diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,687 @@
1
+ # Copyright 2024 The HunyuanVideo Team and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ from transformers import CLIPTextModel, CLIPTokenizer, LlamaModel, LlamaTokenizerFast
21
+
22
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
23
+ from ...loaders import HunyuanVideoLoraLoaderMixin
24
+ from ...models import AutoencoderKLHunyuanVideo, HunyuanVideoTransformer3DModel
25
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
26
+ from ...utils import logging, replace_example_docstring
27
+ from ...utils.torch_utils import randn_tensor
28
+ from ...video_processor import VideoProcessor
29
+ from ..pipeline_utils import DiffusionPipeline
30
+ from .pipeline_output import HunyuanVideoPipelineOutput
31
+
32
+
33
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
34
+
35
+ EXAMPLE_DOC_STRING = """
36
+ Examples:
37
+ ```python
38
+ >>> import torch
39
+ >>> from diffusers import HunyuanVideoPipeline, HunyuanVideoTransformer3DModel
40
+ >>> from diffusers.utils import export_to_video
41
+
42
+ >>> model_id = "hunyuanvideo-community/HunyuanVideo"
43
+ >>> transformer = HunyuanVideoTransformer3DModel.from_pretrained(
44
+ ... model_id, subfolder="transformer", torch_dtype=torch.bfloat16
45
+ ... )
46
+ >>> pipe = HunyuanVideoPipeline.from_pretrained(model_id, transformer=transformer, torch_dtype=torch.float16)
47
+ >>> pipe.vae.enable_tiling()
48
+ >>> pipe.to("cuda")
49
+
50
+ >>> output = pipe(
51
+ ... prompt="A cat walks on the grass, realistic",
52
+ ... height=320,
53
+ ... width=512,
54
+ ... num_frames=61,
55
+ ... num_inference_steps=30,
56
+ ... ).frames[0]
57
+ >>> export_to_video(output, "output.mp4", fps=15)
58
+ ```
59
+ """
60
+
61
+
62
+ DEFAULT_PROMPT_TEMPLATE = {
63
+ "template": (
64
+ "<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: "
65
+ "1. The main content and theme of the video."
66
+ "2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects."
67
+ "3. Actions, events, behaviors temporal relationships, physical movement changes of the objects."
68
+ "4. background environment, light, style and atmosphere."
69
+ "5. camera angles, movements, and transitions used in the video:<|eot_id|>"
70
+ "<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
71
+ ),
72
+ "crop_start": 95,
73
+ }
74
+
75
+
76
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
77
+ def retrieve_timesteps(
78
+ scheduler,
79
+ num_inference_steps: Optional[int] = None,
80
+ device: Optional[Union[str, torch.device]] = None,
81
+ timesteps: Optional[List[int]] = None,
82
+ sigmas: Optional[List[float]] = None,
83
+ **kwargs,
84
+ ):
85
+ r"""
86
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
87
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
88
+
89
+ Args:
90
+ scheduler (`SchedulerMixin`):
91
+ The scheduler to get timesteps from.
92
+ num_inference_steps (`int`):
93
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
94
+ must be `None`.
95
+ device (`str` or `torch.device`, *optional*):
96
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
97
+ timesteps (`List[int]`, *optional*):
98
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
99
+ `num_inference_steps` and `sigmas` must be `None`.
100
+ sigmas (`List[float]`, *optional*):
101
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
102
+ `num_inference_steps` and `timesteps` must be `None`.
103
+
104
+ Returns:
105
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
106
+ second element is the number of inference steps.
107
+ """
108
+ if timesteps is not None and sigmas is not None:
109
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
110
+ if timesteps is not None:
111
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
112
+ if not accepts_timesteps:
113
+ raise ValueError(
114
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
115
+ f" timestep schedules. Please check whether you are using the correct scheduler."
116
+ )
117
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
118
+ timesteps = scheduler.timesteps
119
+ num_inference_steps = len(timesteps)
120
+ elif sigmas is not None:
121
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
122
+ if not accept_sigmas:
123
+ raise ValueError(
124
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
125
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
126
+ )
127
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
128
+ timesteps = scheduler.timesteps
129
+ num_inference_steps = len(timesteps)
130
+ else:
131
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
132
+ timesteps = scheduler.timesteps
133
+ return timesteps, num_inference_steps
134
+
135
+
136
+ class HunyuanVideoPipeline(DiffusionPipeline, HunyuanVideoLoraLoaderMixin):
137
+ r"""
138
+ Pipeline for text-to-video generation using HunyuanVideo.
139
+
140
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
141
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
142
+
143
+ Args:
144
+ text_encoder ([`LlamaModel`]):
145
+ [Llava Llama3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers).
146
+ tokenizer (`LlamaTokenizer`):
147
+ Tokenizer from [Llava Llama3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers).
148
+ transformer ([`HunyuanVideoTransformer3DModel`]):
149
+ Conditional Transformer to denoise the encoded image latents.
150
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
151
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
152
+ vae ([`AutoencoderKLHunyuanVideo`]):
153
+ Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
154
+ text_encoder_2 ([`CLIPTextModel`]):
155
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
156
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
157
+ tokenizer_2 (`CLIPTokenizer`):
158
+ Tokenizer of class
159
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
160
+ """
161
+
162
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
163
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
164
+
165
+ def __init__(
166
+ self,
167
+ text_encoder: LlamaModel,
168
+ tokenizer: LlamaTokenizerFast,
169
+ transformer: HunyuanVideoTransformer3DModel,
170
+ vae: AutoencoderKLHunyuanVideo,
171
+ scheduler: FlowMatchEulerDiscreteScheduler,
172
+ text_encoder_2: CLIPTextModel,
173
+ tokenizer_2: CLIPTokenizer,
174
+ ):
175
+ super().__init__()
176
+
177
+ self.register_modules(
178
+ vae=vae,
179
+ text_encoder=text_encoder,
180
+ tokenizer=tokenizer,
181
+ transformer=transformer,
182
+ scheduler=scheduler,
183
+ text_encoder_2=text_encoder_2,
184
+ tokenizer_2=tokenizer_2,
185
+ )
186
+
187
+ self.vae_scale_factor_temporal = (
188
+ self.vae.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4
189
+ )
190
+ self.vae_scale_factor_spatial = (
191
+ self.vae.spatial_compression_ratio if hasattr(self, "vae") and self.vae is not None else 8
192
+ )
193
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
194
+
195
+ def _get_llama_prompt_embeds(
196
+ self,
197
+ prompt: Union[str, List[str]],
198
+ prompt_template: Dict[str, Any],
199
+ num_videos_per_prompt: int = 1,
200
+ device: Optional[torch.device] = None,
201
+ dtype: Optional[torch.dtype] = None,
202
+ max_sequence_length: int = 256,
203
+ num_hidden_layers_to_skip: int = 2,
204
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
205
+ device = device or self._execution_device
206
+ dtype = dtype or self.text_encoder.dtype
207
+
208
+ prompt = [prompt] if isinstance(prompt, str) else prompt
209
+ batch_size = len(prompt)
210
+
211
+ prompt = [prompt_template["template"].format(p) for p in prompt]
212
+
213
+ crop_start = prompt_template.get("crop_start", None)
214
+ if crop_start is None:
215
+ prompt_template_input = self.tokenizer(
216
+ prompt_template["template"],
217
+ padding="max_length",
218
+ return_tensors="pt",
219
+ return_length=False,
220
+ return_overflowing_tokens=False,
221
+ return_attention_mask=False,
222
+ )
223
+ crop_start = prompt_template_input["input_ids"].shape[-1]
224
+ # Remove <|eot_id|> token and placeholder {}
225
+ crop_start -= 2
226
+
227
+ max_sequence_length += crop_start
228
+ text_inputs = self.tokenizer(
229
+ prompt,
230
+ max_length=max_sequence_length,
231
+ padding="max_length",
232
+ truncation=True,
233
+ return_tensors="pt",
234
+ return_length=False,
235
+ return_overflowing_tokens=False,
236
+ return_attention_mask=True,
237
+ )
238
+ text_input_ids = text_inputs.input_ids.to(device=device)
239
+ prompt_attention_mask = text_inputs.attention_mask.to(device=device)
240
+
241
+ prompt_embeds = self.text_encoder(
242
+ input_ids=text_input_ids,
243
+ attention_mask=prompt_attention_mask,
244
+ output_hidden_states=True,
245
+ ).hidden_states[-(num_hidden_layers_to_skip + 1)]
246
+ prompt_embeds = prompt_embeds.to(dtype=dtype)
247
+
248
+ if crop_start is not None and crop_start > 0:
249
+ prompt_embeds = prompt_embeds[:, crop_start:]
250
+ prompt_attention_mask = prompt_attention_mask[:, crop_start:]
251
+
252
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
253
+ _, seq_len, _ = prompt_embeds.shape
254
+ prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
255
+ prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
256
+ prompt_attention_mask = prompt_attention_mask.repeat(1, num_videos_per_prompt)
257
+ prompt_attention_mask = prompt_attention_mask.view(batch_size * num_videos_per_prompt, seq_len)
258
+
259
+ return prompt_embeds, prompt_attention_mask
260
+
261
+ def _get_clip_prompt_embeds(
262
+ self,
263
+ prompt: Union[str, List[str]],
264
+ num_videos_per_prompt: int = 1,
265
+ device: Optional[torch.device] = None,
266
+ dtype: Optional[torch.dtype] = None,
267
+ max_sequence_length: int = 77,
268
+ ) -> torch.Tensor:
269
+ device = device or self._execution_device
270
+ dtype = dtype or self.text_encoder_2.dtype
271
+
272
+ prompt = [prompt] if isinstance(prompt, str) else prompt
273
+ batch_size = len(prompt)
274
+
275
+ text_inputs = self.tokenizer_2(
276
+ prompt,
277
+ padding="max_length",
278
+ max_length=max_sequence_length,
279
+ truncation=True,
280
+ return_tensors="pt",
281
+ )
282
+
283
+ text_input_ids = text_inputs.input_ids
284
+ untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
285
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
286
+ removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
287
+ logger.warning(
288
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
289
+ f" {max_sequence_length} tokens: {removed_text}"
290
+ )
291
+
292
+ prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False).pooler_output
293
+
294
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
295
+ prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt)
296
+ prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, -1)
297
+
298
+ return prompt_embeds
299
+
300
+ def encode_prompt(
301
+ self,
302
+ prompt: Union[str, List[str]],
303
+ prompt_2: Union[str, List[str]] = None,
304
+ prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE,
305
+ num_videos_per_prompt: int = 1,
306
+ prompt_embeds: Optional[torch.Tensor] = None,
307
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
308
+ prompt_attention_mask: Optional[torch.Tensor] = None,
309
+ device: Optional[torch.device] = None,
310
+ dtype: Optional[torch.dtype] = None,
311
+ max_sequence_length: int = 256,
312
+ ):
313
+ if prompt_embeds is None:
314
+ prompt_embeds, prompt_attention_mask = self._get_llama_prompt_embeds(
315
+ prompt,
316
+ prompt_template,
317
+ num_videos_per_prompt,
318
+ device=device,
319
+ dtype=dtype,
320
+ max_sequence_length=max_sequence_length,
321
+ )
322
+
323
+ if pooled_prompt_embeds is None:
324
+ if prompt_2 is None and pooled_prompt_embeds is None:
325
+ prompt_2 = prompt
326
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
327
+ prompt,
328
+ num_videos_per_prompt,
329
+ device=device,
330
+ dtype=dtype,
331
+ max_sequence_length=77,
332
+ )
333
+
334
+ return prompt_embeds, pooled_prompt_embeds, prompt_attention_mask
335
+
336
+ def check_inputs(
337
+ self,
338
+ prompt,
339
+ prompt_2,
340
+ height,
341
+ width,
342
+ prompt_embeds=None,
343
+ callback_on_step_end_tensor_inputs=None,
344
+ prompt_template=None,
345
+ ):
346
+ if height % 16 != 0 or width % 16 != 0:
347
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
348
+
349
+ if callback_on_step_end_tensor_inputs is not None and not all(
350
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
351
+ ):
352
+ raise ValueError(
353
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
354
+ )
355
+
356
+ if prompt is not None and prompt_embeds is not None:
357
+ raise ValueError(
358
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
359
+ " only forward one of the two."
360
+ )
361
+ elif prompt_2 is not None and prompt_embeds is not None:
362
+ raise ValueError(
363
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
364
+ " only forward one of the two."
365
+ )
366
+ elif prompt is None and prompt_embeds is None:
367
+ raise ValueError(
368
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
369
+ )
370
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
371
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
372
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
373
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
374
+
375
+ if prompt_template is not None:
376
+ if not isinstance(prompt_template, dict):
377
+ raise ValueError(f"`prompt_template` has to be of type `dict` but is {type(prompt_template)}")
378
+ if "template" not in prompt_template:
379
+ raise ValueError(
380
+ f"`prompt_template` has to contain a key `template` but only found {prompt_template.keys()}"
381
+ )
382
+
383
+ def prepare_latents(
384
+ self,
385
+ batch_size: int,
386
+ num_channels_latents: 32,
387
+ height: int = 720,
388
+ width: int = 1280,
389
+ num_frames: int = 129,
390
+ dtype: Optional[torch.dtype] = None,
391
+ device: Optional[torch.device] = None,
392
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
393
+ latents: Optional[torch.Tensor] = None,
394
+ ) -> torch.Tensor:
395
+ if latents is not None:
396
+ return latents.to(device=device, dtype=dtype)
397
+
398
+ shape = (
399
+ batch_size,
400
+ num_channels_latents,
401
+ num_frames,
402
+ int(height) // self.vae_scale_factor_spatial,
403
+ int(width) // self.vae_scale_factor_spatial,
404
+ )
405
+ if isinstance(generator, list) and len(generator) != batch_size:
406
+ raise ValueError(
407
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
408
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
409
+ )
410
+
411
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
412
+ return latents
413
+
414
+ def enable_vae_slicing(self):
415
+ r"""
416
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
417
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
418
+ """
419
+ self.vae.enable_slicing()
420
+
421
+ def disable_vae_slicing(self):
422
+ r"""
423
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
424
+ computing decoding in one step.
425
+ """
426
+ self.vae.disable_slicing()
427
+
428
+ def enable_vae_tiling(self):
429
+ r"""
430
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
431
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
432
+ processing larger images.
433
+ """
434
+ self.vae.enable_tiling()
435
+
436
+ def disable_vae_tiling(self):
437
+ r"""
438
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
439
+ computing decoding in one step.
440
+ """
441
+ self.vae.disable_tiling()
442
+
443
+ @property
444
+ def guidance_scale(self):
445
+ return self._guidance_scale
446
+
447
+ @property
448
+ def num_timesteps(self):
449
+ return self._num_timesteps
450
+
451
+ @property
452
+ def attention_kwargs(self):
453
+ return self._attention_kwargs
454
+
455
+ @property
456
+ def interrupt(self):
457
+ return self._interrupt
458
+
459
+ @torch.no_grad()
460
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
461
+ def __call__(
462
+ self,
463
+ prompt: Union[str, List[str]] = None,
464
+ prompt_2: Union[str, List[str]] = None,
465
+ height: int = 720,
466
+ width: int = 1280,
467
+ num_frames: int = 129,
468
+ num_inference_steps: int = 50,
469
+ sigmas: List[float] = None,
470
+ guidance_scale: float = 6.0,
471
+ num_videos_per_prompt: Optional[int] = 1,
472
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
473
+ latents: Optional[torch.Tensor] = None,
474
+ prompt_embeds: Optional[torch.Tensor] = None,
475
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
476
+ prompt_attention_mask: Optional[torch.Tensor] = None,
477
+ output_type: Optional[str] = "pil",
478
+ return_dict: bool = True,
479
+ attention_kwargs: Optional[Dict[str, Any]] = None,
480
+ callback_on_step_end: Optional[
481
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
482
+ ] = None,
483
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
484
+ prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE,
485
+ max_sequence_length: int = 256,
486
+ ):
487
+ r"""
488
+ The call function to the pipeline for generation.
489
+
490
+ Args:
491
+ prompt (`str` or `List[str]`, *optional*):
492
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
493
+ instead.
494
+ prompt_2 (`str` or `List[str]`, *optional*):
495
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
496
+ will be used instead.
497
+ height (`int`, defaults to `720`):
498
+ The height in pixels of the generated image.
499
+ width (`int`, defaults to `1280`):
500
+ The width in pixels of the generated image.
501
+ num_frames (`int`, defaults to `129`):
502
+ The number of frames in the generated video.
503
+ num_inference_steps (`int`, defaults to `50`):
504
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
505
+ expense of slower inference.
506
+ sigmas (`List[float]`, *optional*):
507
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
508
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
509
+ will be used.
510
+ guidance_scale (`float`, defaults to `6.0`):
511
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
512
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
513
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
514
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
515
+ usually at the expense of lower image quality. Note that the only available HunyuanVideo model is
516
+ CFG-distilled, which means that traditional guidance between unconditional and conditional latent is
517
+ not applied.
518
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
519
+ The number of images to generate per prompt.
520
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
521
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
522
+ generation deterministic.
523
+ latents (`torch.Tensor`, *optional*):
524
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
525
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
526
+ tensor is generated by sampling using the supplied random `generator`.
527
+ prompt_embeds (`torch.Tensor`, *optional*):
528
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
529
+ provided, text embeddings are generated from the `prompt` input argument.
530
+ output_type (`str`, *optional*, defaults to `"pil"`):
531
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
532
+ return_dict (`bool`, *optional*, defaults to `True`):
533
+ Whether or not to return a [`HunyuanVideoPipelineOutput`] instead of a plain tuple.
534
+ attention_kwargs (`dict`, *optional*):
535
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
536
+ `self.processor` in
537
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
538
+ clip_skip (`int`, *optional*):
539
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
540
+ the output of the pre-final layer will be used for computing the prompt embeddings.
541
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
542
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
543
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
544
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
545
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
546
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
547
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
548
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
549
+ `._callback_tensor_inputs` attribute of your pipeline class.
550
+
551
+ Examples:
552
+
553
+ Returns:
554
+ [`~HunyuanVideoPipelineOutput`] or `tuple`:
555
+ If `return_dict` is `True`, [`HunyuanVideoPipelineOutput`] is returned, otherwise a `tuple` is returned
556
+ where the first element is a list with the generated images and the second element is a list of `bool`s
557
+ indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.
558
+ """
559
+
560
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
561
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
562
+
563
+ # 1. Check inputs. Raise error if not correct
564
+ self.check_inputs(
565
+ prompt,
566
+ prompt_2,
567
+ height,
568
+ width,
569
+ prompt_embeds,
570
+ callback_on_step_end_tensor_inputs,
571
+ prompt_template,
572
+ )
573
+
574
+ self._guidance_scale = guidance_scale
575
+ self._attention_kwargs = attention_kwargs
576
+ self._interrupt = False
577
+
578
+ device = self._execution_device
579
+
580
+ # 2. Define call parameters
581
+ if prompt is not None and isinstance(prompt, str):
582
+ batch_size = 1
583
+ elif prompt is not None and isinstance(prompt, list):
584
+ batch_size = len(prompt)
585
+ else:
586
+ batch_size = prompt_embeds.shape[0]
587
+
588
+ # 3. Encode input prompt
589
+ prompt_embeds, pooled_prompt_embeds, prompt_attention_mask = self.encode_prompt(
590
+ prompt=prompt,
591
+ prompt_2=prompt_2,
592
+ prompt_template=prompt_template,
593
+ num_videos_per_prompt=num_videos_per_prompt,
594
+ prompt_embeds=prompt_embeds,
595
+ pooled_prompt_embeds=pooled_prompt_embeds,
596
+ prompt_attention_mask=prompt_attention_mask,
597
+ device=device,
598
+ max_sequence_length=max_sequence_length,
599
+ )
600
+
601
+ transformer_dtype = self.transformer.dtype
602
+ prompt_embeds = prompt_embeds.to(transformer_dtype)
603
+ prompt_attention_mask = prompt_attention_mask.to(transformer_dtype)
604
+ if pooled_prompt_embeds is not None:
605
+ pooled_prompt_embeds = pooled_prompt_embeds.to(transformer_dtype)
606
+
607
+ # 4. Prepare timesteps
608
+ sigmas = np.linspace(1.0, 0.0, num_inference_steps + 1)[:-1] if sigmas is None else sigmas
609
+ timesteps, num_inference_steps = retrieve_timesteps(
610
+ self.scheduler,
611
+ num_inference_steps,
612
+ device,
613
+ sigmas=sigmas,
614
+ )
615
+
616
+ # 5. Prepare latent variables
617
+ num_channels_latents = self.transformer.config.in_channels
618
+ num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
619
+ latents = self.prepare_latents(
620
+ batch_size * num_videos_per_prompt,
621
+ num_channels_latents,
622
+ height,
623
+ width,
624
+ num_latent_frames,
625
+ torch.float32,
626
+ device,
627
+ generator,
628
+ latents,
629
+ )
630
+
631
+ # 6. Prepare guidance condition
632
+ guidance = torch.tensor([guidance_scale] * latents.shape[0], dtype=transformer_dtype, device=device) * 1000.0
633
+
634
+ # 7. Denoising loop
635
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
636
+ self._num_timesteps = len(timesteps)
637
+
638
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
639
+ for i, t in enumerate(timesteps):
640
+ if self.interrupt:
641
+ continue
642
+
643
+ latent_model_input = latents.to(transformer_dtype)
644
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
645
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
646
+
647
+ noise_pred = self.transformer(
648
+ hidden_states=latent_model_input,
649
+ timestep=timestep,
650
+ encoder_hidden_states=prompt_embeds,
651
+ encoder_attention_mask=prompt_attention_mask,
652
+ pooled_projections=pooled_prompt_embeds,
653
+ guidance=guidance,
654
+ attention_kwargs=attention_kwargs,
655
+ return_dict=False,
656
+ )[0]
657
+
658
+ # compute the previous noisy sample x_t -> x_t-1
659
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
660
+
661
+ if callback_on_step_end is not None:
662
+ callback_kwargs = {}
663
+ for k in callback_on_step_end_tensor_inputs:
664
+ callback_kwargs[k] = locals()[k]
665
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
666
+
667
+ latents = callback_outputs.pop("latents", latents)
668
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
669
+
670
+ # call the callback, if provided
671
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
672
+ progress_bar.update()
673
+
674
+ if not output_type == "latent":
675
+ latents = latents.to(self.vae.dtype) / self.vae.config.scaling_factor
676
+ video = self.vae.decode(latents, return_dict=False)[0]
677
+ video = self.video_processor.postprocess_video(video, output_type=output_type)
678
+ else:
679
+ video = latents
680
+
681
+ # Offload all models
682
+ self.maybe_free_model_hooks()
683
+
684
+ if not return_dict:
685
+ return (video,)
686
+
687
+ return HunyuanVideoPipelineOutput(frames=video)