diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +50 -53
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.0.dist-info/RECORD +0 -399
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -102,6 +102,7 @@ class AutoencoderTiny(ModelMixin, ConfigMixin):
|
|
102
102
|
encoder_block_out_channels: Tuple[int, ...] = (64, 64, 64, 64),
|
103
103
|
decoder_block_out_channels: Tuple[int, ...] = (64, 64, 64, 64),
|
104
104
|
act_fn: str = "relu",
|
105
|
+
upsample_fn: str = "nearest",
|
105
106
|
latent_channels: int = 4,
|
106
107
|
upsampling_scaling_factor: int = 2,
|
107
108
|
num_encoder_blocks: Tuple[int, ...] = (1, 3, 3, 3),
|
@@ -110,6 +111,7 @@ class AutoencoderTiny(ModelMixin, ConfigMixin):
|
|
110
111
|
latent_shift: float = 0.5,
|
111
112
|
force_upcast: bool = False,
|
112
113
|
scaling_factor: float = 1.0,
|
114
|
+
shift_factor: float = 0.0,
|
113
115
|
):
|
114
116
|
super().__init__()
|
115
117
|
|
@@ -133,6 +135,7 @@ class AutoencoderTiny(ModelMixin, ConfigMixin):
|
|
133
135
|
block_out_channels=decoder_block_out_channels,
|
134
136
|
upsampling_scaling_factor=upsampling_scaling_factor,
|
135
137
|
act_fn=act_fn,
|
138
|
+
upsample_fn=upsample_fn,
|
136
139
|
)
|
137
140
|
|
138
141
|
self.latent_magnitude = latent_magnitude
|
@@ -155,11 +158,11 @@ class AutoencoderTiny(ModelMixin, ConfigMixin):
|
|
155
158
|
if isinstance(module, (EncoderTiny, DecoderTiny)):
|
156
159
|
module.gradient_checkpointing = value
|
157
160
|
|
158
|
-
def scale_latents(self, x: torch.
|
161
|
+
def scale_latents(self, x: torch.Tensor) -> torch.Tensor:
|
159
162
|
"""raw latents -> [0, 1]"""
|
160
163
|
return x.div(2 * self.latent_magnitude).add(self.latent_shift).clamp(0, 1)
|
161
164
|
|
162
|
-
def unscale_latents(self, x: torch.
|
165
|
+
def unscale_latents(self, x: torch.Tensor) -> torch.Tensor:
|
163
166
|
"""[0, 1] -> raw latents"""
|
164
167
|
return x.sub(self.latent_shift).mul(2 * self.latent_magnitude)
|
165
168
|
|
@@ -192,7 +195,7 @@ class AutoencoderTiny(ModelMixin, ConfigMixin):
|
|
192
195
|
"""
|
193
196
|
self.enable_tiling(False)
|
194
197
|
|
195
|
-
def _tiled_encode(self, x: torch.
|
198
|
+
def _tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
|
196
199
|
r"""Encode a batch of images using a tiled encoder.
|
197
200
|
|
198
201
|
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
|
@@ -200,10 +203,10 @@ class AutoencoderTiny(ModelMixin, ConfigMixin):
|
|
200
203
|
tiles overlap and are blended together to form a smooth output.
|
201
204
|
|
202
205
|
Args:
|
203
|
-
x (`torch.
|
206
|
+
x (`torch.Tensor`): Input batch of images.
|
204
207
|
|
205
208
|
Returns:
|
206
|
-
`torch.
|
209
|
+
`torch.Tensor`: Encoded batch of images.
|
207
210
|
"""
|
208
211
|
# scale of encoder output relative to input
|
209
212
|
sf = self.spatial_scale_factor
|
@@ -240,7 +243,7 @@ class AutoencoderTiny(ModelMixin, ConfigMixin):
|
|
240
243
|
tile_out.copy_(blend_mask * tile + (1 - blend_mask) * tile_out)
|
241
244
|
return out
|
242
245
|
|
243
|
-
def _tiled_decode(self, x: torch.
|
246
|
+
def _tiled_decode(self, x: torch.Tensor) -> torch.Tensor:
|
244
247
|
r"""Encode a batch of images using a tiled encoder.
|
245
248
|
|
246
249
|
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
|
@@ -248,10 +251,10 @@ class AutoencoderTiny(ModelMixin, ConfigMixin):
|
|
248
251
|
tiles overlap and are blended together to form a smooth output.
|
249
252
|
|
250
253
|
Args:
|
251
|
-
x (`torch.
|
254
|
+
x (`torch.Tensor`): Input batch of images.
|
252
255
|
|
253
256
|
Returns:
|
254
|
-
`torch.
|
257
|
+
`torch.Tensor`: Encoded batch of images.
|
255
258
|
"""
|
256
259
|
# scale of decoder output relative to input
|
257
260
|
sf = self.spatial_scale_factor
|
@@ -288,9 +291,7 @@ class AutoencoderTiny(ModelMixin, ConfigMixin):
|
|
288
291
|
return out
|
289
292
|
|
290
293
|
@apply_forward_hook
|
291
|
-
def encode(
|
292
|
-
self, x: torch.FloatTensor, return_dict: bool = True
|
293
|
-
) -> Union[AutoencoderTinyOutput, Tuple[torch.FloatTensor]]:
|
294
|
+
def encode(self, x: torch.Tensor, return_dict: bool = True) -> Union[AutoencoderTinyOutput, Tuple[torch.Tensor]]:
|
294
295
|
if self.use_slicing and x.shape[0] > 1:
|
295
296
|
output = [
|
296
297
|
self._tiled_encode(x_slice) if self.use_tiling else self.encoder(x_slice) for x_slice in x.split(1)
|
@@ -306,10 +307,12 @@ class AutoencoderTiny(ModelMixin, ConfigMixin):
|
|
306
307
|
|
307
308
|
@apply_forward_hook
|
308
309
|
def decode(
|
309
|
-
self, x: torch.
|
310
|
-
) -> Union[DecoderOutput, Tuple[torch.
|
310
|
+
self, x: torch.Tensor, generator: Optional[torch.Generator] = None, return_dict: bool = True
|
311
|
+
) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
|
311
312
|
if self.use_slicing and x.shape[0] > 1:
|
312
|
-
output = [
|
313
|
+
output = [
|
314
|
+
self._tiled_decode(x_slice) if self.use_tiling else self.decoder(x_slice) for x_slice in x.split(1)
|
315
|
+
]
|
313
316
|
output = torch.cat(output)
|
314
317
|
else:
|
315
318
|
output = self._tiled_decode(x) if self.use_tiling else self.decoder(x)
|
@@ -321,12 +324,12 @@ class AutoencoderTiny(ModelMixin, ConfigMixin):
|
|
321
324
|
|
322
325
|
def forward(
|
323
326
|
self,
|
324
|
-
sample: torch.
|
327
|
+
sample: torch.Tensor,
|
325
328
|
return_dict: bool = True,
|
326
|
-
) -> Union[DecoderOutput, Tuple[torch.
|
329
|
+
) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
|
327
330
|
r"""
|
328
331
|
Args:
|
329
|
-
sample (`torch.
|
332
|
+
sample (`torch.Tensor`): Input sample.
|
330
333
|
return_dict (`bool`, *optional*, defaults to `True`):
|
331
334
|
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
332
335
|
"""
|
@@ -340,7 +343,7 @@ class AutoencoderTiny(ModelMixin, ConfigMixin):
|
|
340
343
|
# as if we were loading the latents from an RGBA uint8 image.
|
341
344
|
unscaled_enc = self.unscale_latents(scaled_enc / 255.0)
|
342
345
|
|
343
|
-
dec = self.decode(unscaled_enc)
|
346
|
+
dec = self.decode(unscaled_enc).sample
|
344
347
|
|
345
348
|
if not return_dict:
|
346
349
|
return (dec,)
|
@@ -63,7 +63,8 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
|
|
63
63
|
... "runwayml/stable-diffusion-v1-5", vae=vae, torch_dtype=torch.float16
|
64
64
|
... ).to("cuda")
|
65
65
|
|
66
|
-
>>> pipe("horse", generator=torch.manual_seed(0)).images
|
66
|
+
>>> image = pipe("horse", generator=torch.manual_seed(0)).images[0]
|
67
|
+
>>> image
|
67
68
|
```
|
68
69
|
"""
|
69
70
|
|
@@ -72,6 +73,7 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
|
|
72
73
|
self,
|
73
74
|
scaling_factor: float = 0.18215,
|
74
75
|
latent_channels: int = 4,
|
76
|
+
sample_size: int = 32,
|
75
77
|
encoder_act_fn: str = "silu",
|
76
78
|
encoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
|
77
79
|
encoder_double_z: bool = True,
|
@@ -153,6 +155,16 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
|
|
153
155
|
self.use_slicing = False
|
154
156
|
self.use_tiling = False
|
155
157
|
|
158
|
+
# only relevant if vae tiling is enabled
|
159
|
+
self.tile_sample_min_size = self.config.sample_size
|
160
|
+
sample_size = (
|
161
|
+
self.config.sample_size[0]
|
162
|
+
if isinstance(self.config.sample_size, (list, tuple))
|
163
|
+
else self.config.sample_size
|
164
|
+
)
|
165
|
+
self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1)))
|
166
|
+
self.tile_overlap_factor = 0.25
|
167
|
+
|
156
168
|
# Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.enable_tiling
|
157
169
|
def enable_tiling(self, use_tiling: bool = True):
|
158
170
|
r"""
|
@@ -199,7 +211,7 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
|
|
199
211
|
|
200
212
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
201
213
|
if hasattr(module, "get_processor"):
|
202
|
-
processors[f"{name}.processor"] = module.get_processor(
|
214
|
+
processors[f"{name}.processor"] = module.get_processor()
|
203
215
|
|
204
216
|
for sub_name, child in module.named_children():
|
205
217
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
@@ -264,21 +276,21 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
|
|
264
276
|
|
265
277
|
@apply_forward_hook
|
266
278
|
def encode(
|
267
|
-
self, x: torch.
|
279
|
+
self, x: torch.Tensor, return_dict: bool = True
|
268
280
|
) -> Union[ConsistencyDecoderVAEOutput, Tuple[DiagonalGaussianDistribution]]:
|
269
281
|
"""
|
270
282
|
Encode a batch of images into latents.
|
271
283
|
|
272
284
|
Args:
|
273
|
-
x (`torch.
|
285
|
+
x (`torch.Tensor`): Input batch of images.
|
274
286
|
return_dict (`bool`, *optional*, defaults to `True`):
|
275
|
-
Whether to return a [`~models.
|
276
|
-
tuple.
|
287
|
+
Whether to return a [`~models.autoencoders.consistency_decoder_vae.ConsistencyDecoderVAEOutput`]
|
288
|
+
instead of a plain tuple.
|
277
289
|
|
278
290
|
Returns:
|
279
291
|
The latent representations of the encoded images. If `return_dict` is True, a
|
280
|
-
[`~models.consistency_decoder_vae.ConsistencyDecoderVAEOutput`] is returned, otherwise a
|
281
|
-
is returned.
|
292
|
+
[`~models.autoencoders.consistency_decoder_vae.ConsistencyDecoderVAEOutput`] is returned, otherwise a
|
293
|
+
plain `tuple` is returned.
|
282
294
|
"""
|
283
295
|
if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
|
284
296
|
return self.tiled_encode(x, return_dict=return_dict)
|
@@ -300,11 +312,24 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
|
|
300
312
|
@apply_forward_hook
|
301
313
|
def decode(
|
302
314
|
self,
|
303
|
-
z: torch.
|
315
|
+
z: torch.Tensor,
|
304
316
|
generator: Optional[torch.Generator] = None,
|
305
317
|
return_dict: bool = True,
|
306
318
|
num_inference_steps: int = 2,
|
307
|
-
) -> Union[DecoderOutput, Tuple[torch.
|
319
|
+
) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
|
320
|
+
"""
|
321
|
+
Decodes the input latent vector `z` using the consistency decoder VAE model.
|
322
|
+
|
323
|
+
Args:
|
324
|
+
z (torch.Tensor): The input latent vector.
|
325
|
+
generator (Optional[torch.Generator]): The random number generator. Default is None.
|
326
|
+
return_dict (bool): Whether to return the output as a dictionary. Default is True.
|
327
|
+
num_inference_steps (int): The number of inference steps. Default is 2.
|
328
|
+
|
329
|
+
Returns:
|
330
|
+
Union[DecoderOutput, Tuple[torch.Tensor]]: The decoded output.
|
331
|
+
|
332
|
+
"""
|
308
333
|
z = (z * self.config.scaling_factor - self.means) / self.stds
|
309
334
|
|
310
335
|
scale_factor = 2 ** (len(self.config.block_out_channels) - 1)
|
@@ -345,7 +370,7 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
|
|
345
370
|
b[:, :, :, x] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
|
346
371
|
return b
|
347
372
|
|
348
|
-
def tiled_encode(self, x: torch.
|
373
|
+
def tiled_encode(self, x: torch.Tensor, return_dict: bool = True) -> Union[ConsistencyDecoderVAEOutput, Tuple]:
|
349
374
|
r"""Encode a batch of images using a tiled encoder.
|
350
375
|
|
351
376
|
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
|
@@ -355,15 +380,15 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
|
|
355
380
|
output, but they should be much less noticeable.
|
356
381
|
|
357
382
|
Args:
|
358
|
-
x (`torch.
|
383
|
+
x (`torch.Tensor`): Input batch of images.
|
359
384
|
return_dict (`bool`, *optional*, defaults to `True`):
|
360
|
-
Whether or not to return a [`~models.consistency_decoder_vae.ConsistencyDecoderVAEOutput`]
|
361
|
-
plain tuple.
|
385
|
+
Whether or not to return a [`~models.autoencoders.consistency_decoder_vae.ConsistencyDecoderVAEOutput`]
|
386
|
+
instead of a plain tuple.
|
362
387
|
|
363
388
|
Returns:
|
364
|
-
[`~models.consistency_decoder_vae.ConsistencyDecoderVAEOutput`] or `tuple`:
|
365
|
-
If return_dict is True, a [`~models.consistency_decoder_vae.ConsistencyDecoderVAEOutput`]
|
366
|
-
otherwise a plain `tuple` is returned.
|
389
|
+
[`~models.autoencoders.consistency_decoder_vae.ConsistencyDecoderVAEOutput`] or `tuple`:
|
390
|
+
If return_dict is True, a [`~models.autoencoders.consistency_decoder_vae.ConsistencyDecoderVAEOutput`]
|
391
|
+
is returned, otherwise a plain `tuple` is returned.
|
367
392
|
"""
|
368
393
|
overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
|
369
394
|
blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
|
@@ -402,14 +427,14 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
|
|
402
427
|
|
403
428
|
def forward(
|
404
429
|
self,
|
405
|
-
sample: torch.
|
430
|
+
sample: torch.Tensor,
|
406
431
|
sample_posterior: bool = False,
|
407
432
|
return_dict: bool = True,
|
408
433
|
generator: Optional[torch.Generator] = None,
|
409
|
-
) -> Union[DecoderOutput, Tuple[torch.
|
434
|
+
) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
|
410
435
|
r"""
|
411
436
|
Args:
|
412
|
-
sample (`torch.
|
437
|
+
sample (`torch.Tensor`): Input sample.
|
413
438
|
sample_posterior (`bool`, *optional*, defaults to `False`):
|
414
439
|
Whether to sample from the posterior.
|
415
440
|
return_dict (`bool`, *optional*, defaults to `True`):
|
@@ -30,17 +30,31 @@ from ..unets.unet_2d_blocks import (
|
|
30
30
|
)
|
31
31
|
|
32
32
|
|
33
|
+
@dataclass
|
34
|
+
class EncoderOutput(BaseOutput):
|
35
|
+
r"""
|
36
|
+
Output of encoding method.
|
37
|
+
|
38
|
+
Args:
|
39
|
+
latent (`torch.Tensor` of shape `(batch_size, num_channels, latent_height, latent_width)`):
|
40
|
+
The encoded latent.
|
41
|
+
"""
|
42
|
+
|
43
|
+
latent: torch.Tensor
|
44
|
+
|
45
|
+
|
33
46
|
@dataclass
|
34
47
|
class DecoderOutput(BaseOutput):
|
35
48
|
r"""
|
36
49
|
Output of decoding method.
|
37
50
|
|
38
51
|
Args:
|
39
|
-
sample (`torch.
|
52
|
+
sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`):
|
40
53
|
The decoded output sample from the last layer of the model.
|
41
54
|
"""
|
42
55
|
|
43
|
-
sample: torch.
|
56
|
+
sample: torch.Tensor
|
57
|
+
commit_loss: Optional[torch.FloatTensor] = None
|
44
58
|
|
45
59
|
|
46
60
|
class Encoder(nn.Module):
|
@@ -90,7 +104,6 @@ class Encoder(nn.Module):
|
|
90
104
|
padding=1,
|
91
105
|
)
|
92
106
|
|
93
|
-
self.mid_block = None
|
94
107
|
self.down_blocks = nn.ModuleList([])
|
95
108
|
|
96
109
|
# down
|
@@ -137,12 +150,12 @@ class Encoder(nn.Module):
|
|
137
150
|
|
138
151
|
self.gradient_checkpointing = False
|
139
152
|
|
140
|
-
def forward(self, sample: torch.
|
153
|
+
def forward(self, sample: torch.Tensor) -> torch.Tensor:
|
141
154
|
r"""The forward method of the `Encoder` class."""
|
142
155
|
|
143
156
|
sample = self.conv_in(sample)
|
144
157
|
|
145
|
-
if
|
158
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
146
159
|
|
147
160
|
def create_custom_forward(module):
|
148
161
|
def custom_forward(*inputs):
|
@@ -228,7 +241,6 @@ class Decoder(nn.Module):
|
|
228
241
|
padding=1,
|
229
242
|
)
|
230
243
|
|
231
|
-
self.mid_block = None
|
232
244
|
self.up_blocks = nn.ModuleList([])
|
233
245
|
|
234
246
|
temb_channels = in_channels if norm_type == "spatial" else None
|
@@ -284,15 +296,15 @@ class Decoder(nn.Module):
|
|
284
296
|
|
285
297
|
def forward(
|
286
298
|
self,
|
287
|
-
sample: torch.
|
288
|
-
latent_embeds: Optional[torch.
|
289
|
-
) -> torch.
|
299
|
+
sample: torch.Tensor,
|
300
|
+
latent_embeds: Optional[torch.Tensor] = None,
|
301
|
+
) -> torch.Tensor:
|
290
302
|
r"""The forward method of the `Decoder` class."""
|
291
303
|
|
292
304
|
sample = self.conv_in(sample)
|
293
305
|
|
294
306
|
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
|
295
|
-
if
|
307
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
296
308
|
|
297
309
|
def create_custom_forward(module):
|
298
310
|
def custom_forward(*inputs):
|
@@ -369,7 +381,7 @@ class UpSample(nn.Module):
|
|
369
381
|
self.out_channels = out_channels
|
370
382
|
self.deconv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1)
|
371
383
|
|
372
|
-
def forward(self, x: torch.
|
384
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
373
385
|
r"""The forward method of the `UpSample` class."""
|
374
386
|
x = torch.relu(x)
|
375
387
|
x = self.deconv(x)
|
@@ -418,7 +430,7 @@ class MaskConditionEncoder(nn.Module):
|
|
418
430
|
|
419
431
|
self.layers = nn.Sequential(*layers)
|
420
432
|
|
421
|
-
def forward(self, x: torch.
|
433
|
+
def forward(self, x: torch.Tensor, mask=None) -> torch.Tensor:
|
422
434
|
r"""The forward method of the `MaskConditionEncoder` class."""
|
423
435
|
out = {}
|
424
436
|
for l in range(len(self.layers)):
|
@@ -474,7 +486,6 @@ class MaskConditionDecoder(nn.Module):
|
|
474
486
|
padding=1,
|
475
487
|
)
|
476
488
|
|
477
|
-
self.mid_block = None
|
478
489
|
self.up_blocks = nn.ModuleList([])
|
479
490
|
|
480
491
|
temb_channels = in_channels if norm_type == "spatial" else None
|
@@ -536,17 +547,17 @@ class MaskConditionDecoder(nn.Module):
|
|
536
547
|
|
537
548
|
def forward(
|
538
549
|
self,
|
539
|
-
z: torch.
|
540
|
-
image: Optional[torch.
|
541
|
-
mask: Optional[torch.
|
542
|
-
latent_embeds: Optional[torch.
|
543
|
-
) -> torch.
|
550
|
+
z: torch.Tensor,
|
551
|
+
image: Optional[torch.Tensor] = None,
|
552
|
+
mask: Optional[torch.Tensor] = None,
|
553
|
+
latent_embeds: Optional[torch.Tensor] = None,
|
554
|
+
) -> torch.Tensor:
|
544
555
|
r"""The forward method of the `MaskConditionDecoder` class."""
|
545
556
|
sample = z
|
546
557
|
sample = self.conv_in(sample)
|
547
558
|
|
548
559
|
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
|
549
|
-
if
|
560
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
550
561
|
|
551
562
|
def create_custom_forward(module):
|
552
563
|
def custom_forward(*inputs):
|
@@ -714,7 +725,7 @@ class VectorQuantizer(nn.Module):
|
|
714
725
|
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
|
715
726
|
return back.reshape(ishape)
|
716
727
|
|
717
|
-
def forward(self, z: torch.
|
728
|
+
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, Tuple]:
|
718
729
|
# reshape z -> (batch, height, width, channel) and flatten
|
719
730
|
z = z.permute(0, 2, 3, 1).contiguous()
|
720
731
|
z_flattened = z.view(-1, self.vq_embed_dim)
|
@@ -733,7 +744,7 @@ class VectorQuantizer(nn.Module):
|
|
733
744
|
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2)
|
734
745
|
|
735
746
|
# preserve gradients
|
736
|
-
z_q: torch.
|
747
|
+
z_q: torch.Tensor = z + (z_q - z).detach()
|
737
748
|
|
738
749
|
# reshape back to match original input shape
|
739
750
|
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
@@ -748,7 +759,7 @@ class VectorQuantizer(nn.Module):
|
|
748
759
|
|
749
760
|
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
|
750
761
|
|
751
|
-
def get_codebook_entry(self, indices: torch.LongTensor, shape: Tuple[int, ...]) -> torch.
|
762
|
+
def get_codebook_entry(self, indices: torch.LongTensor, shape: Tuple[int, ...]) -> torch.Tensor:
|
752
763
|
# shape specifying (batch, height, width, channel)
|
753
764
|
if self.remap is not None:
|
754
765
|
indices = indices.reshape(shape[0], -1) # add batch axis
|
@@ -756,7 +767,7 @@ class VectorQuantizer(nn.Module):
|
|
756
767
|
indices = indices.reshape(-1) # flatten again
|
757
768
|
|
758
769
|
# get quantized latent vectors
|
759
|
-
z_q: torch.
|
770
|
+
z_q: torch.Tensor = self.embedding(indices)
|
760
771
|
|
761
772
|
if shape is not None:
|
762
773
|
z_q = z_q.view(shape)
|
@@ -779,7 +790,7 @@ class DiagonalGaussianDistribution(object):
|
|
779
790
|
self.mean, device=self.parameters.device, dtype=self.parameters.dtype
|
780
791
|
)
|
781
792
|
|
782
|
-
def sample(self, generator: Optional[torch.Generator] = None) -> torch.
|
793
|
+
def sample(self, generator: Optional[torch.Generator] = None) -> torch.Tensor:
|
783
794
|
# make sure sample is on the same device as the parameters and has same dtype
|
784
795
|
sample = randn_tensor(
|
785
796
|
self.mean.shape,
|
@@ -876,9 +887,9 @@ class EncoderTiny(nn.Module):
|
|
876
887
|
self.layers = nn.Sequential(*layers)
|
877
888
|
self.gradient_checkpointing = False
|
878
889
|
|
879
|
-
def forward(self, x: torch.
|
890
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
880
891
|
r"""The forward method of the `EncoderTiny` class."""
|
881
|
-
if
|
892
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
882
893
|
|
883
894
|
def create_custom_forward(module):
|
884
895
|
def custom_forward(*inputs):
|
@@ -926,6 +937,7 @@ class DecoderTiny(nn.Module):
|
|
926
937
|
block_out_channels: Tuple[int, ...],
|
927
938
|
upsampling_scaling_factor: int,
|
928
939
|
act_fn: str,
|
940
|
+
upsample_fn: str,
|
929
941
|
):
|
930
942
|
super().__init__()
|
931
943
|
|
@@ -942,7 +954,7 @@ class DecoderTiny(nn.Module):
|
|
942
954
|
layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn))
|
943
955
|
|
944
956
|
if not is_final_block:
|
945
|
-
layers.append(nn.Upsample(scale_factor=upsampling_scaling_factor))
|
957
|
+
layers.append(nn.Upsample(scale_factor=upsampling_scaling_factor, mode=upsample_fn))
|
946
958
|
|
947
959
|
conv_out_channel = num_channels if not is_final_block else out_channels
|
948
960
|
layers.append(
|
@@ -958,12 +970,12 @@ class DecoderTiny(nn.Module):
|
|
958
970
|
self.layers = nn.Sequential(*layers)
|
959
971
|
self.gradient_checkpointing = False
|
960
972
|
|
961
|
-
def forward(self, x: torch.
|
973
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
962
974
|
r"""The forward method of the `DecoderTiny` class."""
|
963
975
|
# Clamp.
|
964
976
|
x = torch.tanh(x / 3) * 3
|
965
977
|
|
966
|
-
if
|
978
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
967
979
|
|
968
980
|
def create_custom_forward(module):
|
969
981
|
def custom_forward(*inputs):
|
@@ -0,0 +1,182 @@
|
|
1
|
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
from dataclasses import dataclass
|
15
|
+
from typing import Optional, Tuple, Union
|
16
|
+
|
17
|
+
import torch
|
18
|
+
import torch.nn as nn
|
19
|
+
|
20
|
+
from ...configuration_utils import ConfigMixin, register_to_config
|
21
|
+
from ...utils import BaseOutput
|
22
|
+
from ...utils.accelerate_utils import apply_forward_hook
|
23
|
+
from ..autoencoders.vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
|
24
|
+
from ..modeling_utils import ModelMixin
|
25
|
+
|
26
|
+
|
27
|
+
@dataclass
|
28
|
+
class VQEncoderOutput(BaseOutput):
|
29
|
+
"""
|
30
|
+
Output of VQModel encoding method.
|
31
|
+
|
32
|
+
Args:
|
33
|
+
latents (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`):
|
34
|
+
The encoded output sample from the last layer of the model.
|
35
|
+
"""
|
36
|
+
|
37
|
+
latents: torch.Tensor
|
38
|
+
|
39
|
+
|
40
|
+
class VQModel(ModelMixin, ConfigMixin):
|
41
|
+
r"""
|
42
|
+
A VQ-VAE model for decoding latent representations.
|
43
|
+
|
44
|
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
45
|
+
for all models (such as downloading or saving).
|
46
|
+
|
47
|
+
Parameters:
|
48
|
+
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
|
49
|
+
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
|
50
|
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
|
51
|
+
Tuple of downsample block types.
|
52
|
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
|
53
|
+
Tuple of upsample block types.
|
54
|
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
|
55
|
+
Tuple of block output channels.
|
56
|
+
layers_per_block (`int`, *optional*, defaults to `1`): Number of layers per block.
|
57
|
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
58
|
+
latent_channels (`int`, *optional*, defaults to `3`): Number of channels in the latent space.
|
59
|
+
sample_size (`int`, *optional*, defaults to `32`): Sample input size.
|
60
|
+
num_vq_embeddings (`int`, *optional*, defaults to `256`): Number of codebook vectors in the VQ-VAE.
|
61
|
+
norm_num_groups (`int`, *optional*, defaults to `32`): Number of groups for normalization layers.
|
62
|
+
vq_embed_dim (`int`, *optional*): Hidden dim of codebook vectors in the VQ-VAE.
|
63
|
+
scaling_factor (`float`, *optional*, defaults to `0.18215`):
|
64
|
+
The component-wise standard deviation of the trained latent space computed using the first batch of the
|
65
|
+
training set. This is used to scale the latent space to have unit variance when training the diffusion
|
66
|
+
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
|
67
|
+
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
|
68
|
+
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
|
69
|
+
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
|
70
|
+
norm_type (`str`, *optional*, defaults to `"group"`):
|
71
|
+
Type of normalization layer to use. Can be one of `"group"` or `"spatial"`.
|
72
|
+
"""
|
73
|
+
|
74
|
+
@register_to_config
|
75
|
+
def __init__(
|
76
|
+
self,
|
77
|
+
in_channels: int = 3,
|
78
|
+
out_channels: int = 3,
|
79
|
+
down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",),
|
80
|
+
up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
|
81
|
+
block_out_channels: Tuple[int, ...] = (64,),
|
82
|
+
layers_per_block: int = 1,
|
83
|
+
act_fn: str = "silu",
|
84
|
+
latent_channels: int = 3,
|
85
|
+
sample_size: int = 32,
|
86
|
+
num_vq_embeddings: int = 256,
|
87
|
+
norm_num_groups: int = 32,
|
88
|
+
vq_embed_dim: Optional[int] = None,
|
89
|
+
scaling_factor: float = 0.18215,
|
90
|
+
norm_type: str = "group", # group, spatial
|
91
|
+
mid_block_add_attention=True,
|
92
|
+
lookup_from_codebook=False,
|
93
|
+
force_upcast=False,
|
94
|
+
):
|
95
|
+
super().__init__()
|
96
|
+
|
97
|
+
# pass init params to Encoder
|
98
|
+
self.encoder = Encoder(
|
99
|
+
in_channels=in_channels,
|
100
|
+
out_channels=latent_channels,
|
101
|
+
down_block_types=down_block_types,
|
102
|
+
block_out_channels=block_out_channels,
|
103
|
+
layers_per_block=layers_per_block,
|
104
|
+
act_fn=act_fn,
|
105
|
+
norm_num_groups=norm_num_groups,
|
106
|
+
double_z=False,
|
107
|
+
mid_block_add_attention=mid_block_add_attention,
|
108
|
+
)
|
109
|
+
|
110
|
+
vq_embed_dim = vq_embed_dim if vq_embed_dim is not None else latent_channels
|
111
|
+
|
112
|
+
self.quant_conv = nn.Conv2d(latent_channels, vq_embed_dim, 1)
|
113
|
+
self.quantize = VectorQuantizer(num_vq_embeddings, vq_embed_dim, beta=0.25, remap=None, sane_index_shape=False)
|
114
|
+
self.post_quant_conv = nn.Conv2d(vq_embed_dim, latent_channels, 1)
|
115
|
+
|
116
|
+
# pass init params to Decoder
|
117
|
+
self.decoder = Decoder(
|
118
|
+
in_channels=latent_channels,
|
119
|
+
out_channels=out_channels,
|
120
|
+
up_block_types=up_block_types,
|
121
|
+
block_out_channels=block_out_channels,
|
122
|
+
layers_per_block=layers_per_block,
|
123
|
+
act_fn=act_fn,
|
124
|
+
norm_num_groups=norm_num_groups,
|
125
|
+
norm_type=norm_type,
|
126
|
+
mid_block_add_attention=mid_block_add_attention,
|
127
|
+
)
|
128
|
+
|
129
|
+
@apply_forward_hook
|
130
|
+
def encode(self, x: torch.Tensor, return_dict: bool = True) -> VQEncoderOutput:
|
131
|
+
h = self.encoder(x)
|
132
|
+
h = self.quant_conv(h)
|
133
|
+
|
134
|
+
if not return_dict:
|
135
|
+
return (h,)
|
136
|
+
|
137
|
+
return VQEncoderOutput(latents=h)
|
138
|
+
|
139
|
+
@apply_forward_hook
|
140
|
+
def decode(
|
141
|
+
self, h: torch.Tensor, force_not_quantize: bool = False, return_dict: bool = True, shape=None
|
142
|
+
) -> Union[DecoderOutput, torch.Tensor]:
|
143
|
+
# also go through quantization layer
|
144
|
+
if not force_not_quantize:
|
145
|
+
quant, commit_loss, _ = self.quantize(h)
|
146
|
+
elif self.config.lookup_from_codebook:
|
147
|
+
quant = self.quantize.get_codebook_entry(h, shape)
|
148
|
+
commit_loss = torch.zeros((h.shape[0])).to(h.device, dtype=h.dtype)
|
149
|
+
else:
|
150
|
+
quant = h
|
151
|
+
commit_loss = torch.zeros((h.shape[0])).to(h.device, dtype=h.dtype)
|
152
|
+
quant2 = self.post_quant_conv(quant)
|
153
|
+
dec = self.decoder(quant2, quant if self.config.norm_type == "spatial" else None)
|
154
|
+
|
155
|
+
if not return_dict:
|
156
|
+
return dec, commit_loss
|
157
|
+
|
158
|
+
return DecoderOutput(sample=dec, commit_loss=commit_loss)
|
159
|
+
|
160
|
+
def forward(
|
161
|
+
self, sample: torch.Tensor, return_dict: bool = True
|
162
|
+
) -> Union[DecoderOutput, Tuple[torch.Tensor, ...]]:
|
163
|
+
r"""
|
164
|
+
The [`VQModel`] forward method.
|
165
|
+
|
166
|
+
Args:
|
167
|
+
sample (`torch.Tensor`): Input sample.
|
168
|
+
return_dict (`bool`, *optional*, defaults to `True`):
|
169
|
+
Whether or not to return a [`models.autoencoders.vq_model.VQEncoderOutput`] instead of a plain tuple.
|
170
|
+
|
171
|
+
Returns:
|
172
|
+
[`~models.autoencoders.vq_model.VQEncoderOutput`] or `tuple`:
|
173
|
+
If return_dict is True, a [`~models.autoencoders.vq_model.VQEncoderOutput`] is returned, otherwise a
|
174
|
+
plain `tuple` is returned.
|
175
|
+
"""
|
176
|
+
|
177
|
+
h = self.encode(sample).latents
|
178
|
+
dec = self.decode(h)
|
179
|
+
|
180
|
+
if not return_dict:
|
181
|
+
return dec.sample, dec.commit_loss
|
182
|
+
return dec
|