diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -102,6 +102,7 @@ class AutoencoderTiny(ModelMixin, ConfigMixin):
102
102
  encoder_block_out_channels: Tuple[int, ...] = (64, 64, 64, 64),
103
103
  decoder_block_out_channels: Tuple[int, ...] = (64, 64, 64, 64),
104
104
  act_fn: str = "relu",
105
+ upsample_fn: str = "nearest",
105
106
  latent_channels: int = 4,
106
107
  upsampling_scaling_factor: int = 2,
107
108
  num_encoder_blocks: Tuple[int, ...] = (1, 3, 3, 3),
@@ -110,6 +111,7 @@ class AutoencoderTiny(ModelMixin, ConfigMixin):
110
111
  latent_shift: float = 0.5,
111
112
  force_upcast: bool = False,
112
113
  scaling_factor: float = 1.0,
114
+ shift_factor: float = 0.0,
113
115
  ):
114
116
  super().__init__()
115
117
 
@@ -133,6 +135,7 @@ class AutoencoderTiny(ModelMixin, ConfigMixin):
133
135
  block_out_channels=decoder_block_out_channels,
134
136
  upsampling_scaling_factor=upsampling_scaling_factor,
135
137
  act_fn=act_fn,
138
+ upsample_fn=upsample_fn,
136
139
  )
137
140
 
138
141
  self.latent_magnitude = latent_magnitude
@@ -155,11 +158,11 @@ class AutoencoderTiny(ModelMixin, ConfigMixin):
155
158
  if isinstance(module, (EncoderTiny, DecoderTiny)):
156
159
  module.gradient_checkpointing = value
157
160
 
158
- def scale_latents(self, x: torch.FloatTensor) -> torch.FloatTensor:
161
+ def scale_latents(self, x: torch.Tensor) -> torch.Tensor:
159
162
  """raw latents -> [0, 1]"""
160
163
  return x.div(2 * self.latent_magnitude).add(self.latent_shift).clamp(0, 1)
161
164
 
162
- def unscale_latents(self, x: torch.FloatTensor) -> torch.FloatTensor:
165
+ def unscale_latents(self, x: torch.Tensor) -> torch.Tensor:
163
166
  """[0, 1] -> raw latents"""
164
167
  return x.sub(self.latent_shift).mul(2 * self.latent_magnitude)
165
168
 
@@ -192,7 +195,7 @@ class AutoencoderTiny(ModelMixin, ConfigMixin):
192
195
  """
193
196
  self.enable_tiling(False)
194
197
 
195
- def _tiled_encode(self, x: torch.FloatTensor) -> torch.FloatTensor:
198
+ def _tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
196
199
  r"""Encode a batch of images using a tiled encoder.
197
200
 
198
201
  When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
@@ -200,10 +203,10 @@ class AutoencoderTiny(ModelMixin, ConfigMixin):
200
203
  tiles overlap and are blended together to form a smooth output.
201
204
 
202
205
  Args:
203
- x (`torch.FloatTensor`): Input batch of images.
206
+ x (`torch.Tensor`): Input batch of images.
204
207
 
205
208
  Returns:
206
- `torch.FloatTensor`: Encoded batch of images.
209
+ `torch.Tensor`: Encoded batch of images.
207
210
  """
208
211
  # scale of encoder output relative to input
209
212
  sf = self.spatial_scale_factor
@@ -240,7 +243,7 @@ class AutoencoderTiny(ModelMixin, ConfigMixin):
240
243
  tile_out.copy_(blend_mask * tile + (1 - blend_mask) * tile_out)
241
244
  return out
242
245
 
243
- def _tiled_decode(self, x: torch.FloatTensor) -> torch.FloatTensor:
246
+ def _tiled_decode(self, x: torch.Tensor) -> torch.Tensor:
244
247
  r"""Encode a batch of images using a tiled encoder.
245
248
 
246
249
  When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
@@ -248,10 +251,10 @@ class AutoencoderTiny(ModelMixin, ConfigMixin):
248
251
  tiles overlap and are blended together to form a smooth output.
249
252
 
250
253
  Args:
251
- x (`torch.FloatTensor`): Input batch of images.
254
+ x (`torch.Tensor`): Input batch of images.
252
255
 
253
256
  Returns:
254
- `torch.FloatTensor`: Encoded batch of images.
257
+ `torch.Tensor`: Encoded batch of images.
255
258
  """
256
259
  # scale of decoder output relative to input
257
260
  sf = self.spatial_scale_factor
@@ -288,9 +291,7 @@ class AutoencoderTiny(ModelMixin, ConfigMixin):
288
291
  return out
289
292
 
290
293
  @apply_forward_hook
291
- def encode(
292
- self, x: torch.FloatTensor, return_dict: bool = True
293
- ) -> Union[AutoencoderTinyOutput, Tuple[torch.FloatTensor]]:
294
+ def encode(self, x: torch.Tensor, return_dict: bool = True) -> Union[AutoencoderTinyOutput, Tuple[torch.Tensor]]:
294
295
  if self.use_slicing and x.shape[0] > 1:
295
296
  output = [
296
297
  self._tiled_encode(x_slice) if self.use_tiling else self.encoder(x_slice) for x_slice in x.split(1)
@@ -306,10 +307,12 @@ class AutoencoderTiny(ModelMixin, ConfigMixin):
306
307
 
307
308
  @apply_forward_hook
308
309
  def decode(
309
- self, x: torch.FloatTensor, generator: Optional[torch.Generator] = None, return_dict: bool = True
310
- ) -> Union[DecoderOutput, Tuple[torch.FloatTensor]]:
310
+ self, x: torch.Tensor, generator: Optional[torch.Generator] = None, return_dict: bool = True
311
+ ) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
311
312
  if self.use_slicing and x.shape[0] > 1:
312
- output = [self._tiled_decode(x_slice) if self.use_tiling else self.decoder(x) for x_slice in x.split(1)]
313
+ output = [
314
+ self._tiled_decode(x_slice) if self.use_tiling else self.decoder(x_slice) for x_slice in x.split(1)
315
+ ]
313
316
  output = torch.cat(output)
314
317
  else:
315
318
  output = self._tiled_decode(x) if self.use_tiling else self.decoder(x)
@@ -321,12 +324,12 @@ class AutoencoderTiny(ModelMixin, ConfigMixin):
321
324
 
322
325
  def forward(
323
326
  self,
324
- sample: torch.FloatTensor,
327
+ sample: torch.Tensor,
325
328
  return_dict: bool = True,
326
- ) -> Union[DecoderOutput, Tuple[torch.FloatTensor]]:
329
+ ) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
327
330
  r"""
328
331
  Args:
329
- sample (`torch.FloatTensor`): Input sample.
332
+ sample (`torch.Tensor`): Input sample.
330
333
  return_dict (`bool`, *optional*, defaults to `True`):
331
334
  Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
332
335
  """
@@ -340,7 +343,7 @@ class AutoencoderTiny(ModelMixin, ConfigMixin):
340
343
  # as if we were loading the latents from an RGBA uint8 image.
341
344
  unscaled_enc = self.unscale_latents(scaled_enc / 255.0)
342
345
 
343
- dec = self.decode(unscaled_enc)
346
+ dec = self.decode(unscaled_enc).sample
344
347
 
345
348
  if not return_dict:
346
349
  return (dec,)
@@ -63,7 +63,8 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
63
63
  ... "runwayml/stable-diffusion-v1-5", vae=vae, torch_dtype=torch.float16
64
64
  ... ).to("cuda")
65
65
 
66
- >>> pipe("horse", generator=torch.manual_seed(0)).images
66
+ >>> image = pipe("horse", generator=torch.manual_seed(0)).images[0]
67
+ >>> image
67
68
  ```
68
69
  """
69
70
 
@@ -72,6 +73,7 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
72
73
  self,
73
74
  scaling_factor: float = 0.18215,
74
75
  latent_channels: int = 4,
76
+ sample_size: int = 32,
75
77
  encoder_act_fn: str = "silu",
76
78
  encoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
77
79
  encoder_double_z: bool = True,
@@ -153,6 +155,16 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
153
155
  self.use_slicing = False
154
156
  self.use_tiling = False
155
157
 
158
+ # only relevant if vae tiling is enabled
159
+ self.tile_sample_min_size = self.config.sample_size
160
+ sample_size = (
161
+ self.config.sample_size[0]
162
+ if isinstance(self.config.sample_size, (list, tuple))
163
+ else self.config.sample_size
164
+ )
165
+ self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1)))
166
+ self.tile_overlap_factor = 0.25
167
+
156
168
  # Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.enable_tiling
157
169
  def enable_tiling(self, use_tiling: bool = True):
158
170
  r"""
@@ -199,7 +211,7 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
199
211
 
200
212
  def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
201
213
  if hasattr(module, "get_processor"):
202
- processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
214
+ processors[f"{name}.processor"] = module.get_processor()
203
215
 
204
216
  for sub_name, child in module.named_children():
205
217
  fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
@@ -264,21 +276,21 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
264
276
 
265
277
  @apply_forward_hook
266
278
  def encode(
267
- self, x: torch.FloatTensor, return_dict: bool = True
279
+ self, x: torch.Tensor, return_dict: bool = True
268
280
  ) -> Union[ConsistencyDecoderVAEOutput, Tuple[DiagonalGaussianDistribution]]:
269
281
  """
270
282
  Encode a batch of images into latents.
271
283
 
272
284
  Args:
273
- x (`torch.FloatTensor`): Input batch of images.
285
+ x (`torch.Tensor`): Input batch of images.
274
286
  return_dict (`bool`, *optional*, defaults to `True`):
275
- Whether to return a [`~models.consistecy_decoder_vae.ConsistencyDecoderOoutput`] instead of a plain
276
- tuple.
287
+ Whether to return a [`~models.autoencoders.consistency_decoder_vae.ConsistencyDecoderVAEOutput`]
288
+ instead of a plain tuple.
277
289
 
278
290
  Returns:
279
291
  The latent representations of the encoded images. If `return_dict` is True, a
280
- [`~models.consistency_decoder_vae.ConsistencyDecoderVAEOutput`] is returned, otherwise a plain `tuple`
281
- is returned.
292
+ [`~models.autoencoders.consistency_decoder_vae.ConsistencyDecoderVAEOutput`] is returned, otherwise a
293
+ plain `tuple` is returned.
282
294
  """
283
295
  if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
284
296
  return self.tiled_encode(x, return_dict=return_dict)
@@ -300,11 +312,24 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
300
312
  @apply_forward_hook
301
313
  def decode(
302
314
  self,
303
- z: torch.FloatTensor,
315
+ z: torch.Tensor,
304
316
  generator: Optional[torch.Generator] = None,
305
317
  return_dict: bool = True,
306
318
  num_inference_steps: int = 2,
307
- ) -> Union[DecoderOutput, Tuple[torch.FloatTensor]]:
319
+ ) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
320
+ """
321
+ Decodes the input latent vector `z` using the consistency decoder VAE model.
322
+
323
+ Args:
324
+ z (torch.Tensor): The input latent vector.
325
+ generator (Optional[torch.Generator]): The random number generator. Default is None.
326
+ return_dict (bool): Whether to return the output as a dictionary. Default is True.
327
+ num_inference_steps (int): The number of inference steps. Default is 2.
328
+
329
+ Returns:
330
+ Union[DecoderOutput, Tuple[torch.Tensor]]: The decoded output.
331
+
332
+ """
308
333
  z = (z * self.config.scaling_factor - self.means) / self.stds
309
334
 
310
335
  scale_factor = 2 ** (len(self.config.block_out_channels) - 1)
@@ -345,7 +370,7 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
345
370
  b[:, :, :, x] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
346
371
  return b
347
372
 
348
- def tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True) -> ConsistencyDecoderVAEOutput:
373
+ def tiled_encode(self, x: torch.Tensor, return_dict: bool = True) -> Union[ConsistencyDecoderVAEOutput, Tuple]:
349
374
  r"""Encode a batch of images using a tiled encoder.
350
375
 
351
376
  When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
@@ -355,15 +380,15 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
355
380
  output, but they should be much less noticeable.
356
381
 
357
382
  Args:
358
- x (`torch.FloatTensor`): Input batch of images.
383
+ x (`torch.Tensor`): Input batch of images.
359
384
  return_dict (`bool`, *optional*, defaults to `True`):
360
- Whether or not to return a [`~models.consistency_decoder_vae.ConsistencyDecoderVAEOutput`] instead of a
361
- plain tuple.
385
+ Whether or not to return a [`~models.autoencoders.consistency_decoder_vae.ConsistencyDecoderVAEOutput`]
386
+ instead of a plain tuple.
362
387
 
363
388
  Returns:
364
- [`~models.consistency_decoder_vae.ConsistencyDecoderVAEOutput`] or `tuple`:
365
- If return_dict is True, a [`~models.consistency_decoder_vae.ConsistencyDecoderVAEOutput`] is returned,
366
- otherwise a plain `tuple` is returned.
389
+ [`~models.autoencoders.consistency_decoder_vae.ConsistencyDecoderVAEOutput`] or `tuple`:
390
+ If return_dict is True, a [`~models.autoencoders.consistency_decoder_vae.ConsistencyDecoderVAEOutput`]
391
+ is returned, otherwise a plain `tuple` is returned.
367
392
  """
368
393
  overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
369
394
  blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
@@ -402,14 +427,14 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
402
427
 
403
428
  def forward(
404
429
  self,
405
- sample: torch.FloatTensor,
430
+ sample: torch.Tensor,
406
431
  sample_posterior: bool = False,
407
432
  return_dict: bool = True,
408
433
  generator: Optional[torch.Generator] = None,
409
- ) -> Union[DecoderOutput, Tuple[torch.FloatTensor]]:
434
+ ) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
410
435
  r"""
411
436
  Args:
412
- sample (`torch.FloatTensor`): Input sample.
437
+ sample (`torch.Tensor`): Input sample.
413
438
  sample_posterior (`bool`, *optional*, defaults to `False`):
414
439
  Whether to sample from the posterior.
415
440
  return_dict (`bool`, *optional*, defaults to `True`):
@@ -30,17 +30,31 @@ from ..unets.unet_2d_blocks import (
30
30
  )
31
31
 
32
32
 
33
+ @dataclass
34
+ class EncoderOutput(BaseOutput):
35
+ r"""
36
+ Output of encoding method.
37
+
38
+ Args:
39
+ latent (`torch.Tensor` of shape `(batch_size, num_channels, latent_height, latent_width)`):
40
+ The encoded latent.
41
+ """
42
+
43
+ latent: torch.Tensor
44
+
45
+
33
46
  @dataclass
34
47
  class DecoderOutput(BaseOutput):
35
48
  r"""
36
49
  Output of decoding method.
37
50
 
38
51
  Args:
39
- sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
52
+ sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`):
40
53
  The decoded output sample from the last layer of the model.
41
54
  """
42
55
 
43
- sample: torch.FloatTensor
56
+ sample: torch.Tensor
57
+ commit_loss: Optional[torch.FloatTensor] = None
44
58
 
45
59
 
46
60
  class Encoder(nn.Module):
@@ -90,7 +104,6 @@ class Encoder(nn.Module):
90
104
  padding=1,
91
105
  )
92
106
 
93
- self.mid_block = None
94
107
  self.down_blocks = nn.ModuleList([])
95
108
 
96
109
  # down
@@ -137,12 +150,12 @@ class Encoder(nn.Module):
137
150
 
138
151
  self.gradient_checkpointing = False
139
152
 
140
- def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
153
+ def forward(self, sample: torch.Tensor) -> torch.Tensor:
141
154
  r"""The forward method of the `Encoder` class."""
142
155
 
143
156
  sample = self.conv_in(sample)
144
157
 
145
- if self.training and self.gradient_checkpointing:
158
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
146
159
 
147
160
  def create_custom_forward(module):
148
161
  def custom_forward(*inputs):
@@ -228,7 +241,6 @@ class Decoder(nn.Module):
228
241
  padding=1,
229
242
  )
230
243
 
231
- self.mid_block = None
232
244
  self.up_blocks = nn.ModuleList([])
233
245
 
234
246
  temb_channels = in_channels if norm_type == "spatial" else None
@@ -284,15 +296,15 @@ class Decoder(nn.Module):
284
296
 
285
297
  def forward(
286
298
  self,
287
- sample: torch.FloatTensor,
288
- latent_embeds: Optional[torch.FloatTensor] = None,
289
- ) -> torch.FloatTensor:
299
+ sample: torch.Tensor,
300
+ latent_embeds: Optional[torch.Tensor] = None,
301
+ ) -> torch.Tensor:
290
302
  r"""The forward method of the `Decoder` class."""
291
303
 
292
304
  sample = self.conv_in(sample)
293
305
 
294
306
  upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
295
- if self.training and self.gradient_checkpointing:
307
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
296
308
 
297
309
  def create_custom_forward(module):
298
310
  def custom_forward(*inputs):
@@ -369,7 +381,7 @@ class UpSample(nn.Module):
369
381
  self.out_channels = out_channels
370
382
  self.deconv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1)
371
383
 
372
- def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
384
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
373
385
  r"""The forward method of the `UpSample` class."""
374
386
  x = torch.relu(x)
375
387
  x = self.deconv(x)
@@ -418,7 +430,7 @@ class MaskConditionEncoder(nn.Module):
418
430
 
419
431
  self.layers = nn.Sequential(*layers)
420
432
 
421
- def forward(self, x: torch.FloatTensor, mask=None) -> torch.FloatTensor:
433
+ def forward(self, x: torch.Tensor, mask=None) -> torch.Tensor:
422
434
  r"""The forward method of the `MaskConditionEncoder` class."""
423
435
  out = {}
424
436
  for l in range(len(self.layers)):
@@ -474,7 +486,6 @@ class MaskConditionDecoder(nn.Module):
474
486
  padding=1,
475
487
  )
476
488
 
477
- self.mid_block = None
478
489
  self.up_blocks = nn.ModuleList([])
479
490
 
480
491
  temb_channels = in_channels if norm_type == "spatial" else None
@@ -536,17 +547,17 @@ class MaskConditionDecoder(nn.Module):
536
547
 
537
548
  def forward(
538
549
  self,
539
- z: torch.FloatTensor,
540
- image: Optional[torch.FloatTensor] = None,
541
- mask: Optional[torch.FloatTensor] = None,
542
- latent_embeds: Optional[torch.FloatTensor] = None,
543
- ) -> torch.FloatTensor:
550
+ z: torch.Tensor,
551
+ image: Optional[torch.Tensor] = None,
552
+ mask: Optional[torch.Tensor] = None,
553
+ latent_embeds: Optional[torch.Tensor] = None,
554
+ ) -> torch.Tensor:
544
555
  r"""The forward method of the `MaskConditionDecoder` class."""
545
556
  sample = z
546
557
  sample = self.conv_in(sample)
547
558
 
548
559
  upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
549
- if self.training and self.gradient_checkpointing:
560
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
550
561
 
551
562
  def create_custom_forward(module):
552
563
  def custom_forward(*inputs):
@@ -714,7 +725,7 @@ class VectorQuantizer(nn.Module):
714
725
  back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
715
726
  return back.reshape(ishape)
716
727
 
717
- def forward(self, z: torch.FloatTensor) -> Tuple[torch.FloatTensor, torch.FloatTensor, Tuple]:
728
+ def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, Tuple]:
718
729
  # reshape z -> (batch, height, width, channel) and flatten
719
730
  z = z.permute(0, 2, 3, 1).contiguous()
720
731
  z_flattened = z.view(-1, self.vq_embed_dim)
@@ -733,7 +744,7 @@ class VectorQuantizer(nn.Module):
733
744
  loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2)
734
745
 
735
746
  # preserve gradients
736
- z_q: torch.FloatTensor = z + (z_q - z).detach()
747
+ z_q: torch.Tensor = z + (z_q - z).detach()
737
748
 
738
749
  # reshape back to match original input shape
739
750
  z_q = z_q.permute(0, 3, 1, 2).contiguous()
@@ -748,7 +759,7 @@ class VectorQuantizer(nn.Module):
748
759
 
749
760
  return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
750
761
 
751
- def get_codebook_entry(self, indices: torch.LongTensor, shape: Tuple[int, ...]) -> torch.FloatTensor:
762
+ def get_codebook_entry(self, indices: torch.LongTensor, shape: Tuple[int, ...]) -> torch.Tensor:
752
763
  # shape specifying (batch, height, width, channel)
753
764
  if self.remap is not None:
754
765
  indices = indices.reshape(shape[0], -1) # add batch axis
@@ -756,7 +767,7 @@ class VectorQuantizer(nn.Module):
756
767
  indices = indices.reshape(-1) # flatten again
757
768
 
758
769
  # get quantized latent vectors
759
- z_q: torch.FloatTensor = self.embedding(indices)
770
+ z_q: torch.Tensor = self.embedding(indices)
760
771
 
761
772
  if shape is not None:
762
773
  z_q = z_q.view(shape)
@@ -779,7 +790,7 @@ class DiagonalGaussianDistribution(object):
779
790
  self.mean, device=self.parameters.device, dtype=self.parameters.dtype
780
791
  )
781
792
 
782
- def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor:
793
+ def sample(self, generator: Optional[torch.Generator] = None) -> torch.Tensor:
783
794
  # make sure sample is on the same device as the parameters and has same dtype
784
795
  sample = randn_tensor(
785
796
  self.mean.shape,
@@ -876,9 +887,9 @@ class EncoderTiny(nn.Module):
876
887
  self.layers = nn.Sequential(*layers)
877
888
  self.gradient_checkpointing = False
878
889
 
879
- def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
890
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
880
891
  r"""The forward method of the `EncoderTiny` class."""
881
- if self.training and self.gradient_checkpointing:
892
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
882
893
 
883
894
  def create_custom_forward(module):
884
895
  def custom_forward(*inputs):
@@ -926,6 +937,7 @@ class DecoderTiny(nn.Module):
926
937
  block_out_channels: Tuple[int, ...],
927
938
  upsampling_scaling_factor: int,
928
939
  act_fn: str,
940
+ upsample_fn: str,
929
941
  ):
930
942
  super().__init__()
931
943
 
@@ -942,7 +954,7 @@ class DecoderTiny(nn.Module):
942
954
  layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn))
943
955
 
944
956
  if not is_final_block:
945
- layers.append(nn.Upsample(scale_factor=upsampling_scaling_factor))
957
+ layers.append(nn.Upsample(scale_factor=upsampling_scaling_factor, mode=upsample_fn))
946
958
 
947
959
  conv_out_channel = num_channels if not is_final_block else out_channels
948
960
  layers.append(
@@ -958,12 +970,12 @@ class DecoderTiny(nn.Module):
958
970
  self.layers = nn.Sequential(*layers)
959
971
  self.gradient_checkpointing = False
960
972
 
961
- def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
973
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
962
974
  r"""The forward method of the `DecoderTiny` class."""
963
975
  # Clamp.
964
976
  x = torch.tanh(x / 3) * 3
965
977
 
966
- if self.training and self.gradient_checkpointing:
978
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
967
979
 
968
980
  def create_custom_forward(module):
969
981
  def custom_forward(*inputs):
@@ -0,0 +1,182 @@
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from dataclasses import dataclass
15
+ from typing import Optional, Tuple, Union
16
+
17
+ import torch
18
+ import torch.nn as nn
19
+
20
+ from ...configuration_utils import ConfigMixin, register_to_config
21
+ from ...utils import BaseOutput
22
+ from ...utils.accelerate_utils import apply_forward_hook
23
+ from ..autoencoders.vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
24
+ from ..modeling_utils import ModelMixin
25
+
26
+
27
+ @dataclass
28
+ class VQEncoderOutput(BaseOutput):
29
+ """
30
+ Output of VQModel encoding method.
31
+
32
+ Args:
33
+ latents (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`):
34
+ The encoded output sample from the last layer of the model.
35
+ """
36
+
37
+ latents: torch.Tensor
38
+
39
+
40
+ class VQModel(ModelMixin, ConfigMixin):
41
+ r"""
42
+ A VQ-VAE model for decoding latent representations.
43
+
44
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
45
+ for all models (such as downloading or saving).
46
+
47
+ Parameters:
48
+ in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
49
+ out_channels (int, *optional*, defaults to 3): Number of channels in the output.
50
+ down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
51
+ Tuple of downsample block types.
52
+ up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
53
+ Tuple of upsample block types.
54
+ block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
55
+ Tuple of block output channels.
56
+ layers_per_block (`int`, *optional*, defaults to `1`): Number of layers per block.
57
+ act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
58
+ latent_channels (`int`, *optional*, defaults to `3`): Number of channels in the latent space.
59
+ sample_size (`int`, *optional*, defaults to `32`): Sample input size.
60
+ num_vq_embeddings (`int`, *optional*, defaults to `256`): Number of codebook vectors in the VQ-VAE.
61
+ norm_num_groups (`int`, *optional*, defaults to `32`): Number of groups for normalization layers.
62
+ vq_embed_dim (`int`, *optional*): Hidden dim of codebook vectors in the VQ-VAE.
63
+ scaling_factor (`float`, *optional*, defaults to `0.18215`):
64
+ The component-wise standard deviation of the trained latent space computed using the first batch of the
65
+ training set. This is used to scale the latent space to have unit variance when training the diffusion
66
+ model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
67
+ diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
68
+ / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
69
+ Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
70
+ norm_type (`str`, *optional*, defaults to `"group"`):
71
+ Type of normalization layer to use. Can be one of `"group"` or `"spatial"`.
72
+ """
73
+
74
+ @register_to_config
75
+ def __init__(
76
+ self,
77
+ in_channels: int = 3,
78
+ out_channels: int = 3,
79
+ down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",),
80
+ up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
81
+ block_out_channels: Tuple[int, ...] = (64,),
82
+ layers_per_block: int = 1,
83
+ act_fn: str = "silu",
84
+ latent_channels: int = 3,
85
+ sample_size: int = 32,
86
+ num_vq_embeddings: int = 256,
87
+ norm_num_groups: int = 32,
88
+ vq_embed_dim: Optional[int] = None,
89
+ scaling_factor: float = 0.18215,
90
+ norm_type: str = "group", # group, spatial
91
+ mid_block_add_attention=True,
92
+ lookup_from_codebook=False,
93
+ force_upcast=False,
94
+ ):
95
+ super().__init__()
96
+
97
+ # pass init params to Encoder
98
+ self.encoder = Encoder(
99
+ in_channels=in_channels,
100
+ out_channels=latent_channels,
101
+ down_block_types=down_block_types,
102
+ block_out_channels=block_out_channels,
103
+ layers_per_block=layers_per_block,
104
+ act_fn=act_fn,
105
+ norm_num_groups=norm_num_groups,
106
+ double_z=False,
107
+ mid_block_add_attention=mid_block_add_attention,
108
+ )
109
+
110
+ vq_embed_dim = vq_embed_dim if vq_embed_dim is not None else latent_channels
111
+
112
+ self.quant_conv = nn.Conv2d(latent_channels, vq_embed_dim, 1)
113
+ self.quantize = VectorQuantizer(num_vq_embeddings, vq_embed_dim, beta=0.25, remap=None, sane_index_shape=False)
114
+ self.post_quant_conv = nn.Conv2d(vq_embed_dim, latent_channels, 1)
115
+
116
+ # pass init params to Decoder
117
+ self.decoder = Decoder(
118
+ in_channels=latent_channels,
119
+ out_channels=out_channels,
120
+ up_block_types=up_block_types,
121
+ block_out_channels=block_out_channels,
122
+ layers_per_block=layers_per_block,
123
+ act_fn=act_fn,
124
+ norm_num_groups=norm_num_groups,
125
+ norm_type=norm_type,
126
+ mid_block_add_attention=mid_block_add_attention,
127
+ )
128
+
129
+ @apply_forward_hook
130
+ def encode(self, x: torch.Tensor, return_dict: bool = True) -> VQEncoderOutput:
131
+ h = self.encoder(x)
132
+ h = self.quant_conv(h)
133
+
134
+ if not return_dict:
135
+ return (h,)
136
+
137
+ return VQEncoderOutput(latents=h)
138
+
139
+ @apply_forward_hook
140
+ def decode(
141
+ self, h: torch.Tensor, force_not_quantize: bool = False, return_dict: bool = True, shape=None
142
+ ) -> Union[DecoderOutput, torch.Tensor]:
143
+ # also go through quantization layer
144
+ if not force_not_quantize:
145
+ quant, commit_loss, _ = self.quantize(h)
146
+ elif self.config.lookup_from_codebook:
147
+ quant = self.quantize.get_codebook_entry(h, shape)
148
+ commit_loss = torch.zeros((h.shape[0])).to(h.device, dtype=h.dtype)
149
+ else:
150
+ quant = h
151
+ commit_loss = torch.zeros((h.shape[0])).to(h.device, dtype=h.dtype)
152
+ quant2 = self.post_quant_conv(quant)
153
+ dec = self.decoder(quant2, quant if self.config.norm_type == "spatial" else None)
154
+
155
+ if not return_dict:
156
+ return dec, commit_loss
157
+
158
+ return DecoderOutput(sample=dec, commit_loss=commit_loss)
159
+
160
+ def forward(
161
+ self, sample: torch.Tensor, return_dict: bool = True
162
+ ) -> Union[DecoderOutput, Tuple[torch.Tensor, ...]]:
163
+ r"""
164
+ The [`VQModel`] forward method.
165
+
166
+ Args:
167
+ sample (`torch.Tensor`): Input sample.
168
+ return_dict (`bool`, *optional*, defaults to `True`):
169
+ Whether or not to return a [`models.autoencoders.vq_model.VQEncoderOutput`] instead of a plain tuple.
170
+
171
+ Returns:
172
+ [`~models.autoencoders.vq_model.VQEncoderOutput`] or `tuple`:
173
+ If return_dict is True, a [`~models.autoencoders.vq_model.VQEncoderOutput`] is returned, otherwise a
174
+ plain `tuple` is returned.
175
+ """
176
+
177
+ h = self.encode(sample).latents
178
+ dec = self.decode(h)
179
+
180
+ if not return_dict:
181
+ return dec.sample, dec.commit_loss
182
+ return dec