diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -19,10 +19,10 @@ from typing import Any, Callable, Dict, List, Optional, Union
19
19
  import numpy as np
20
20
  import PIL.Image
21
21
  import torch
22
- from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
22
+ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
23
23
 
24
24
  from ...image_processor import VaeImageProcessor
25
- from ...loaders import LoraLoaderMixin, TextualInversionLoaderMixin
25
+ from ...loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
26
26
  from ...models import AutoencoderKL, MultiAdapter, T2IAdapter, UNet2DConditionModel
27
27
  from ...models.lora import adjust_lora_scale_text_encoder
28
28
  from ...schedulers import KarrasDiffusionSchedulers
@@ -124,9 +124,10 @@ def retrieve_timesteps(
124
124
  num_inference_steps: Optional[int] = None,
125
125
  device: Optional[Union[str, torch.device]] = None,
126
126
  timesteps: Optional[List[int]] = None,
127
+ sigmas: Optional[List[float]] = None,
127
128
  **kwargs,
128
129
  ):
129
- """
130
+ r"""
130
131
  Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
131
132
  custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
132
133
 
@@ -134,19 +135,23 @@ def retrieve_timesteps(
134
135
  scheduler (`SchedulerMixin`):
135
136
  The scheduler to get timesteps from.
136
137
  num_inference_steps (`int`):
137
- The number of diffusion steps used when generating samples with a pre-trained model. If used,
138
- `timesteps` must be `None`.
138
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
139
+ must be `None`.
139
140
  device (`str` or `torch.device`, *optional*):
140
141
  The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
141
142
  timesteps (`List[int]`, *optional*):
142
- Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
143
- timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
144
- must be `None`.
143
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
144
+ `num_inference_steps` and `sigmas` must be `None`.
145
+ sigmas (`List[float]`, *optional*):
146
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
147
+ `num_inference_steps` and `timesteps` must be `None`.
145
148
 
146
149
  Returns:
147
150
  `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
148
151
  second element is the number of inference steps.
149
152
  """
153
+ if timesteps is not None and sigmas is not None:
154
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
150
155
  if timesteps is not None:
151
156
  accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
152
157
  if not accepts_timesteps:
@@ -157,6 +162,16 @@ def retrieve_timesteps(
157
162
  scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
158
163
  timesteps = scheduler.timesteps
159
164
  num_inference_steps = len(timesteps)
165
+ elif sigmas is not None:
166
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
167
+ if not accept_sigmas:
168
+ raise ValueError(
169
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
170
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
171
+ )
172
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
173
+ timesteps = scheduler.timesteps
174
+ num_inference_steps = len(timesteps)
160
175
  else:
161
176
  scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
162
177
  timesteps = scheduler.timesteps
@@ -194,7 +209,7 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin):
194
209
  safety_checker ([`StableDiffusionSafetyChecker`]):
195
210
  Classification module that estimates whether generated images could be considered offensive or harmful.
196
211
  Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
197
- feature_extractor ([`CLIPFeatureExtractor`]):
212
+ feature_extractor ([`CLIPImageProcessor`]):
198
213
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
199
214
  """
200
215
 
@@ -210,7 +225,7 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin):
210
225
  adapter: Union[T2IAdapter, MultiAdapter, List[T2IAdapter]],
211
226
  scheduler: KarrasDiffusionSchedulers,
212
227
  safety_checker: StableDiffusionSafetyChecker,
213
- feature_extractor: CLIPFeatureExtractor,
228
+ feature_extractor: CLIPImageProcessor,
214
229
  requires_safety_checker: bool = True,
215
230
  ):
216
231
  super().__init__()
@@ -256,8 +271,8 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin):
256
271
  num_images_per_prompt,
257
272
  do_classifier_free_guidance,
258
273
  negative_prompt=None,
259
- prompt_embeds: Optional[torch.FloatTensor] = None,
260
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
274
+ prompt_embeds: Optional[torch.Tensor] = None,
275
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
261
276
  lora_scale: Optional[float] = None,
262
277
  **kwargs,
263
278
  ):
@@ -289,8 +304,8 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin):
289
304
  num_images_per_prompt,
290
305
  do_classifier_free_guidance,
291
306
  negative_prompt=None,
292
- prompt_embeds: Optional[torch.FloatTensor] = None,
293
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
307
+ prompt_embeds: Optional[torch.Tensor] = None,
308
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
294
309
  lora_scale: Optional[float] = None,
295
310
  clip_skip: Optional[int] = None,
296
311
  ):
@@ -310,10 +325,10 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin):
310
325
  The prompt or prompts not to guide the image generation. If not defined, one has to pass
311
326
  `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
312
327
  less than `1`).
313
- prompt_embeds (`torch.FloatTensor`, *optional*):
328
+ prompt_embeds (`torch.Tensor`, *optional*):
314
329
  Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
315
330
  provided, text embeddings will be generated from `prompt` input argument.
316
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
331
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
317
332
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
318
333
  weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
319
334
  argument.
@@ -325,7 +340,7 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin):
325
340
  """
326
341
  # set lora scale so that monkey patched LoRA
327
342
  # function of text encoder can correctly access it
328
- if lora_scale is not None and isinstance(self, LoraLoaderMixin):
343
+ if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
329
344
  self._lora_scale = lora_scale
330
345
 
331
346
  # dynamically adjust the LoRA scale
@@ -457,9 +472,10 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin):
457
472
  negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
458
473
  negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
459
474
 
460
- if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
461
- # Retrieve the original scale by scaling back the LoRA layers
462
- unscale_lora_layers(self.text_encoder, lora_scale)
475
+ if self.text_encoder is not None:
476
+ if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
477
+ # Retrieve the original scale by scaling back the LoRA layers
478
+ unscale_lora_layers(self.text_encoder, lora_scale)
463
479
 
464
480
  return prompt_embeds, negative_prompt_embeds
465
481
 
@@ -569,7 +585,12 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin):
569
585
 
570
586
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
571
587
  def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
572
- shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
588
+ shape = (
589
+ batch_size,
590
+ num_channels_latents,
591
+ int(height) // self.vae_scale_factor,
592
+ int(width) // self.vae_scale_factor,
593
+ )
573
594
  if isinstance(generator, list) and len(generator) != batch_size:
574
595
  raise ValueError(
575
596
  f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
@@ -613,20 +634,22 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin):
613
634
  return height, width
614
635
 
615
636
  # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
616
- def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
637
+ def get_guidance_scale_embedding(
638
+ self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
639
+ ) -> torch.Tensor:
617
640
  """
618
641
  See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
619
642
 
620
643
  Args:
621
- timesteps (`torch.Tensor`):
622
- generate embedding vectors at these timesteps
644
+ w (`torch.Tensor`):
645
+ Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
623
646
  embedding_dim (`int`, *optional*, defaults to 512):
624
- dimension of the embeddings to generate
625
- dtype:
626
- data type of the generated embeddings
647
+ Dimension of the embeddings to generate.
648
+ dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
649
+ Data type of the generated embeddings.
627
650
 
628
651
  Returns:
629
- `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
652
+ `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
630
653
  """
631
654
  assert len(w.shape) == 1
632
655
  w = w * 1000.0
@@ -662,17 +685,18 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin):
662
685
  width: Optional[int] = None,
663
686
  num_inference_steps: int = 50,
664
687
  timesteps: List[int] = None,
688
+ sigmas: List[float] = None,
665
689
  guidance_scale: float = 7.5,
666
690
  negative_prompt: Optional[Union[str, List[str]]] = None,
667
691
  num_images_per_prompt: Optional[int] = 1,
668
692
  eta: float = 0.0,
669
693
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
670
- latents: Optional[torch.FloatTensor] = None,
671
- prompt_embeds: Optional[torch.FloatTensor] = None,
672
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
694
+ latents: Optional[torch.Tensor] = None,
695
+ prompt_embeds: Optional[torch.Tensor] = None,
696
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
673
697
  output_type: Optional[str] = "pil",
674
698
  return_dict: bool = True,
675
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
699
+ callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
676
700
  callback_steps: int = 1,
677
701
  cross_attention_kwargs: Optional[Dict[str, Any]] = None,
678
702
  adapter_conditioning_scale: Union[float, List[float]] = 1.0,
@@ -685,9 +709,9 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin):
685
709
  prompt (`str` or `List[str]`, *optional*):
686
710
  The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
687
711
  instead.
688
- image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]` or `List[PIL.Image.Image]` or `List[List[PIL.Image.Image]]`):
712
+ image (`torch.Tensor`, `PIL.Image.Image`, `List[torch.Tensor]` or `List[PIL.Image.Image]` or `List[List[PIL.Image.Image]]`):
689
713
  The Adapter input condition. Adapter uses this input condition to generate guidance to Unet. If the
690
- type is specified as `Torch.FloatTensor`, it is passed to Adapter as is. PIL.Image.Image` can also be
714
+ type is specified as `torch.Tensor`, it is passed to Adapter as is. PIL.Image.Image` can also be
691
715
  accepted as an image. The control image is automatically resized to fit the output image.
692
716
  height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
693
717
  The height in pixels of the generated image.
@@ -700,6 +724,10 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin):
700
724
  Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
701
725
  in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
702
726
  passed will be used. Must be in descending order.
727
+ sigmas (`List[float]`, *optional*):
728
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
729
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
730
+ will be used.
703
731
  guidance_scale (`float`, *optional*, defaults to 7.5):
704
732
  Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
705
733
  `guidance_scale` is defined as `w` of equation 2. of [Imagen
@@ -718,14 +746,14 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin):
718
746
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
719
747
  One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
720
748
  to make generation deterministic.
721
- latents (`torch.FloatTensor`, *optional*):
749
+ latents (`torch.Tensor`, *optional*):
722
750
  Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
723
751
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
724
752
  tensor will ge generated by sampling using the supplied random `generator`.
725
- prompt_embeds (`torch.FloatTensor`, *optional*):
753
+ prompt_embeds (`torch.Tensor`, *optional*):
726
754
  Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
727
755
  provided, text embeddings will be generated from `prompt` input argument.
728
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
756
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
729
757
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
730
758
  weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
731
759
  argument.
@@ -737,7 +765,7 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin):
737
765
  of a plain tuple.
738
766
  callback (`Callable`, *optional*):
739
767
  A function that will be called every `callback_steps` steps during inference. The function will be
740
- called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
768
+ called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
741
769
  callback_steps (`int`, *optional*, defaults to 1):
742
770
  The frequency at which the `callback` function will be called. If not specified, the callback will be
743
771
  called at every step.
@@ -809,7 +837,9 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin):
809
837
  prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
810
838
 
811
839
  # 4. Prepare timesteps
812
- timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
840
+ timesteps, num_inference_steps = retrieve_timesteps(
841
+ self.scheduler, num_inference_steps, device, timesteps, sigmas
842
+ )
813
843
 
814
844
  # 5. Prepare latent variables
815
845
  num_channels_latents = self.unet.config.in_channels
@@ -36,8 +36,6 @@ from ...loaders import (
36
36
  from ...models import AutoencoderKL, ImageProjection, MultiAdapter, T2IAdapter, UNet2DConditionModel
37
37
  from ...models.attention_processor import (
38
38
  AttnProcessor2_0,
39
- LoRAAttnProcessor2_0,
40
- LoRAXFormersAttnProcessor,
41
39
  XFormersAttnProcessor,
42
40
  )
43
41
  from ...models.lora import adjust_lora_scale_text_encoder
@@ -121,9 +119,21 @@ def _preprocess_adapter_image(image, height, width):
121
119
 
122
120
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
123
121
  def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
124
- """
125
- Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
126
- Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
122
+ r"""
123
+ Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
124
+ Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
125
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf).
126
+
127
+ Args:
128
+ noise_cfg (`torch.Tensor`):
129
+ The predicted noise tensor for the guided diffusion process.
130
+ noise_pred_text (`torch.Tensor`):
131
+ The predicted noise tensor for the text-guided diffusion process.
132
+ guidance_rescale (`float`, *optional*, defaults to 0.0):
133
+ A rescale factor applied to the noise predictions.
134
+
135
+ Returns:
136
+ noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
127
137
  """
128
138
  std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
129
139
  std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
@@ -140,9 +150,10 @@ def retrieve_timesteps(
140
150
  num_inference_steps: Optional[int] = None,
141
151
  device: Optional[Union[str, torch.device]] = None,
142
152
  timesteps: Optional[List[int]] = None,
153
+ sigmas: Optional[List[float]] = None,
143
154
  **kwargs,
144
155
  ):
145
- """
156
+ r"""
146
157
  Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
147
158
  custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
148
159
 
@@ -150,19 +161,23 @@ def retrieve_timesteps(
150
161
  scheduler (`SchedulerMixin`):
151
162
  The scheduler to get timesteps from.
152
163
  num_inference_steps (`int`):
153
- The number of diffusion steps used when generating samples with a pre-trained model. If used,
154
- `timesteps` must be `None`.
164
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
165
+ must be `None`.
155
166
  device (`str` or `torch.device`, *optional*):
156
167
  The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
157
168
  timesteps (`List[int]`, *optional*):
158
- Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
159
- timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
160
- must be `None`.
169
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
170
+ `num_inference_steps` and `sigmas` must be `None`.
171
+ sigmas (`List[float]`, *optional*):
172
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
173
+ `num_inference_steps` and `timesteps` must be `None`.
161
174
 
162
175
  Returns:
163
176
  `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
164
177
  second element is the number of inference steps.
165
178
  """
179
+ if timesteps is not None and sigmas is not None:
180
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
166
181
  if timesteps is not None:
167
182
  accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
168
183
  if not accepts_timesteps:
@@ -173,6 +188,16 @@ def retrieve_timesteps(
173
188
  scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
174
189
  timesteps = scheduler.timesteps
175
190
  num_inference_steps = len(timesteps)
191
+ elif sigmas is not None:
192
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
193
+ if not accept_sigmas:
194
+ raise ValueError(
195
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
196
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
197
+ )
198
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
199
+ timesteps = scheduler.timesteps
200
+ num_inference_steps = len(timesteps)
176
201
  else:
177
202
  scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
178
203
  timesteps = scheduler.timesteps
@@ -224,7 +249,7 @@ class StableDiffusionXLAdapterPipeline(
224
249
  safety_checker ([`StableDiffusionSafetyChecker`]):
225
250
  Classification module that estimates whether generated images could be considered offensive or harmful.
226
251
  Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
227
- feature_extractor ([`CLIPFeatureExtractor`]):
252
+ feature_extractor ([`CLIPImageProcessor`]):
228
253
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
229
254
  """
230
255
 
@@ -281,10 +306,10 @@ class StableDiffusionXLAdapterPipeline(
281
306
  do_classifier_free_guidance: bool = True,
282
307
  negative_prompt: Optional[str] = None,
283
308
  negative_prompt_2: Optional[str] = None,
284
- prompt_embeds: Optional[torch.FloatTensor] = None,
285
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
286
- pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
287
- negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
309
+ prompt_embeds: Optional[torch.Tensor] = None,
310
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
311
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
312
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
288
313
  lora_scale: Optional[float] = None,
289
314
  clip_skip: Optional[int] = None,
290
315
  ):
@@ -310,17 +335,17 @@ class StableDiffusionXLAdapterPipeline(
310
335
  negative_prompt_2 (`str` or `List[str]`, *optional*):
311
336
  The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
312
337
  `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
313
- prompt_embeds (`torch.FloatTensor`, *optional*):
338
+ prompt_embeds (`torch.Tensor`, *optional*):
314
339
  Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
315
340
  provided, text embeddings will be generated from `prompt` input argument.
316
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
341
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
317
342
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
318
343
  weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
319
344
  argument.
320
- pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
345
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
321
346
  Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
322
347
  If not provided, pooled text embeddings will be generated from `prompt` input argument.
323
- negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
348
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
324
349
  Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
325
350
  weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
326
351
  input argument.
@@ -535,6 +560,9 @@ class StableDiffusionXLAdapterPipeline(
535
560
  def prepare_ip_adapter_image_embeds(
536
561
  self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
537
562
  ):
563
+ image_embeds = []
564
+ if do_classifier_free_guidance:
565
+ negative_image_embeds = []
538
566
  if ip_adapter_image_embeds is None:
539
567
  if not isinstance(ip_adapter_image, list):
540
568
  ip_adapter_image = [ip_adapter_image]
@@ -544,7 +572,6 @@ class StableDiffusionXLAdapterPipeline(
544
572
  f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
545
573
  )
546
574
 
547
- image_embeds = []
548
575
  for single_ip_adapter_image, image_proj_layer in zip(
549
576
  ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
550
577
  ):
@@ -552,36 +579,28 @@ class StableDiffusionXLAdapterPipeline(
552
579
  single_image_embeds, single_negative_image_embeds = self.encode_image(
553
580
  single_ip_adapter_image, device, 1, output_hidden_state
554
581
  )
555
- single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
556
- single_negative_image_embeds = torch.stack(
557
- [single_negative_image_embeds] * num_images_per_prompt, dim=0
558
- )
559
582
 
583
+ image_embeds.append(single_image_embeds[None, :])
560
584
  if do_classifier_free_guidance:
561
- single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
562
- single_image_embeds = single_image_embeds.to(device)
563
-
564
- image_embeds.append(single_image_embeds)
585
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
565
586
  else:
566
- repeat_dims = [1]
567
- image_embeds = []
568
587
  for single_image_embeds in ip_adapter_image_embeds:
569
588
  if do_classifier_free_guidance:
570
589
  single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
571
- single_image_embeds = single_image_embeds.repeat(
572
- num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
573
- )
574
- single_negative_image_embeds = single_negative_image_embeds.repeat(
575
- num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
576
- )
577
- single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
578
- else:
579
- single_image_embeds = single_image_embeds.repeat(
580
- num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
581
- )
590
+ negative_image_embeds.append(single_negative_image_embeds)
582
591
  image_embeds.append(single_image_embeds)
583
592
 
584
- return image_embeds
593
+ ip_adapter_image_embeds = []
594
+ for i, single_image_embeds in enumerate(image_embeds):
595
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
596
+ if do_classifier_free_guidance:
597
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
598
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
599
+
600
+ single_image_embeds = single_image_embeds.to(device=device)
601
+ ip_adapter_image_embeds.append(single_image_embeds)
602
+
603
+ return ip_adapter_image_embeds
585
604
 
586
605
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
587
606
  def prepare_extra_step_kwargs(self, generator, eta):
@@ -700,7 +719,12 @@ class StableDiffusionXLAdapterPipeline(
700
719
 
701
720
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
702
721
  def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
703
- shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
722
+ shape = (
723
+ batch_size,
724
+ num_channels_latents,
725
+ int(height) // self.vae_scale_factor,
726
+ int(width) // self.vae_scale_factor,
727
+ )
704
728
  if isinstance(generator, list) and len(generator) != batch_size:
705
729
  raise ValueError(
706
730
  f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
@@ -744,8 +768,6 @@ class StableDiffusionXLAdapterPipeline(
744
768
  (
745
769
  AttnProcessor2_0,
746
770
  XFormersAttnProcessor,
747
- LoRAXFormersAttnProcessor,
748
- LoRAAttnProcessor2_0,
749
771
  ),
750
772
  )
751
773
  # if xformers or torch_2_0 is used attention block does not need
@@ -784,20 +806,22 @@ class StableDiffusionXLAdapterPipeline(
784
806
  return height, width
785
807
 
786
808
  # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
787
- def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
809
+ def get_guidance_scale_embedding(
810
+ self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
811
+ ) -> torch.Tensor:
788
812
  """
789
813
  See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
790
814
 
791
815
  Args:
792
- timesteps (`torch.Tensor`):
793
- generate embedding vectors at these timesteps
816
+ w (`torch.Tensor`):
817
+ Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
794
818
  embedding_dim (`int`, *optional*, defaults to 512):
795
- dimension of the embeddings to generate
796
- dtype:
797
- data type of the generated embeddings
819
+ Dimension of the embeddings to generate.
820
+ dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
821
+ Data type of the generated embeddings.
798
822
 
799
823
  Returns:
800
- `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
824
+ `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
801
825
  """
802
826
  assert len(w.shape) == 1
803
827
  w = w * 1000.0
@@ -834,6 +858,7 @@ class StableDiffusionXLAdapterPipeline(
834
858
  width: Optional[int] = None,
835
859
  num_inference_steps: int = 50,
836
860
  timesteps: List[int] = None,
861
+ sigmas: List[float] = None,
837
862
  denoising_end: Optional[float] = None,
838
863
  guidance_scale: float = 5.0,
839
864
  negative_prompt: Optional[Union[str, List[str]]] = None,
@@ -841,16 +866,16 @@ class StableDiffusionXLAdapterPipeline(
841
866
  num_images_per_prompt: Optional[int] = 1,
842
867
  eta: float = 0.0,
843
868
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
844
- latents: Optional[torch.FloatTensor] = None,
845
- prompt_embeds: Optional[torch.FloatTensor] = None,
846
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
847
- pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
848
- negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
869
+ latents: Optional[torch.Tensor] = None,
870
+ prompt_embeds: Optional[torch.Tensor] = None,
871
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
872
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
873
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
849
874
  ip_adapter_image: Optional[PipelineImageInput] = None,
850
- ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
875
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
851
876
  output_type: Optional[str] = "pil",
852
877
  return_dict: bool = True,
853
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
878
+ callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
854
879
  callback_steps: int = 1,
855
880
  cross_attention_kwargs: Optional[Dict[str, Any]] = None,
856
881
  guidance_rescale: float = 0.0,
@@ -874,9 +899,9 @@ class StableDiffusionXLAdapterPipeline(
874
899
  prompt_2 (`str` or `List[str]`, *optional*):
875
900
  The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
876
901
  used in both text-encoders
877
- image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]` or `List[PIL.Image.Image]` or `List[List[PIL.Image.Image]]`):
902
+ image (`torch.Tensor`, `PIL.Image.Image`, `List[torch.Tensor]` or `List[PIL.Image.Image]` or `List[List[PIL.Image.Image]]`):
878
903
  The Adapter input condition. Adapter uses this input condition to generate guidance to Unet. If the
879
- type is specified as `Torch.FloatTensor`, it is passed to Adapter as is. PIL.Image.Image` can also be
904
+ type is specified as `torch.Tensor`, it is passed to Adapter as is. PIL.Image.Image` can also be
880
905
  accepted as an image. The control image is automatically resized to fit the output image.
881
906
  height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
882
907
  The height in pixels of the generated image. Anything below 512 pixels won't work well for
@@ -893,6 +918,10 @@ class StableDiffusionXLAdapterPipeline(
893
918
  Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
894
919
  in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
895
920
  passed will be used. Must be in descending order.
921
+ sigmas (`List[float]`, *optional*):
922
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
923
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
924
+ will be used.
896
925
  denoising_end (`float`, *optional*):
897
926
  When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
898
927
  completed before it is intentionally prematurely terminated. As a result, the returned sample will
@@ -921,30 +950,30 @@ class StableDiffusionXLAdapterPipeline(
921
950
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
922
951
  One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
923
952
  to make generation deterministic.
924
- latents (`torch.FloatTensor`, *optional*):
953
+ latents (`torch.Tensor`, *optional*):
925
954
  Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
926
955
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
927
956
  tensor will ge generated by sampling using the supplied random `generator`.
928
- prompt_embeds (`torch.FloatTensor`, *optional*):
957
+ prompt_embeds (`torch.Tensor`, *optional*):
929
958
  Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
930
959
  provided, text embeddings will be generated from `prompt` input argument.
931
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
960
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
932
961
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
933
962
  weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
934
963
  argument.
935
- pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
964
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
936
965
  Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
937
966
  If not provided, pooled text embeddings will be generated from `prompt` input argument.
938
- negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
967
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
939
968
  Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
940
969
  weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
941
970
  input argument.
942
971
  ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
943
- ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
944
- Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters.
945
- Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding
946
- if `do_classifier_free_guidance` is set to `True`.
947
- If not provided, embeddings are computed from the `ip_adapter_image` input argument.
972
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
973
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
974
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
975
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
976
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
948
977
  output_type (`str`, *optional*, defaults to `"pil"`):
949
978
  The output format of the generate image. Choose between
950
979
  [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
@@ -953,7 +982,7 @@ class StableDiffusionXLAdapterPipeline(
953
982
  instead of a plain tuple.
954
983
  callback (`Callable`, *optional*):
955
984
  A function that will be called every `callback_steps` steps during inference. The function will be
956
- called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
985
+ called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
957
986
  callback_steps (`int`, *optional*, defaults to 1):
958
987
  The frequency at which the `callback` function will be called. If not specified, the callback will be
959
988
  called at every step.
@@ -1094,7 +1123,9 @@ class StableDiffusionXLAdapterPipeline(
1094
1123
  )
1095
1124
 
1096
1125
  # 4. Prepare timesteps
1097
- timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
1126
+ timesteps, num_inference_steps = retrieve_timesteps(
1127
+ self.scheduler, num_inference_steps, device, timesteps, sigmas
1128
+ )
1098
1129
 
1099
1130
  # 5. Prepare latent variables
1100
1131
  num_channels_latents = self.unet.config.in_channels