269
|
-
use_linear_projection=use_linear_projection,
|
270
|
-
only_cross_attention=only_cross_attention,
|
271
|
-
upcast_attention=upcast_attention,
|
272
|
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
273
|
-
resolution_idx=resolution_idx,
|
274
|
-
temporal_num_attention_heads=temporal_num_attention_heads,
|
275
|
-
temporal_max_seq_length=temporal_max_seq_length,
|
241
|
+
dropout=dropout,
|
276
242
|
)
|
277
243
|
elif up_block_type == "UpBlockSpatioTemporal":
|
278
244
|
# added for SDV
|
@@ -409,13 +375,13 @@ class UNetMidBlock3DCrossAttn(nn.Module):
|
|
409
375
|
|
410
376
|
def forward(
|
411
377
|
self,
|
412
|
-
hidden_states: torch.
|
413
|
-
temb: Optional[torch.
|
414
|
-
encoder_hidden_states: Optional[torch.
|
415
|
-
attention_mask: Optional[torch.
|
378
|
+
hidden_states: torch.Tensor,
|
379
|
+
temb: Optional[torch.Tensor] = None,
|
380
|
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
381
|
+
attention_mask: Optional[torch.Tensor] = None,
|
416
382
|
num_frames: int = 1,
|
417
383
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
418
|
-
) -> torch.
|
384
|
+
) -> torch.Tensor:
|
419
385
|
hidden_states = self.resnets[0](hidden_states, temb)
|
420
386
|
hidden_states = self.temp_convs[0](hidden_states, num_frames=num_frames)
|
421
387
|
for attn, temp_attn, resnet, temp_conv in zip(
|
@@ -542,13 +508,13 @@ class CrossAttnDownBlock3D(nn.Module):
|
|
542
508
|
|
543
509
|
def forward(
|
544
510
|
self,
|
545
|
-
hidden_states: torch.
|
546
|
-
temb: Optional[torch.
|
547
|
-
encoder_hidden_states: Optional[torch.
|
548
|
-
attention_mask: Optional[torch.
|
511
|
+
hidden_states: torch.Tensor,
|
512
|
+
temb: Optional[torch.Tensor] = None,
|
513
|
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
514
|
+
attention_mask: Optional[torch.Tensor] = None,
|
549
515
|
num_frames: int = 1,
|
550
516
|
cross_attention_kwargs: Dict[str, Any] = None,
|
551
|
-
) -> Union[torch.
|
517
|
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, ...]]:
|
552
518
|
# TODO(Patrick, William) - attention mask is not used
|
553
519
|
output_states = ()
|
554
520
|
|
@@ -649,10 +615,10 @@ class DownBlock3D(nn.Module):
|
|
649
615
|
|
650
616
|
def forward(
|
651
617
|
self,
|
652
|
-
hidden_states: torch.
|
653
|
-
temb: Optional[torch.
|
618
|
+
hidden_states: torch.Tensor,
|
619
|
+
temb: Optional[torch.Tensor] = None,
|
654
620
|
num_frames: int = 1,
|
655
|
-
) -> Union[torch.
|
621
|
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, ...]]:
|
656
622
|
output_states = ()
|
657
623
|
|
658
624
|
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
|
@@ -767,15 +733,15 @@ class CrossAttnUpBlock3D(nn.Module):
|
|
767
733
|
|
768
734
|
def forward(
|
769
735
|
self,
|
770
|
-
hidden_states: torch.
|
771
|
-
res_hidden_states_tuple: Tuple[torch.
|
772
|
-
temb: Optional[torch.
|
773
|
-
encoder_hidden_states: Optional[torch.
|
736
|
+
hidden_states: torch.Tensor,
|
737
|
+
res_hidden_states_tuple: Tuple[torch.Tensor, ...],
|
738
|
+
temb: Optional[torch.Tensor] = None,
|
739
|
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
774
740
|
upsample_size: Optional[int] = None,
|
775
|
-
attention_mask: Optional[torch.
|
741
|
+
attention_mask: Optional[torch.Tensor] = None,
|
776
742
|
num_frames: int = 1,
|
777
743
|
cross_attention_kwargs: Dict[str, Any] = None,
|
778
|
-
) -> torch.
|
744
|
+
) -> torch.Tensor:
|
779
745
|
is_freeu_enabled = (
|
780
746
|
getattr(self, "s1", None)
|
781
747
|
and getattr(self, "s2", None)
|
@@ -889,12 +855,12 @@ class UpBlock3D(nn.Module):
|
|
889
855
|
|
890
856
|
def forward(
|
891
857
|
self,
|
892
|
-
hidden_states: torch.
|
893
|
-
res_hidden_states_tuple: Tuple[torch.
|
894
|
-
temb: Optional[torch.
|
858
|
+
hidden_states: torch.Tensor,
|
859
|
+
res_hidden_states_tuple: Tuple[torch.Tensor, ...],
|
860
|
+
temb: Optional[torch.Tensor] = None,
|
895
861
|
upsample_size: Optional[int] = None,
|
896
862
|
num_frames: int = 1,
|
897
|
-
) -> torch.
|
863
|
+
) -> torch.Tensor:
|
898
864
|
is_freeu_enabled = (
|
899
865
|
getattr(self, "s1", None)
|
900
866
|
and getattr(self, "s2", None)
|
@@ -930,970 +896,137 @@ class UpBlock3D(nn.Module):
|
|
930
896
|
return hidden_states
|
931
897
|
|
932
898
|
|
933
|
-
class
|
899
|
+
class MidBlockTemporalDecoder(nn.Module):
|
934
900
|
def __init__(
|
935
901
|
self,
|
936
902
|
in_channels: int,
|
937
903
|
out_channels: int,
|
938
|
-
|
939
|
-
dropout: float = 0.0,
|
904
|
+
attention_head_dim: int = 512,
|
940
905
|
num_layers: int = 1,
|
941
|
-
|
942
|
-
resnet_time_scale_shift: str = "default",
|
943
|
-
resnet_act_fn: str = "swish",
|
944
|
-
resnet_groups: int = 32,
|
945
|
-
resnet_pre_norm: bool = True,
|
946
|
-
output_scale_factor: float = 1.0,
|
947
|
-
add_downsample: bool = True,
|
948
|
-
downsample_padding: int = 1,
|
949
|
-
temporal_num_attention_heads: int = 1,
|
950
|
-
temporal_cross_attention_dim: Optional[int] = None,
|
951
|
-
temporal_max_seq_length: int = 32,
|
906
|
+
upcast_attention: bool = False,
|
952
907
|
):
|
953
908
|
super().__init__()
|
954
|
-
resnets = []
|
955
|
-
motion_modules = []
|
956
909
|
|
910
|
+
resnets = []
|
911
|
+
attentions = []
|
957
912
|
for i in range(num_layers):
|
958
|
-
|
913
|
+
input_channels = in_channels if i == 0 else out_channels
|
959
914
|
resnets.append(
|
960
|
-
|
961
|
-
in_channels=
|
915
|
+
SpatioTemporalResBlock(
|
916
|
+
in_channels=input_channels,
|
962
917
|
out_channels=out_channels,
|
963
|
-
temb_channels=
|
964
|
-
eps=
|
965
|
-
|
966
|
-
|
967
|
-
|
968
|
-
|
969
|
-
output_scale_factor=output_scale_factor,
|
970
|
-
pre_norm=resnet_pre_norm,
|
971
|
-
)
|
972
|
-
)
|
973
|
-
motion_modules.append(
|
974
|
-
TransformerTemporalModel(
|
975
|
-
num_attention_heads=temporal_num_attention_heads,
|
976
|
-
in_channels=out_channels,
|
977
|
-
norm_num_groups=resnet_groups,
|
978
|
-
cross_attention_dim=temporal_cross_attention_dim,
|
979
|
-
attention_bias=False,
|
980
|
-
activation_fn="geglu",
|
981
|
-
positional_embeddings="sinusoidal",
|
982
|
-
num_positional_embeddings=temporal_max_seq_length,
|
983
|
-
attention_head_dim=out_channels // temporal_num_attention_heads,
|
918
|
+
temb_channels=None,
|
919
|
+
eps=1e-6,
|
920
|
+
temporal_eps=1e-5,
|
921
|
+
merge_factor=0.0,
|
922
|
+
merge_strategy="learned",
|
923
|
+
switch_spatial_to_temporal_mix=True,
|
984
924
|
)
|
985
925
|
)
|
986
926
|
|
987
|
-
|
988
|
-
|
989
|
-
|
990
|
-
|
991
|
-
|
992
|
-
|
993
|
-
|
994
|
-
|
995
|
-
|
996
|
-
|
997
|
-
padding=downsample_padding,
|
998
|
-
name="op",
|
999
|
-
)
|
1000
|
-
]
|
927
|
+
attentions.append(
|
928
|
+
Attention(
|
929
|
+
query_dim=in_channels,
|
930
|
+
heads=in_channels // attention_head_dim,
|
931
|
+
dim_head=attention_head_dim,
|
932
|
+
eps=1e-6,
|
933
|
+
upcast_attention=upcast_attention,
|
934
|
+
norm_num_groups=32,
|
935
|
+
bias=True,
|
936
|
+
residual_connection=True,
|
1001
937
|
)
|
1002
|
-
|
1003
|
-
self.downsamplers = None
|
938
|
+
)
|
1004
939
|
|
1005
|
-
self.
|
940
|
+
self.attentions = nn.ModuleList(attentions)
|
941
|
+
self.resnets = nn.ModuleList(resnets)
|
1006
942
|
|
1007
943
|
def forward(
|
1008
944
|
self,
|
1009
|
-
hidden_states: torch.
|
1010
|
-
|
1011
|
-
|
1012
|
-
|
1013
|
-
|
1014
|
-
|
1015
|
-
|
1016
|
-
|
1017
|
-
|
1018
|
-
|
1019
|
-
|
1020
|
-
|
1021
|
-
|
1022
|
-
for resnet, motion_module in blocks:
|
1023
|
-
if self.training and self.gradient_checkpointing:
|
945
|
+
hidden_states: torch.Tensor,
|
946
|
+
image_only_indicator: torch.Tensor,
|
947
|
+
):
|
948
|
+
hidden_states = self.resnets[0](
|
949
|
+
hidden_states,
|
950
|
+
image_only_indicator=image_only_indicator,
|
951
|
+
)
|
952
|
+
for resnet, attn in zip(self.resnets[1:], self.attentions):
|
953
|
+
hidden_states = attn(hidden_states)
|
954
|
+
hidden_states = resnet(
|
955
|
+
hidden_states,
|
956
|
+
image_only_indicator=image_only_indicator,
|
957
|
+
)
|
1024
958
|
|
1025
|
-
|
1026
|
-
def custom_forward(*inputs):
|
1027
|
-
return module(*inputs)
|
959
|
+
return hidden_states
|
1028
960
|
|
1029
|
-
return custom_forward
|
1030
961
|
|
1031
|
-
|
1032
|
-
|
1033
|
-
|
1034
|
-
|
1035
|
-
|
1036
|
-
|
1037
|
-
|
1038
|
-
|
1039
|
-
|
1040
|
-
|
1041
|
-
|
962
|
+
class UpBlockTemporalDecoder(nn.Module):
|
963
|
+
def __init__(
|
964
|
+
self,
|
965
|
+
in_channels: int,
|
966
|
+
out_channels: int,
|
967
|
+
num_layers: int = 1,
|
968
|
+
add_upsample: bool = True,
|
969
|
+
):
|
970
|
+
super().__init__()
|
971
|
+
resnets = []
|
972
|
+
for i in range(num_layers):
|
973
|
+
input_channels = in_channels if i == 0 else out_channels
|
1042
974
|
|
1043
|
-
|
1044
|
-
|
1045
|
-
|
975
|
+
resnets.append(
|
976
|
+
SpatioTemporalResBlock(
|
977
|
+
in_channels=input_channels,
|
978
|
+
out_channels=out_channels,
|
979
|
+
temb_channels=None,
|
980
|
+
eps=1e-6,
|
981
|
+
temporal_eps=1e-5,
|
982
|
+
merge_factor=0.0,
|
983
|
+
merge_strategy="learned",
|
984
|
+
switch_spatial_to_temporal_mix=True,
|
985
|
+
)
|
986
|
+
)
|
987
|
+
self.resnets = nn.ModuleList(resnets)
|
1046
988
|
|
1047
|
-
|
989
|
+
if add_upsample:
|
990
|
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
991
|
+
else:
|
992
|
+
self.upsamplers = None
|
1048
993
|
|
1049
|
-
|
1050
|
-
|
1051
|
-
|
994
|
+
def forward(
|
995
|
+
self,
|
996
|
+
hidden_states: torch.Tensor,
|
997
|
+
image_only_indicator: torch.Tensor,
|
998
|
+
) -> torch.Tensor:
|
999
|
+
for resnet in self.resnets:
|
1000
|
+
hidden_states = resnet(
|
1001
|
+
hidden_states,
|
1002
|
+
image_only_indicator=image_only_indicator,
|
1003
|
+
)
|
1052
1004
|
|
1053
|
-
|
1005
|
+
if self.upsamplers is not None:
|
1006
|
+
for upsampler in self.upsamplers:
|
1007
|
+
hidden_states = upsampler(hidden_states)
|
1054
1008
|
|
1055
|
-
return hidden_states
|
1009
|
+
return hidden_states
|
1056
1010
|
|
1057
1011
|
|
1058
|
-
class
|
1012
|
+
class UNetMidBlockSpatioTemporal(nn.Module):
|
1059
1013
|
def __init__(
|
1060
1014
|
self,
|
1061
1015
|
in_channels: int,
|
1062
|
-
out_channels: int,
|
1063
1016
|
temb_channels: int,
|
1064
|
-
dropout: float = 0.0,
|
1065
1017
|
num_layers: int = 1,
|
1066
|
-
transformer_layers_per_block: int = 1,
|
1067
|
-
resnet_eps: float = 1e-6,
|
1068
|
-
resnet_time_scale_shift: str = "default",
|
1069
|
-
resnet_act_fn: str = "swish",
|
1070
|
-
resnet_groups: int = 32,
|
1071
|
-
resnet_pre_norm: bool = True,
|
1018
|
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
1072
1019
|
num_attention_heads: int = 1,
|
1073
1020
|
cross_attention_dim: int = 1280,
|
1074
|
-
output_scale_factor: float = 1.0,
|
1075
|
-
downsample_padding: int = 1,
|
1076
|
-
add_downsample: bool = True,
|
1077
|
-
dual_cross_attention: bool = False,
|
1078
|
-
use_linear_projection: bool = False,
|
1079
|
-
only_cross_attention: bool = False,
|
1080
|
-
upcast_attention: bool = False,
|
1081
|
-
attention_type: str = "default",
|
1082
|
-
temporal_cross_attention_dim: Optional[int] = None,
|
1083
|
-
temporal_num_attention_heads: int = 8,
|
1084
|
-
temporal_max_seq_length: int = 32,
|
1085
1021
|
):
|
1086
1022
|
super().__init__()
|
1087
|
-
resnets = []
|
1088
|
-
attentions = []
|
1089
|
-
motion_modules = []
|
1090
1023
|
|
1091
1024
|
self.has_cross_attention = True
|
1092
1025
|
self.num_attention_heads = num_attention_heads
|
1093
1026
|
|
1094
|
-
for
|
1095
|
-
|
1096
|
-
|
1097
|
-
ResnetBlock2D(
|
1098
|
-
in_channels=in_channels,
|
1099
|
-
out_channels=out_channels,
|
1100
|
-
temb_channels=temb_channels,
|
1101
|
-
eps=resnet_eps,
|
1102
|
-
groups=resnet_groups,
|
1103
|
-
dropout=dropout,
|
1104
|
-
time_embedding_norm=resnet_time_scale_shift,
|
1105
|
-
non_linearity=resnet_act_fn,
|
1106
|
-
output_scale_factor=output_scale_factor,
|
1107
|
-
pre_norm=resnet_pre_norm,
|
1108
|
-
)
|
1109
|
-
)
|
1110
|
-
|
1111
|
-
if not dual_cross_attention:
|
1112
|
-
attentions.append(
|
1113
|
-
Transformer2DModel(
|
1114
|
-
num_attention_heads,
|
1115
|
-
out_channels // num_attention_heads,
|
1116
|
-
in_channels=out_channels,
|
1117
|
-
num_layers=transformer_layers_per_block,
|
1118
|
-
cross_attention_dim=cross_attention_dim,
|
1119
|
-
norm_num_groups=resnet_groups,
|
1120
|
-
use_linear_projection=use_linear_projection,
|
1121
|
-
only_cross_attention=only_cross_attention,
|
1122
|
-
upcast_attention=upcast_attention,
|
1123
|
-
attention_type=attention_type,
|
1124
|
-
)
|
1125
|
-
)
|
1126
|
-
else:
|
1127
|
-
attentions.append(
|
1128
|
-
DualTransformer2DModel(
|
1129
|
-
num_attention_heads,
|
1130
|
-
out_channels // num_attention_heads,
|
1131
|
-
in_channels=out_channels,
|
1132
|
-
num_layers=1,
|
1133
|
-
cross_attention_dim=cross_attention_dim,
|
1134
|
-
norm_num_groups=resnet_groups,
|
1135
|
-
)
|
1136
|
-
)
|
1137
|
-
|
1138
|
-
motion_modules.append(
|
1139
|
-
TransformerTemporalModel(
|
1140
|
-
num_attention_heads=temporal_num_attention_heads,
|
1141
|
-
in_channels=out_channels,
|
1142
|
-
norm_num_groups=resnet_groups,
|
1143
|
-
cross_attention_dim=temporal_cross_attention_dim,
|
1144
|
-
attention_bias=False,
|
1145
|
-
activation_fn="geglu",
|
1146
|
-
positional_embeddings="sinusoidal",
|
1147
|
-
num_positional_embeddings=temporal_max_seq_length,
|
1148
|
-
attention_head_dim=out_channels // temporal_num_attention_heads,
|
1149
|
-
)
|
1150
|
-
)
|
1151
|
-
|
1152
|
-
self.attentions = nn.ModuleList(attentions)
|
1153
|
-
self.resnets = nn.ModuleList(resnets)
|
1154
|
-
self.motion_modules = nn.ModuleList(motion_modules)
|
1155
|
-
|
1156
|
-
if add_downsample:
|
1157
|
-
self.downsamplers = nn.ModuleList(
|
1158
|
-
[
|
1159
|
-
Downsample2D(
|
1160
|
-
out_channels,
|
1161
|
-
use_conv=True,
|
1162
|
-
out_channels=out_channels,
|
1163
|
-
padding=downsample_padding,
|
1164
|
-
name="op",
|
1165
|
-
)
|
1166
|
-
]
|
1167
|
-
)
|
1168
|
-
else:
|
1169
|
-
self.downsamplers = None
|
1170
|
-
|
1171
|
-
self.gradient_checkpointing = False
|
1172
|
-
|
1173
|
-
def forward(
|
1174
|
-
self,
|
1175
|
-
hidden_states: torch.FloatTensor,
|
1176
|
-
temb: Optional[torch.FloatTensor] = None,
|
1177
|
-
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1178
|
-
attention_mask: Optional[torch.FloatTensor] = None,
|
1179
|
-
num_frames: int = 1,
|
1180
|
-
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1181
|
-
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1182
|
-
additional_residuals: Optional[torch.FloatTensor] = None,
|
1183
|
-
):
|
1184
|
-
if cross_attention_kwargs is not None:
|
1185
|
-
if cross_attention_kwargs.get("scale", None) is not None:
|
1186
|
-
logger.warning("Passing `scale` to `cross_attention_kwargs` is depcrecated. `scale` will be ignored.")
|
1187
|
-
|
1188
|
-
output_states = ()
|
1189
|
-
|
1190
|
-
blocks = list(zip(self.resnets, self.attentions, self.motion_modules))
|
1191
|
-
for i, (resnet, attn, motion_module) in enumerate(blocks):
|
1192
|
-
if self.training and self.gradient_checkpointing:
|
1193
|
-
|
1194
|
-
def create_custom_forward(module, return_dict=None):
|
1195
|
-
def custom_forward(*inputs):
|
1196
|
-
if return_dict is not None:
|
1197
|
-
return module(*inputs, return_dict=return_dict)
|
1198
|
-
else:
|
1199
|
-
return module(*inputs)
|
1200
|
-
|
1201
|
-
return custom_forward
|
1202
|
-
|
1203
|
-
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
1204
|
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
1205
|
-
create_custom_forward(resnet),
|
1206
|
-
hidden_states,
|
1207
|
-
temb,
|
1208
|
-
**ckpt_kwargs,
|
1209
|
-
)
|
1210
|
-
hidden_states = attn(
|
1211
|
-
hidden_states,
|
1212
|
-
encoder_hidden_states=encoder_hidden_states,
|
1213
|
-
cross_attention_kwargs=cross_attention_kwargs,
|
1214
|
-
attention_mask=attention_mask,
|
1215
|
-
encoder_attention_mask=encoder_attention_mask,
|
1216
|
-
return_dict=False,
|
1217
|
-
)[0]
|
1218
|
-
else:
|
1219
|
-
hidden_states = resnet(hidden_states, temb)
|
1220
|
-
hidden_states = attn(
|
1221
|
-
hidden_states,
|
1222
|
-
encoder_hidden_states=encoder_hidden_states,
|
1223
|
-
cross_attention_kwargs=cross_attention_kwargs,
|
1224
|
-
attention_mask=attention_mask,
|
1225
|
-
encoder_attention_mask=encoder_attention_mask,
|
1226
|
-
return_dict=False,
|
1227
|
-
)[0]
|
1228
|
-
hidden_states = motion_module(
|
1229
|
-
hidden_states,
|
1230
|
-
num_frames=num_frames,
|
1231
|
-
)[0]
|
1232
|
-
|
1233
|
-
# apply additional residuals to the output of the last pair of resnet and attention blocks
|
1234
|
-
if i == len(blocks) - 1 and additional_residuals is not None:
|
1235
|
-
hidden_states = hidden_states + additional_residuals
|
1236
|
-
|
1237
|
-
output_states = output_states + (hidden_states,)
|
1238
|
-
|
1239
|
-
if self.downsamplers is not None:
|
1240
|
-
for downsampler in self.downsamplers:
|
1241
|
-
hidden_states = downsampler(hidden_states)
|
1242
|
-
|
1243
|
-
output_states = output_states + (hidden_states,)
|
1244
|
-
|
1245
|
-
return hidden_states, output_states
|
1246
|
-
|
1247
|
-
|
1248
|
-
class CrossAttnUpBlockMotion(nn.Module):
|
1249
|
-
def __init__(
|
1250
|
-
self,
|
1251
|
-
in_channels: int,
|
1252
|
-
out_channels: int,
|
1253
|
-
prev_output_channel: int,
|
1254
|
-
temb_channels: int,
|
1255
|
-
resolution_idx: Optional[int] = None,
|
1256
|
-
dropout: float = 0.0,
|
1257
|
-
num_layers: int = 1,
|
1258
|
-
transformer_layers_per_block: int = 1,
|
1259
|
-
resnet_eps: float = 1e-6,
|
1260
|
-
resnet_time_scale_shift: str = "default",
|
1261
|
-
resnet_act_fn: str = "swish",
|
1262
|
-
resnet_groups: int = 32,
|
1263
|
-
resnet_pre_norm: bool = True,
|
1264
|
-
num_attention_heads: int = 1,
|
1265
|
-
cross_attention_dim: int = 1280,
|
1266
|
-
output_scale_factor: float = 1.0,
|
1267
|
-
add_upsample: bool = True,
|
1268
|
-
dual_cross_attention: bool = False,
|
1269
|
-
use_linear_projection: bool = False,
|
1270
|
-
only_cross_attention: bool = False,
|
1271
|
-
upcast_attention: bool = False,
|
1272
|
-
attention_type: str = "default",
|
1273
|
-
temporal_cross_attention_dim: Optional[int] = None,
|
1274
|
-
temporal_num_attention_heads: int = 8,
|
1275
|
-
temporal_max_seq_length: int = 32,
|
1276
|
-
):
|
1277
|
-
super().__init__()
|
1278
|
-
resnets = []
|
1279
|
-
attentions = []
|
1280
|
-
motion_modules = []
|
1281
|
-
|
1282
|
-
self.has_cross_attention = True
|
1283
|
-
self.num_attention_heads = num_attention_heads
|
1284
|
-
|
1285
|
-
for i in range(num_layers):
|
1286
|
-
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
1287
|
-
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
1288
|
-
|
1289
|
-
resnets.append(
|
1290
|
-
ResnetBlock2D(
|
1291
|
-
in_channels=resnet_in_channels + res_skip_channels,
|
1292
|
-
out_channels=out_channels,
|
1293
|
-
temb_channels=temb_channels,
|
1294
|
-
eps=resnet_eps,
|
1295
|
-
groups=resnet_groups,
|
1296
|
-
dropout=dropout,
|
1297
|
-
time_embedding_norm=resnet_time_scale_shift,
|
1298
|
-
non_linearity=resnet_act_fn,
|
1299
|
-
output_scale_factor=output_scale_factor,
|
1300
|
-
pre_norm=resnet_pre_norm,
|
1301
|
-
)
|
1302
|
-
)
|
1303
|
-
|
1304
|
-
if not dual_cross_attention:
|
1305
|
-
attentions.append(
|
1306
|
-
Transformer2DModel(
|
1307
|
-
num_attention_heads,
|
1308
|
-
out_channels // num_attention_heads,
|
1309
|
-
in_channels=out_channels,
|
1310
|
-
num_layers=transformer_layers_per_block,
|
1311
|
-
cross_attention_dim=cross_attention_dim,
|
1312
|
-
norm_num_groups=resnet_groups,
|
1313
|
-
use_linear_projection=use_linear_projection,
|
1314
|
-
only_cross_attention=only_cross_attention,
|
1315
|
-
upcast_attention=upcast_attention,
|
1316
|
-
attention_type=attention_type,
|
1317
|
-
)
|
1318
|
-
)
|
1319
|
-
else:
|
1320
|
-
attentions.append(
|
1321
|
-
DualTransformer2DModel(
|
1322
|
-
num_attention_heads,
|
1323
|
-
out_channels // num_attention_heads,
|
1324
|
-
in_channels=out_channels,
|
1325
|
-
num_layers=1,
|
1326
|
-
cross_attention_dim=cross_attention_dim,
|
1327
|
-
norm_num_groups=resnet_groups,
|
1328
|
-
)
|
1329
|
-
)
|
1330
|
-
motion_modules.append(
|
1331
|
-
TransformerTemporalModel(
|
1332
|
-
num_attention_heads=temporal_num_attention_heads,
|
1333
|
-
in_channels=out_channels,
|
1334
|
-
norm_num_groups=resnet_groups,
|
1335
|
-
cross_attention_dim=temporal_cross_attention_dim,
|
1336
|
-
attention_bias=False,
|
1337
|
-
activation_fn="geglu",
|
1338
|
-
positional_embeddings="sinusoidal",
|
1339
|
-
num_positional_embeddings=temporal_max_seq_length,
|
1340
|
-
attention_head_dim=out_channels // temporal_num_attention_heads,
|
1341
|
-
)
|
1342
|
-
)
|
1343
|
-
|
1344
|
-
self.attentions = nn.ModuleList(attentions)
|
1345
|
-
self.resnets = nn.ModuleList(resnets)
|
1346
|
-
self.motion_modules = nn.ModuleList(motion_modules)
|
1347
|
-
|
1348
|
-
if add_upsample:
|
1349
|
-
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
1350
|
-
else:
|
1351
|
-
self.upsamplers = None
|
1352
|
-
|
1353
|
-
self.gradient_checkpointing = False
|
1354
|
-
self.resolution_idx = resolution_idx
|
1355
|
-
|
1356
|
-
def forward(
|
1357
|
-
self,
|
1358
|
-
hidden_states: torch.FloatTensor,
|
1359
|
-
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
1360
|
-
temb: Optional[torch.FloatTensor] = None,
|
1361
|
-
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1362
|
-
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1363
|
-
upsample_size: Optional[int] = None,
|
1364
|
-
attention_mask: Optional[torch.FloatTensor] = None,
|
1365
|
-
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1366
|
-
num_frames: int = 1,
|
1367
|
-
) -> torch.FloatTensor:
|
1368
|
-
if cross_attention_kwargs is not None:
|
1369
|
-
if cross_attention_kwargs.get("scale", None) is not None:
|
1370
|
-
logger.warning("Passing `scale` to `cross_attention_kwargs` is depcrecated. `scale` will be ignored.")
|
1371
|
-
|
1372
|
-
is_freeu_enabled = (
|
1373
|
-
getattr(self, "s1", None)
|
1374
|
-
and getattr(self, "s2", None)
|
1375
|
-
and getattr(self, "b1", None)
|
1376
|
-
and getattr(self, "b2", None)
|
1377
|
-
)
|
1378
|
-
|
1379
|
-
blocks = zip(self.resnets, self.attentions, self.motion_modules)
|
1380
|
-
for resnet, attn, motion_module in blocks:
|
1381
|
-
# pop res hidden states
|
1382
|
-
res_hidden_states = res_hidden_states_tuple[-1]
|
1383
|
-
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
1384
|
-
|
1385
|
-
# FreeU: Only operate on the first two stages
|
1386
|
-
if is_freeu_enabled:
|
1387
|
-
hidden_states, res_hidden_states = apply_freeu(
|
1388
|
-
self.resolution_idx,
|
1389
|
-
hidden_states,
|
1390
|
-
res_hidden_states,
|
1391
|
-
s1=self.s1,
|
1392
|
-
s2=self.s2,
|
1393
|
-
b1=self.b1,
|
1394
|
-
b2=self.b2,
|
1395
|
-
)
|
1396
|
-
|
1397
|
-
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
1398
|
-
|
1399
|
-
if self.training and self.gradient_checkpointing:
|
1400
|
-
|
1401
|
-
def create_custom_forward(module, return_dict=None):
|
1402
|
-
def custom_forward(*inputs):
|
1403
|
-
if return_dict is not None:
|
1404
|
-
return module(*inputs, return_dict=return_dict)
|
1405
|
-
else:
|
1406
|
-
return module(*inputs)
|
1407
|
-
|
1408
|
-
return custom_forward
|
1409
|
-
|
1410
|
-
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
1411
|
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
1412
|
-
create_custom_forward(resnet),
|
1413
|
-
hidden_states,
|
1414
|
-
temb,
|
1415
|
-
**ckpt_kwargs,
|
1416
|
-
)
|
1417
|
-
hidden_states = attn(
|
1418
|
-
hidden_states,
|
1419
|
-
encoder_hidden_states=encoder_hidden_states,
|
1420
|
-
cross_attention_kwargs=cross_attention_kwargs,
|
1421
|
-
attention_mask=attention_mask,
|
1422
|
-
encoder_attention_mask=encoder_attention_mask,
|
1423
|
-
return_dict=False,
|
1424
|
-
)[0]
|
1425
|
-
else:
|
1426
|
-
hidden_states = resnet(hidden_states, temb)
|
1427
|
-
hidden_states = attn(
|
1428
|
-
hidden_states,
|
1429
|
-
encoder_hidden_states=encoder_hidden_states,
|
1430
|
-
cross_attention_kwargs=cross_attention_kwargs,
|
1431
|
-
attention_mask=attention_mask,
|
1432
|
-
encoder_attention_mask=encoder_attention_mask,
|
1433
|
-
return_dict=False,
|
1434
|
-
)[0]
|
1435
|
-
hidden_states = motion_module(
|
1436
|
-
hidden_states,
|
1437
|
-
num_frames=num_frames,
|
1438
|
-
)[0]
|
1439
|
-
|
1440
|
-
if self.upsamplers is not None:
|
1441
|
-
for upsampler in self.upsamplers:
|
1442
|
-
hidden_states = upsampler(hidden_states, upsample_size)
|
1443
|
-
|
1444
|
-
return hidden_states
|
1445
|
-
|
1446
|
-
|
1447
|
-
class UpBlockMotion(nn.Module):
|
1448
|
-
def __init__(
|
1449
|
-
self,
|
1450
|
-
in_channels: int,
|
1451
|
-
prev_output_channel: int,
|
1452
|
-
out_channels: int,
|
1453
|
-
temb_channels: int,
|
1454
|
-
resolution_idx: Optional[int] = None,
|
1455
|
-
dropout: float = 0.0,
|
1456
|
-
num_layers: int = 1,
|
1457
|
-
resnet_eps: float = 1e-6,
|
1458
|
-
resnet_time_scale_shift: str = "default",
|
1459
|
-
resnet_act_fn: str = "swish",
|
1460
|
-
resnet_groups: int = 32,
|
1461
|
-
resnet_pre_norm: bool = True,
|
1462
|
-
output_scale_factor: float = 1.0,
|
1463
|
-
add_upsample: bool = True,
|
1464
|
-
temporal_norm_num_groups: int = 32,
|
1465
|
-
temporal_cross_attention_dim: Optional[int] = None,
|
1466
|
-
temporal_num_attention_heads: int = 8,
|
1467
|
-
temporal_max_seq_length: int = 32,
|
1468
|
-
):
|
1469
|
-
super().__init__()
|
1470
|
-
resnets = []
|
1471
|
-
motion_modules = []
|
1472
|
-
|
1473
|
-
for i in range(num_layers):
|
1474
|
-
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
1475
|
-
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
1476
|
-
|
1477
|
-
resnets.append(
|
1478
|
-
ResnetBlock2D(
|
1479
|
-
in_channels=resnet_in_channels + res_skip_channels,
|
1480
|
-
out_channels=out_channels,
|
1481
|
-
temb_channels=temb_channels,
|
1482
|
-
eps=resnet_eps,
|
1483
|
-
groups=resnet_groups,
|
1484
|
-
dropout=dropout,
|
1485
|
-
time_embedding_norm=resnet_time_scale_shift,
|
1486
|
-
non_linearity=resnet_act_fn,
|
1487
|
-
output_scale_factor=output_scale_factor,
|
1488
|
-
pre_norm=resnet_pre_norm,
|
1489
|
-
)
|
1490
|
-
)
|
1491
|
-
|
1492
|
-
motion_modules.append(
|
1493
|
-
TransformerTemporalModel(
|
1494
|
-
num_attention_heads=temporal_num_attention_heads,
|
1495
|
-
in_channels=out_channels,
|
1496
|
-
norm_num_groups=temporal_norm_num_groups,
|
1497
|
-
cross_attention_dim=temporal_cross_attention_dim,
|
1498
|
-
attention_bias=False,
|
1499
|
-
activation_fn="geglu",
|
1500
|
-
positional_embeddings="sinusoidal",
|
1501
|
-
num_positional_embeddings=temporal_max_seq_length,
|
1502
|
-
attention_head_dim=out_channels // temporal_num_attention_heads,
|
1503
|
-
)
|
1504
|
-
)
|
1505
|
-
|
1506
|
-
self.resnets = nn.ModuleList(resnets)
|
1507
|
-
self.motion_modules = nn.ModuleList(motion_modules)
|
1508
|
-
|
1509
|
-
if add_upsample:
|
1510
|
-
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
1511
|
-
else:
|
1512
|
-
self.upsamplers = None
|
1513
|
-
|
1514
|
-
self.gradient_checkpointing = False
|
1515
|
-
self.resolution_idx = resolution_idx
|
1516
|
-
|
1517
|
-
def forward(
|
1518
|
-
self,
|
1519
|
-
hidden_states: torch.FloatTensor,
|
1520
|
-
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
1521
|
-
temb: Optional[torch.FloatTensor] = None,
|
1522
|
-
upsample_size=None,
|
1523
|
-
num_frames: int = 1,
|
1524
|
-
*args,
|
1525
|
-
**kwargs,
|
1526
|
-
) -> torch.FloatTensor:
|
1527
|
-
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
1528
|
-
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
1529
|
-
deprecate("scale", "1.0.0", deprecation_message)
|
1530
|
-
|
1531
|
-
is_freeu_enabled = (
|
1532
|
-
getattr(self, "s1", None)
|
1533
|
-
and getattr(self, "s2", None)
|
1534
|
-
and getattr(self, "b1", None)
|
1535
|
-
and getattr(self, "b2", None)
|
1536
|
-
)
|
1537
|
-
|
1538
|
-
blocks = zip(self.resnets, self.motion_modules)
|
1539
|
-
|
1540
|
-
for resnet, motion_module in blocks:
|
1541
|
-
# pop res hidden states
|
1542
|
-
res_hidden_states = res_hidden_states_tuple[-1]
|
1543
|
-
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
1544
|
-
|
1545
|
-
# FreeU: Only operate on the first two stages
|
1546
|
-
if is_freeu_enabled:
|
1547
|
-
hidden_states, res_hidden_states = apply_freeu(
|
1548
|
-
self.resolution_idx,
|
1549
|
-
hidden_states,
|
1550
|
-
res_hidden_states,
|
1551
|
-
s1=self.s1,
|
1552
|
-
s2=self.s2,
|
1553
|
-
b1=self.b1,
|
1554
|
-
b2=self.b2,
|
1555
|
-
)
|
1556
|
-
|
1557
|
-
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
1558
|
-
|
1559
|
-
if self.training and self.gradient_checkpointing:
|
1560
|
-
|
1561
|
-
def create_custom_forward(module):
|
1562
|
-
def custom_forward(*inputs):
|
1563
|
-
return module(*inputs)
|
1564
|
-
|
1565
|
-
return custom_forward
|
1566
|
-
|
1567
|
-
if is_torch_version(">=", "1.11.0"):
|
1568
|
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
1569
|
-
create_custom_forward(resnet),
|
1570
|
-
hidden_states,
|
1571
|
-
temb,
|
1572
|
-
use_reentrant=False,
|
1573
|
-
)
|
1574
|
-
else:
|
1575
|
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
1576
|
-
create_custom_forward(resnet), hidden_states, temb
|
1577
|
-
)
|
1578
|
-
|
1579
|
-
else:
|
1580
|
-
hidden_states = resnet(hidden_states, temb)
|
1581
|
-
hidden_states = motion_module(hidden_states, num_frames=num_frames)[0]
|
1582
|
-
|
1583
|
-
if self.upsamplers is not None:
|
1584
|
-
for upsampler in self.upsamplers:
|
1585
|
-
hidden_states = upsampler(hidden_states, upsample_size)
|
1586
|
-
|
1587
|
-
return hidden_states
|
1588
|
-
|
1589
|
-
|
1590
|
-
class UNetMidBlockCrossAttnMotion(nn.Module):
|
1591
|
-
def __init__(
|
1592
|
-
self,
|
1593
|
-
in_channels: int,
|
1594
|
-
temb_channels: int,
|
1595
|
-
dropout: float = 0.0,
|
1596
|
-
num_layers: int = 1,
|
1597
|
-
transformer_layers_per_block: int = 1,
|
1598
|
-
resnet_eps: float = 1e-6,
|
1599
|
-
resnet_time_scale_shift: str = "default",
|
1600
|
-
resnet_act_fn: str = "swish",
|
1601
|
-
resnet_groups: int = 32,
|
1602
|
-
resnet_pre_norm: bool = True,
|
1603
|
-
num_attention_heads: int = 1,
|
1604
|
-
output_scale_factor: float = 1.0,
|
1605
|
-
cross_attention_dim: int = 1280,
|
1606
|
-
dual_cross_attention: float = False,
|
1607
|
-
use_linear_projection: float = False,
|
1608
|
-
upcast_attention: float = False,
|
1609
|
-
attention_type: str = "default",
|
1610
|
-
temporal_num_attention_heads: int = 1,
|
1611
|
-
temporal_cross_attention_dim: Optional[int] = None,
|
1612
|
-
temporal_max_seq_length: int = 32,
|
1613
|
-
):
|
1614
|
-
super().__init__()
|
1615
|
-
|
1616
|
-
self.has_cross_attention = True
|
1617
|
-
self.num_attention_heads = num_attention_heads
|
1618
|
-
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
1619
|
-
|
1620
|
-
# there is always at least one resnet
|
1621
|
-
resnets = [
|
1622
|
-
ResnetBlock2D(
|
1623
|
-
in_channels=in_channels,
|
1624
|
-
out_channels=in_channels,
|
1625
|
-
temb_channels=temb_channels,
|
1626
|
-
eps=resnet_eps,
|
1627
|
-
groups=resnet_groups,
|
1628
|
-
dropout=dropout,
|
1629
|
-
time_embedding_norm=resnet_time_scale_shift,
|
1630
|
-
non_linearity=resnet_act_fn,
|
1631
|
-
output_scale_factor=output_scale_factor,
|
1632
|
-
pre_norm=resnet_pre_norm,
|
1633
|
-
)
|
1634
|
-
]
|
1635
|
-
attentions = []
|
1636
|
-
motion_modules = []
|
1637
|
-
|
1638
|
-
for _ in range(num_layers):
|
1639
|
-
if not dual_cross_attention:
|
1640
|
-
attentions.append(
|
1641
|
-
Transformer2DModel(
|
1642
|
-
num_attention_heads,
|
1643
|
-
in_channels // num_attention_heads,
|
1644
|
-
in_channels=in_channels,
|
1645
|
-
num_layers=transformer_layers_per_block,
|
1646
|
-
cross_attention_dim=cross_attention_dim,
|
1647
|
-
norm_num_groups=resnet_groups,
|
1648
|
-
use_linear_projection=use_linear_projection,
|
1649
|
-
upcast_attention=upcast_attention,
|
1650
|
-
attention_type=attention_type,
|
1651
|
-
)
|
1652
|
-
)
|
1653
|
-
else:
|
1654
|
-
attentions.append(
|
1655
|
-
DualTransformer2DModel(
|
1656
|
-
num_attention_heads,
|
1657
|
-
in_channels // num_attention_heads,
|
1658
|
-
in_channels=in_channels,
|
1659
|
-
num_layers=1,
|
1660
|
-
cross_attention_dim=cross_attention_dim,
|
1661
|
-
norm_num_groups=resnet_groups,
|
1662
|
-
)
|
1663
|
-
)
|
1664
|
-
resnets.append(
|
1665
|
-
ResnetBlock2D(
|
1666
|
-
in_channels=in_channels,
|
1667
|
-
out_channels=in_channels,
|
1668
|
-
temb_channels=temb_channels,
|
1669
|
-
eps=resnet_eps,
|
1670
|
-
groups=resnet_groups,
|
1671
|
-
dropout=dropout,
|
1672
|
-
time_embedding_norm=resnet_time_scale_shift,
|
1673
|
-
non_linearity=resnet_act_fn,
|
1674
|
-
output_scale_factor=output_scale_factor,
|
1675
|
-
pre_norm=resnet_pre_norm,
|
1676
|
-
)
|
1677
|
-
)
|
1678
|
-
motion_modules.append(
|
1679
|
-
TransformerTemporalModel(
|
1680
|
-
num_attention_heads=temporal_num_attention_heads,
|
1681
|
-
attention_head_dim=in_channels // temporal_num_attention_heads,
|
1682
|
-
in_channels=in_channels,
|
1683
|
-
norm_num_groups=resnet_groups,
|
1684
|
-
cross_attention_dim=temporal_cross_attention_dim,
|
1685
|
-
attention_bias=False,
|
1686
|
-
positional_embeddings="sinusoidal",
|
1687
|
-
num_positional_embeddings=temporal_max_seq_length,
|
1688
|
-
activation_fn="geglu",
|
1689
|
-
)
|
1690
|
-
)
|
1691
|
-
|
1692
|
-
self.attentions = nn.ModuleList(attentions)
|
1693
|
-
self.resnets = nn.ModuleList(resnets)
|
1694
|
-
self.motion_modules = nn.ModuleList(motion_modules)
|
1695
|
-
|
1696
|
-
self.gradient_checkpointing = False
|
1697
|
-
|
1698
|
-
def forward(
|
1699
|
-
self,
|
1700
|
-
hidden_states: torch.FloatTensor,
|
1701
|
-
temb: Optional[torch.FloatTensor] = None,
|
1702
|
-
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1703
|
-
attention_mask: Optional[torch.FloatTensor] = None,
|
1704
|
-
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1705
|
-
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1706
|
-
num_frames: int = 1,
|
1707
|
-
) -> torch.FloatTensor:
|
1708
|
-
if cross_attention_kwargs is not None:
|
1709
|
-
if cross_attention_kwargs.get("scale", None) is not None:
|
1710
|
-
logger.warning("Passing `scale` to `cross_attention_kwargs` is depcrecated. `scale` will be ignored.")
|
1711
|
-
|
1712
|
-
hidden_states = self.resnets[0](hidden_states, temb)
|
1713
|
-
|
1714
|
-
blocks = zip(self.attentions, self.resnets[1:], self.motion_modules)
|
1715
|
-
for attn, resnet, motion_module in blocks:
|
1716
|
-
if self.training and self.gradient_checkpointing:
|
1717
|
-
|
1718
|
-
def create_custom_forward(module, return_dict=None):
|
1719
|
-
def custom_forward(*inputs):
|
1720
|
-
if return_dict is not None:
|
1721
|
-
return module(*inputs, return_dict=return_dict)
|
1722
|
-
else:
|
1723
|
-
return module(*inputs)
|
1724
|
-
|
1725
|
-
return custom_forward
|
1726
|
-
|
1727
|
-
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
1728
|
-
hidden_states = attn(
|
1729
|
-
hidden_states,
|
1730
|
-
encoder_hidden_states=encoder_hidden_states,
|
1731
|
-
cross_attention_kwargs=cross_attention_kwargs,
|
1732
|
-
attention_mask=attention_mask,
|
1733
|
-
encoder_attention_mask=encoder_attention_mask,
|
1734
|
-
return_dict=False,
|
1735
|
-
)[0]
|
1736
|
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
1737
|
-
create_custom_forward(motion_module),
|
1738
|
-
hidden_states,
|
1739
|
-
temb,
|
1740
|
-
**ckpt_kwargs,
|
1741
|
-
)
|
1742
|
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
1743
|
-
create_custom_forward(resnet),
|
1744
|
-
hidden_states,
|
1745
|
-
temb,
|
1746
|
-
**ckpt_kwargs,
|
1747
|
-
)
|
1748
|
-
else:
|
1749
|
-
hidden_states = attn(
|
1750
|
-
hidden_states,
|
1751
|
-
encoder_hidden_states=encoder_hidden_states,
|
1752
|
-
cross_attention_kwargs=cross_attention_kwargs,
|
1753
|
-
attention_mask=attention_mask,
|
1754
|
-
encoder_attention_mask=encoder_attention_mask,
|
1755
|
-
return_dict=False,
|
1756
|
-
)[0]
|
1757
|
-
hidden_states = motion_module(
|
1758
|
-
hidden_states,
|
1759
|
-
num_frames=num_frames,
|
1760
|
-
)[0]
|
1761
|
-
hidden_states = resnet(hidden_states, temb)
|
1762
|
-
|
1763
|
-
return hidden_states
|
1764
|
-
|
1765
|
-
|
1766
|
-
class MidBlockTemporalDecoder(nn.Module):
|
1767
|
-
def __init__(
|
1768
|
-
self,
|
1769
|
-
in_channels: int,
|
1770
|
-
out_channels: int,
|
1771
|
-
attention_head_dim: int = 512,
|
1772
|
-
num_layers: int = 1,
|
1773
|
-
upcast_attention: bool = False,
|
1774
|
-
):
|
1775
|
-
super().__init__()
|
1776
|
-
|
1777
|
-
resnets = []
|
1778
|
-
attentions = []
|
1779
|
-
for i in range(num_layers):
|
1780
|
-
input_channels = in_channels if i == 0 else out_channels
|
1781
|
-
resnets.append(
|
1782
|
-
SpatioTemporalResBlock(
|
1783
|
-
in_channels=input_channels,
|
1784
|
-
out_channels=out_channels,
|
1785
|
-
temb_channels=None,
|
1786
|
-
eps=1e-6,
|
1787
|
-
temporal_eps=1e-5,
|
1788
|
-
merge_factor=0.0,
|
1789
|
-
merge_strategy="learned",
|
1790
|
-
switch_spatial_to_temporal_mix=True,
|
1791
|
-
)
|
1792
|
-
)
|
1793
|
-
|
1794
|
-
attentions.append(
|
1795
|
-
Attention(
|
1796
|
-
query_dim=in_channels,
|
1797
|
-
heads=in_channels // attention_head_dim,
|
1798
|
-
dim_head=attention_head_dim,
|
1799
|
-
eps=1e-6,
|
1800
|
-
upcast_attention=upcast_attention,
|
1801
|
-
norm_num_groups=32,
|
1802
|
-
bias=True,
|
1803
|
-
residual_connection=True,
|
1804
|
-
)
|
1805
|
-
)
|
1806
|
-
|
1807
|
-
self.attentions = nn.ModuleList(attentions)
|
1808
|
-
self.resnets = nn.ModuleList(resnets)
|
1809
|
-
|
1810
|
-
def forward(
|
1811
|
-
self,
|
1812
|
-
hidden_states: torch.FloatTensor,
|
1813
|
-
image_only_indicator: torch.FloatTensor,
|
1814
|
-
):
|
1815
|
-
hidden_states = self.resnets[0](
|
1816
|
-
hidden_states,
|
1817
|
-
image_only_indicator=image_only_indicator,
|
1818
|
-
)
|
1819
|
-
for resnet, attn in zip(self.resnets[1:], self.attentions):
|
1820
|
-
hidden_states = attn(hidden_states)
|
1821
|
-
hidden_states = resnet(
|
1822
|
-
hidden_states,
|
1823
|
-
image_only_indicator=image_only_indicator,
|
1824
|
-
)
|
1825
|
-
|
1826
|
-
return hidden_states
|
1827
|
-
|
1828
|
-
|
1829
|
-
class UpBlockTemporalDecoder(nn.Module):
|
1830
|
-
def __init__(
|
1831
|
-
self,
|
1832
|
-
in_channels: int,
|
1833
|
-
out_channels: int,
|
1834
|
-
num_layers: int = 1,
|
1835
|
-
add_upsample: bool = True,
|
1836
|
-
):
|
1837
|
-
super().__init__()
|
1838
|
-
resnets = []
|
1839
|
-
for i in range(num_layers):
|
1840
|
-
input_channels = in_channels if i == 0 else out_channels
|
1841
|
-
|
1842
|
-
resnets.append(
|
1843
|
-
SpatioTemporalResBlock(
|
1844
|
-
in_channels=input_channels,
|
1845
|
-
out_channels=out_channels,
|
1846
|
-
temb_channels=None,
|
1847
|
-
eps=1e-6,
|
1848
|
-
temporal_eps=1e-5,
|
1849
|
-
merge_factor=0.0,
|
1850
|
-
merge_strategy="learned",
|
1851
|
-
switch_spatial_to_temporal_mix=True,
|
1852
|
-
)
|
1853
|
-
)
|
1854
|
-
self.resnets = nn.ModuleList(resnets)
|
1855
|
-
|
1856
|
-
if add_upsample:
|
1857
|
-
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
1858
|
-
else:
|
1859
|
-
self.upsamplers = None
|
1860
|
-
|
1861
|
-
def forward(
|
1862
|
-
self,
|
1863
|
-
hidden_states: torch.FloatTensor,
|
1864
|
-
image_only_indicator: torch.FloatTensor,
|
1865
|
-
) -> torch.FloatTensor:
|
1866
|
-
for resnet in self.resnets:
|
1867
|
-
hidden_states = resnet(
|
1868
|
-
hidden_states,
|
1869
|
-
image_only_indicator=image_only_indicator,
|
1870
|
-
)
|
1871
|
-
|
1872
|
-
if self.upsamplers is not None:
|
1873
|
-
for upsampler in self.upsamplers:
|
1874
|
-
hidden_states = upsampler(hidden_states)
|
1875
|
-
|
1876
|
-
return hidden_states
|
1877
|
-
|
1878
|
-
|
1879
|
-
class UNetMidBlockSpatioTemporal(nn.Module):
|
1880
|
-
def __init__(
|
1881
|
-
self,
|
1882
|
-
in_channels: int,
|
1883
|
-
temb_channels: int,
|
1884
|
-
num_layers: int = 1,
|
1885
|
-
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
1886
|
-
num_attention_heads: int = 1,
|
1887
|
-
cross_attention_dim: int = 1280,
|
1888
|
-
):
|
1889
|
-
super().__init__()
|
1890
|
-
|
1891
|
-
self.has_cross_attention = True
|
1892
|
-
self.num_attention_heads = num_attention_heads
|
1893
|
-
|
1894
|
-
# support for variable transformer layers per block
|
1895
|
-
if isinstance(transformer_layers_per_block, int):
|
1896
|
-
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
1027
|
+
# support for variable transformer layers per block
|
1028
|
+
if isinstance(transformer_layers_per_block, int):
|
1029
|
+
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
1897
1030
|
|
1898
1031
|
# there is always at least one resnet
|
1899
1032
|
resnets = [
|
@@ -1933,11 +1066,11 @@ class UNetMidBlockSpatioTemporal(nn.Module):
|
|
1933
1066
|
|
1934
1067
|
def forward(
|
1935
1068
|
self,
|
1936
|
-
hidden_states: torch.
|
1937
|
-
temb: Optional[torch.
|
1938
|
-
encoder_hidden_states: Optional[torch.
|
1069
|
+
hidden_states: torch.Tensor,
|
1070
|
+
temb: Optional[torch.Tensor] = None,
|
1071
|
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1939
1072
|
image_only_indicator: Optional[torch.Tensor] = None,
|
1940
|
-
) -> torch.
|
1073
|
+
) -> torch.Tensor:
|
1941
1074
|
hidden_states = self.resnets[0](
|
1942
1075
|
hidden_states,
|
1943
1076
|
temb,
|
@@ -1945,7 +1078,7 @@ class UNetMidBlockSpatioTemporal(nn.Module):
|
|
1945
1078
|
)
|
1946
1079
|
|
1947
1080
|
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
1948
|
-
if
|
1081
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing: # TODO
|
1949
1082
|
|
1950
1083
|
def create_custom_forward(module, return_dict=None):
|
1951
1084
|
def custom_forward(*inputs):
|
@@ -2029,13 +1162,13 @@ class DownBlockSpatioTemporal(nn.Module):
|
|
2029
1162
|
|
2030
1163
|
def forward(
|
2031
1164
|
self,
|
2032
|
-
hidden_states: torch.
|
2033
|
-
temb: Optional[torch.
|
1165
|
+
hidden_states: torch.Tensor,
|
1166
|
+
temb: Optional[torch.Tensor] = None,
|
2034
1167
|
image_only_indicator: Optional[torch.Tensor] = None,
|
2035
|
-
) -> Tuple[torch.
|
1168
|
+
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]:
|
2036
1169
|
output_states = ()
|
2037
1170
|
for resnet in self.resnets:
|
2038
|
-
if
|
1171
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
2039
1172
|
|
2040
1173
|
def create_custom_forward(module):
|
2041
1174
|
def custom_forward(*inputs):
|
@@ -2139,16 +1272,16 @@ class CrossAttnDownBlockSpatioTemporal(nn.Module):
|
|
2139
1272
|
|
2140
1273
|
def forward(
|
2141
1274
|
self,
|
2142
|
-
hidden_states: torch.
|
2143
|
-
temb: Optional[torch.
|
2144
|
-
encoder_hidden_states: Optional[torch.
|
1275
|
+
hidden_states: torch.Tensor,
|
1276
|
+
temb: Optional[torch.Tensor] = None,
|
1277
|
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
2145
1278
|
image_only_indicator: Optional[torch.Tensor] = None,
|
2146
|
-
) -> Tuple[torch.
|
1279
|
+
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]:
|
2147
1280
|
output_states = ()
|
2148
1281
|
|
2149
1282
|
blocks = list(zip(self.resnets, self.attentions))
|
2150
1283
|
for resnet, attn in blocks:
|
2151
|
-
if
|
1284
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing: # TODO
|
2152
1285
|
|
2153
1286
|
def create_custom_forward(module, return_dict=None):
|
2154
1287
|
def custom_forward(*inputs):
|
@@ -2238,11 +1371,12 @@ class UpBlockSpatioTemporal(nn.Module):
|
|
2238
1371
|
|
2239
1372
|
def forward(
|
2240
1373
|
self,
|
2241
|
-
hidden_states: torch.
|
2242
|
-
res_hidden_states_tuple: Tuple[torch.
|
2243
|
-
temb: Optional[torch.
|
1374
|
+
hidden_states: torch.Tensor,
|
1375
|
+
res_hidden_states_tuple: Tuple[torch.Tensor, ...],
|
1376
|
+
temb: Optional[torch.Tensor] = None,
|
2244
1377
|
image_only_indicator: Optional[torch.Tensor] = None,
|
2245
|
-
|
1378
|
+
upsample_size: Optional[int] = None,
|
1379
|
+
) -> torch.Tensor:
|
2246
1380
|
for resnet in self.resnets:
|
2247
1381
|
# pop res hidden states
|
2248
1382
|
res_hidden_states = res_hidden_states_tuple[-1]
|
@@ -2250,7 +1384,7 @@ class UpBlockSpatioTemporal(nn.Module):
|
|
2250
1384
|
|
2251
1385
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
2252
1386
|
|
2253
|
-
if
|
1387
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
2254
1388
|
|
2255
1389
|
def create_custom_forward(module):
|
2256
1390
|
def custom_forward(*inputs):
|
@@ -2282,7 +1416,7 @@ class UpBlockSpatioTemporal(nn.Module):
|
|
2282
1416
|
|
2283
1417
|
if self.upsamplers is not None:
|
2284
1418
|
for upsampler in self.upsamplers:
|
2285
|
-
hidden_states = upsampler(hidden_states)
|
1419
|
+
hidden_states = upsampler(hidden_states, upsample_size)
|
2286
1420
|
|
2287
1421
|
return hidden_states
|
2288
1422
|
|
@@ -2347,12 +1481,13 @@ class CrossAttnUpBlockSpatioTemporal(nn.Module):
|
|
2347
1481
|
|
2348
1482
|
def forward(
|
2349
1483
|
self,
|
2350
|
-
hidden_states: torch.
|
2351
|
-
res_hidden_states_tuple: Tuple[torch.
|
2352
|
-
temb: Optional[torch.
|
2353
|
-
encoder_hidden_states: Optional[torch.
|
1484
|
+
hidden_states: torch.Tensor,
|
1485
|
+
res_hidden_states_tuple: Tuple[torch.Tensor, ...],
|
1486
|
+
temb: Optional[torch.Tensor] = None,
|
1487
|
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
2354
1488
|
image_only_indicator: Optional[torch.Tensor] = None,
|
2355
|
-
|
1489
|
+
upsample_size: Optional[int] = None,
|
1490
|
+
) -> torch.Tensor:
|
2356
1491
|
for resnet, attn in zip(self.resnets, self.attentions):
|
2357
1492
|
# pop res hidden states
|
2358
1493
|
res_hidden_states = res_hidden_states_tuple[-1]
|
@@ -2360,7 +1495,7 @@ class CrossAttnUpBlockSpatioTemporal(nn.Module):
|
|
2360
1495
|
|
2361
1496
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
2362
1497
|
|
2363
|
-
if
|
1498
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing: # TODO
|
2364
1499
|
|
2365
1500
|
def create_custom_forward(module, return_dict=None):
|
2366
1501
|
def custom_forward(*inputs):
|
@@ -2400,6 +1535,6 @@ class CrossAttnUpBlockSpatioTemporal(nn.Module):
|
|
2400
1535
|
|
2401
1536
|
if self.upsamplers is not None:
|
2402
1537
|
for upsampler in self.upsamplers:
|
2403
|
-
hidden_states = upsampler(hidden_states)
|
1538
|
+
hidden_states = upsampler(hidden_states, upsample_size)
|
2404
1539
|
|
2405
1540
|
return hidden_states
|