diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +50 -53
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.0.dist-info/RECORD +0 -399
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -19,10 +19,10 @@ from typing import Any, Callable, Dict, List, Optional, Union
|
|
19
19
|
import numpy as np
|
20
20
|
import PIL.Image
|
21
21
|
import torch
|
22
|
-
from transformers import
|
22
|
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
23
23
|
|
24
24
|
from ...image_processor import VaeImageProcessor
|
25
|
-
from ...loaders import
|
25
|
+
from ...loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
26
26
|
from ...models import AutoencoderKL, MultiAdapter, T2IAdapter, UNet2DConditionModel
|
27
27
|
from ...models.lora import adjust_lora_scale_text_encoder
|
28
28
|
from ...schedulers import KarrasDiffusionSchedulers
|
@@ -124,9 +124,10 @@ def retrieve_timesteps(
|
|
124
124
|
num_inference_steps: Optional[int] = None,
|
125
125
|
device: Optional[Union[str, torch.device]] = None,
|
126
126
|
timesteps: Optional[List[int]] = None,
|
127
|
+
sigmas: Optional[List[float]] = None,
|
127
128
|
**kwargs,
|
128
129
|
):
|
129
|
-
"""
|
130
|
+
r"""
|
130
131
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
131
132
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
132
133
|
|
@@ -134,19 +135,23 @@ def retrieve_timesteps(
|
|
134
135
|
scheduler (`SchedulerMixin`):
|
135
136
|
The scheduler to get timesteps from.
|
136
137
|
num_inference_steps (`int`):
|
137
|
-
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
138
|
-
|
138
|
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
139
|
+
must be `None`.
|
139
140
|
device (`str` or `torch.device`, *optional*):
|
140
141
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
141
142
|
timesteps (`List[int]`, *optional*):
|
142
|
-
|
143
|
-
|
144
|
-
|
143
|
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
144
|
+
`num_inference_steps` and `sigmas` must be `None`.
|
145
|
+
sigmas (`List[float]`, *optional*):
|
146
|
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
147
|
+
`num_inference_steps` and `timesteps` must be `None`.
|
145
148
|
|
146
149
|
Returns:
|
147
150
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
148
151
|
second element is the number of inference steps.
|
149
152
|
"""
|
153
|
+
if timesteps is not None and sigmas is not None:
|
154
|
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
150
155
|
if timesteps is not None:
|
151
156
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
152
157
|
if not accepts_timesteps:
|
@@ -157,6 +162,16 @@ def retrieve_timesteps(
|
|
157
162
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
158
163
|
timesteps = scheduler.timesteps
|
159
164
|
num_inference_steps = len(timesteps)
|
165
|
+
elif sigmas is not None:
|
166
|
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
167
|
+
if not accept_sigmas:
|
168
|
+
raise ValueError(
|
169
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
170
|
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
171
|
+
)
|
172
|
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
173
|
+
timesteps = scheduler.timesteps
|
174
|
+
num_inference_steps = len(timesteps)
|
160
175
|
else:
|
161
176
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
162
177
|
timesteps = scheduler.timesteps
|
@@ -194,7 +209,7 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin):
|
|
194
209
|
safety_checker ([`StableDiffusionSafetyChecker`]):
|
195
210
|
Classification module that estimates whether generated images could be considered offensive or harmful.
|
196
211
|
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
197
|
-
feature_extractor ([`
|
212
|
+
feature_extractor ([`CLIPImageProcessor`]):
|
198
213
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
199
214
|
"""
|
200
215
|
|
@@ -210,7 +225,7 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin):
|
|
210
225
|
adapter: Union[T2IAdapter, MultiAdapter, List[T2IAdapter]],
|
211
226
|
scheduler: KarrasDiffusionSchedulers,
|
212
227
|
safety_checker: StableDiffusionSafetyChecker,
|
213
|
-
feature_extractor:
|
228
|
+
feature_extractor: CLIPImageProcessor,
|
214
229
|
requires_safety_checker: bool = True,
|
215
230
|
):
|
216
231
|
super().__init__()
|
@@ -256,8 +271,8 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin):
|
|
256
271
|
num_images_per_prompt,
|
257
272
|
do_classifier_free_guidance,
|
258
273
|
negative_prompt=None,
|
259
|
-
prompt_embeds: Optional[torch.
|
260
|
-
negative_prompt_embeds: Optional[torch.
|
274
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
275
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
261
276
|
lora_scale: Optional[float] = None,
|
262
277
|
**kwargs,
|
263
278
|
):
|
@@ -289,8 +304,8 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin):
|
|
289
304
|
num_images_per_prompt,
|
290
305
|
do_classifier_free_guidance,
|
291
306
|
negative_prompt=None,
|
292
|
-
prompt_embeds: Optional[torch.
|
293
|
-
negative_prompt_embeds: Optional[torch.
|
307
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
308
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
294
309
|
lora_scale: Optional[float] = None,
|
295
310
|
clip_skip: Optional[int] = None,
|
296
311
|
):
|
@@ -310,10 +325,10 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin):
|
|
310
325
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
311
326
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
312
327
|
less than `1`).
|
313
|
-
prompt_embeds (`torch.
|
328
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
314
329
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
315
330
|
provided, text embeddings will be generated from `prompt` input argument.
|
316
|
-
negative_prompt_embeds (`torch.
|
331
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
317
332
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
318
333
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
319
334
|
argument.
|
@@ -325,7 +340,7 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin):
|
|
325
340
|
"""
|
326
341
|
# set lora scale so that monkey patched LoRA
|
327
342
|
# function of text encoder can correctly access it
|
328
|
-
if lora_scale is not None and isinstance(self,
|
343
|
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
329
344
|
self._lora_scale = lora_scale
|
330
345
|
|
331
346
|
# dynamically adjust the LoRA scale
|
@@ -457,9 +472,10 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin):
|
|
457
472
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
458
473
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
459
474
|
|
460
|
-
if
|
461
|
-
|
462
|
-
|
475
|
+
if self.text_encoder is not None:
|
476
|
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
477
|
+
# Retrieve the original scale by scaling back the LoRA layers
|
478
|
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
463
479
|
|
464
480
|
return prompt_embeds, negative_prompt_embeds
|
465
481
|
|
@@ -569,7 +585,12 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin):
|
|
569
585
|
|
570
586
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
571
587
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
572
|
-
shape = (
|
588
|
+
shape = (
|
589
|
+
batch_size,
|
590
|
+
num_channels_latents,
|
591
|
+
int(height) // self.vae_scale_factor,
|
592
|
+
int(width) // self.vae_scale_factor,
|
593
|
+
)
|
573
594
|
if isinstance(generator, list) and len(generator) != batch_size:
|
574
595
|
raise ValueError(
|
575
596
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
@@ -613,20 +634,22 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin):
|
|
613
634
|
return height, width
|
614
635
|
|
615
636
|
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
616
|
-
def get_guidance_scale_embedding(
|
637
|
+
def get_guidance_scale_embedding(
|
638
|
+
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
639
|
+
) -> torch.Tensor:
|
617
640
|
"""
|
618
641
|
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
619
642
|
|
620
643
|
Args:
|
621
|
-
|
622
|
-
|
644
|
+
w (`torch.Tensor`):
|
645
|
+
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
623
646
|
embedding_dim (`int`, *optional*, defaults to 512):
|
624
|
-
|
625
|
-
dtype:
|
626
|
-
|
647
|
+
Dimension of the embeddings to generate.
|
648
|
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
649
|
+
Data type of the generated embeddings.
|
627
650
|
|
628
651
|
Returns:
|
629
|
-
`torch.
|
652
|
+
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
630
653
|
"""
|
631
654
|
assert len(w.shape) == 1
|
632
655
|
w = w * 1000.0
|
@@ -662,17 +685,18 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin):
|
|
662
685
|
width: Optional[int] = None,
|
663
686
|
num_inference_steps: int = 50,
|
664
687
|
timesteps: List[int] = None,
|
688
|
+
sigmas: List[float] = None,
|
665
689
|
guidance_scale: float = 7.5,
|
666
690
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
667
691
|
num_images_per_prompt: Optional[int] = 1,
|
668
692
|
eta: float = 0.0,
|
669
693
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
670
|
-
latents: Optional[torch.
|
671
|
-
prompt_embeds: Optional[torch.
|
672
|
-
negative_prompt_embeds: Optional[torch.
|
694
|
+
latents: Optional[torch.Tensor] = None,
|
695
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
696
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
673
697
|
output_type: Optional[str] = "pil",
|
674
698
|
return_dict: bool = True,
|
675
|
-
callback: Optional[Callable[[int, int, torch.
|
699
|
+
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
676
700
|
callback_steps: int = 1,
|
677
701
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
678
702
|
adapter_conditioning_scale: Union[float, List[float]] = 1.0,
|
@@ -685,9 +709,9 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin):
|
|
685
709
|
prompt (`str` or `List[str]`, *optional*):
|
686
710
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
687
711
|
instead.
|
688
|
-
image (`torch.
|
712
|
+
image (`torch.Tensor`, `PIL.Image.Image`, `List[torch.Tensor]` or `List[PIL.Image.Image]` or `List[List[PIL.Image.Image]]`):
|
689
713
|
The Adapter input condition. Adapter uses this input condition to generate guidance to Unet. If the
|
690
|
-
type is specified as `
|
714
|
+
type is specified as `torch.Tensor`, it is passed to Adapter as is. PIL.Image.Image` can also be
|
691
715
|
accepted as an image. The control image is automatically resized to fit the output image.
|
692
716
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
693
717
|
The height in pixels of the generated image.
|
@@ -700,6 +724,10 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin):
|
|
700
724
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
701
725
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
702
726
|
passed will be used. Must be in descending order.
|
727
|
+
sigmas (`List[float]`, *optional*):
|
728
|
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
729
|
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
730
|
+
will be used.
|
703
731
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
704
732
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
705
733
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
@@ -718,14 +746,14 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin):
|
|
718
746
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
719
747
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
720
748
|
to make generation deterministic.
|
721
|
-
latents (`torch.
|
749
|
+
latents (`torch.Tensor`, *optional*):
|
722
750
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
723
751
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
724
752
|
tensor will ge generated by sampling using the supplied random `generator`.
|
725
|
-
prompt_embeds (`torch.
|
753
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
726
754
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
727
755
|
provided, text embeddings will be generated from `prompt` input argument.
|
728
|
-
negative_prompt_embeds (`torch.
|
756
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
729
757
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
730
758
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
731
759
|
argument.
|
@@ -737,7 +765,7 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin):
|
|
737
765
|
of a plain tuple.
|
738
766
|
callback (`Callable`, *optional*):
|
739
767
|
A function that will be called every `callback_steps` steps during inference. The function will be
|
740
|
-
called with the following arguments: `callback(step: int, timestep: int, latents: torch.
|
768
|
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
741
769
|
callback_steps (`int`, *optional*, defaults to 1):
|
742
770
|
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
743
771
|
called at every step.
|
@@ -809,7 +837,9 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin):
|
|
809
837
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
810
838
|
|
811
839
|
# 4. Prepare timesteps
|
812
|
-
timesteps, num_inference_steps = retrieve_timesteps(
|
840
|
+
timesteps, num_inference_steps = retrieve_timesteps(
|
841
|
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
842
|
+
)
|
813
843
|
|
814
844
|
# 5. Prepare latent variables
|
815
845
|
num_channels_latents = self.unet.config.in_channels
|
@@ -36,8 +36,6 @@ from ...loaders import (
|
|
36
36
|
from ...models import AutoencoderKL, ImageProjection, MultiAdapter, T2IAdapter, UNet2DConditionModel
|
37
37
|
from ...models.attention_processor import (
|
38
38
|
AttnProcessor2_0,
|
39
|
-
LoRAAttnProcessor2_0,
|
40
|
-
LoRAXFormersAttnProcessor,
|
41
39
|
XFormersAttnProcessor,
|
42
40
|
)
|
43
41
|
from ...models.lora import adjust_lora_scale_text_encoder
|
@@ -121,9 +119,21 @@ def _preprocess_adapter_image(image, height, width):
|
|
121
119
|
|
122
120
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
|
123
121
|
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
124
|
-
"""
|
125
|
-
|
126
|
-
|
122
|
+
r"""
|
123
|
+
Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
|
124
|
+
Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
|
125
|
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
126
|
+
|
127
|
+
Args:
|
128
|
+
noise_cfg (`torch.Tensor`):
|
129
|
+
The predicted noise tensor for the guided diffusion process.
|
130
|
+
noise_pred_text (`torch.Tensor`):
|
131
|
+
The predicted noise tensor for the text-guided diffusion process.
|
132
|
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
133
|
+
A rescale factor applied to the noise predictions.
|
134
|
+
|
135
|
+
Returns:
|
136
|
+
noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
|
127
137
|
"""
|
128
138
|
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
129
139
|
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
@@ -140,9 +150,10 @@ def retrieve_timesteps(
|
|
140
150
|
num_inference_steps: Optional[int] = None,
|
141
151
|
device: Optional[Union[str, torch.device]] = None,
|
142
152
|
timesteps: Optional[List[int]] = None,
|
153
|
+
sigmas: Optional[List[float]] = None,
|
143
154
|
**kwargs,
|
144
155
|
):
|
145
|
-
"""
|
156
|
+
r"""
|
146
157
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
147
158
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
148
159
|
|
@@ -150,19 +161,23 @@ def retrieve_timesteps(
|
|
150
161
|
scheduler (`SchedulerMixin`):
|
151
162
|
The scheduler to get timesteps from.
|
152
163
|
num_inference_steps (`int`):
|
153
|
-
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
154
|
-
|
164
|
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
165
|
+
must be `None`.
|
155
166
|
device (`str` or `torch.device`, *optional*):
|
156
167
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
157
168
|
timesteps (`List[int]`, *optional*):
|
158
|
-
|
159
|
-
|
160
|
-
|
169
|
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
170
|
+
`num_inference_steps` and `sigmas` must be `None`.
|
171
|
+
sigmas (`List[float]`, *optional*):
|
172
|
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
173
|
+
`num_inference_steps` and `timesteps` must be `None`.
|
161
174
|
|
162
175
|
Returns:
|
163
176
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
164
177
|
second element is the number of inference steps.
|
165
178
|
"""
|
179
|
+
if timesteps is not None and sigmas is not None:
|
180
|
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
166
181
|
if timesteps is not None:
|
167
182
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
168
183
|
if not accepts_timesteps:
|
@@ -173,6 +188,16 @@ def retrieve_timesteps(
|
|
173
188
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
174
189
|
timesteps = scheduler.timesteps
|
175
190
|
num_inference_steps = len(timesteps)
|
191
|
+
elif sigmas is not None:
|
192
|
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
193
|
+
if not accept_sigmas:
|
194
|
+
raise ValueError(
|
195
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
196
|
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
197
|
+
)
|
198
|
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
199
|
+
timesteps = scheduler.timesteps
|
200
|
+
num_inference_steps = len(timesteps)
|
176
201
|
else:
|
177
202
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
178
203
|
timesteps = scheduler.timesteps
|
@@ -224,7 +249,7 @@ class StableDiffusionXLAdapterPipeline(
|
|
224
249
|
safety_checker ([`StableDiffusionSafetyChecker`]):
|
225
250
|
Classification module that estimates whether generated images could be considered offensive or harmful.
|
226
251
|
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
227
|
-
feature_extractor ([`
|
252
|
+
feature_extractor ([`CLIPImageProcessor`]):
|
228
253
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
229
254
|
"""
|
230
255
|
|
@@ -281,10 +306,10 @@ class StableDiffusionXLAdapterPipeline(
|
|
281
306
|
do_classifier_free_guidance: bool = True,
|
282
307
|
negative_prompt: Optional[str] = None,
|
283
308
|
negative_prompt_2: Optional[str] = None,
|
284
|
-
prompt_embeds: Optional[torch.
|
285
|
-
negative_prompt_embeds: Optional[torch.
|
286
|
-
pooled_prompt_embeds: Optional[torch.
|
287
|
-
negative_pooled_prompt_embeds: Optional[torch.
|
309
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
310
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
311
|
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
312
|
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
288
313
|
lora_scale: Optional[float] = None,
|
289
314
|
clip_skip: Optional[int] = None,
|
290
315
|
):
|
@@ -310,17 +335,17 @@ class StableDiffusionXLAdapterPipeline(
|
|
310
335
|
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
311
336
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
312
337
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
313
|
-
prompt_embeds (`torch.
|
338
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
314
339
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
315
340
|
provided, text embeddings will be generated from `prompt` input argument.
|
316
|
-
negative_prompt_embeds (`torch.
|
341
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
317
342
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
318
343
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
319
344
|
argument.
|
320
|
-
pooled_prompt_embeds (`torch.
|
345
|
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
321
346
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
322
347
|
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
323
|
-
negative_pooled_prompt_embeds (`torch.
|
348
|
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
324
349
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
325
350
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
326
351
|
input argument.
|
@@ -535,6 +560,9 @@ class StableDiffusionXLAdapterPipeline(
|
|
535
560
|
def prepare_ip_adapter_image_embeds(
|
536
561
|
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
537
562
|
):
|
563
|
+
image_embeds = []
|
564
|
+
if do_classifier_free_guidance:
|
565
|
+
negative_image_embeds = []
|
538
566
|
if ip_adapter_image_embeds is None:
|
539
567
|
if not isinstance(ip_adapter_image, list):
|
540
568
|
ip_adapter_image = [ip_adapter_image]
|
@@ -544,7 +572,6 @@ class StableDiffusionXLAdapterPipeline(
|
|
544
572
|
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
545
573
|
)
|
546
574
|
|
547
|
-
image_embeds = []
|
548
575
|
for single_ip_adapter_image, image_proj_layer in zip(
|
549
576
|
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
550
577
|
):
|
@@ -552,36 +579,28 @@ class StableDiffusionXLAdapterPipeline(
|
|
552
579
|
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
553
580
|
single_ip_adapter_image, device, 1, output_hidden_state
|
554
581
|
)
|
555
|
-
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
556
|
-
single_negative_image_embeds = torch.stack(
|
557
|
-
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
558
|
-
)
|
559
582
|
|
583
|
+
image_embeds.append(single_image_embeds[None, :])
|
560
584
|
if do_classifier_free_guidance:
|
561
|
-
|
562
|
-
single_image_embeds = single_image_embeds.to(device)
|
563
|
-
|
564
|
-
image_embeds.append(single_image_embeds)
|
585
|
+
negative_image_embeds.append(single_negative_image_embeds[None, :])
|
565
586
|
else:
|
566
|
-
repeat_dims = [1]
|
567
|
-
image_embeds = []
|
568
587
|
for single_image_embeds in ip_adapter_image_embeds:
|
569
588
|
if do_classifier_free_guidance:
|
570
589
|
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
571
|
-
|
572
|
-
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
573
|
-
)
|
574
|
-
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
575
|
-
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
576
|
-
)
|
577
|
-
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
578
|
-
else:
|
579
|
-
single_image_embeds = single_image_embeds.repeat(
|
580
|
-
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
581
|
-
)
|
590
|
+
negative_image_embeds.append(single_negative_image_embeds)
|
582
591
|
image_embeds.append(single_image_embeds)
|
583
592
|
|
584
|
-
|
593
|
+
ip_adapter_image_embeds = []
|
594
|
+
for i, single_image_embeds in enumerate(image_embeds):
|
595
|
+
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
596
|
+
if do_classifier_free_guidance:
|
597
|
+
single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
|
598
|
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
|
599
|
+
|
600
|
+
single_image_embeds = single_image_embeds.to(device=device)
|
601
|
+
ip_adapter_image_embeds.append(single_image_embeds)
|
602
|
+
|
603
|
+
return ip_adapter_image_embeds
|
585
604
|
|
586
605
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
587
606
|
def prepare_extra_step_kwargs(self, generator, eta):
|
@@ -700,7 +719,12 @@ class StableDiffusionXLAdapterPipeline(
|
|
700
719
|
|
701
720
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
702
721
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
703
|
-
shape = (
|
722
|
+
shape = (
|
723
|
+
batch_size,
|
724
|
+
num_channels_latents,
|
725
|
+
int(height) // self.vae_scale_factor,
|
726
|
+
int(width) // self.vae_scale_factor,
|
727
|
+
)
|
704
728
|
if isinstance(generator, list) and len(generator) != batch_size:
|
705
729
|
raise ValueError(
|
706
730
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
@@ -744,8 +768,6 @@ class StableDiffusionXLAdapterPipeline(
|
|
744
768
|
(
|
745
769
|
AttnProcessor2_0,
|
746
770
|
XFormersAttnProcessor,
|
747
|
-
LoRAXFormersAttnProcessor,
|
748
|
-
LoRAAttnProcessor2_0,
|
749
771
|
),
|
750
772
|
)
|
751
773
|
# if xformers or torch_2_0 is used attention block does not need
|
@@ -784,20 +806,22 @@ class StableDiffusionXLAdapterPipeline(
|
|
784
806
|
return height, width
|
785
807
|
|
786
808
|
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
787
|
-
def get_guidance_scale_embedding(
|
809
|
+
def get_guidance_scale_embedding(
|
810
|
+
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
811
|
+
) -> torch.Tensor:
|
788
812
|
"""
|
789
813
|
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
790
814
|
|
791
815
|
Args:
|
792
|
-
|
793
|
-
|
816
|
+
w (`torch.Tensor`):
|
817
|
+
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
794
818
|
embedding_dim (`int`, *optional*, defaults to 512):
|
795
|
-
|
796
|
-
dtype:
|
797
|
-
|
819
|
+
Dimension of the embeddings to generate.
|
820
|
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
821
|
+
Data type of the generated embeddings.
|
798
822
|
|
799
823
|
Returns:
|
800
|
-
`torch.
|
824
|
+
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
801
825
|
"""
|
802
826
|
assert len(w.shape) == 1
|
803
827
|
w = w * 1000.0
|
@@ -834,6 +858,7 @@ class StableDiffusionXLAdapterPipeline(
|
|
834
858
|
width: Optional[int] = None,
|
835
859
|
num_inference_steps: int = 50,
|
836
860
|
timesteps: List[int] = None,
|
861
|
+
sigmas: List[float] = None,
|
837
862
|
denoising_end: Optional[float] = None,
|
838
863
|
guidance_scale: float = 5.0,
|
839
864
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
@@ -841,16 +866,16 @@ class StableDiffusionXLAdapterPipeline(
|
|
841
866
|
num_images_per_prompt: Optional[int] = 1,
|
842
867
|
eta: float = 0.0,
|
843
868
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
844
|
-
latents: Optional[torch.
|
845
|
-
prompt_embeds: Optional[torch.
|
846
|
-
negative_prompt_embeds: Optional[torch.
|
847
|
-
pooled_prompt_embeds: Optional[torch.
|
848
|
-
negative_pooled_prompt_embeds: Optional[torch.
|
869
|
+
latents: Optional[torch.Tensor] = None,
|
870
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
871
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
872
|
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
873
|
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
849
874
|
ip_adapter_image: Optional[PipelineImageInput] = None,
|
850
|
-
ip_adapter_image_embeds: Optional[List[torch.
|
875
|
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
851
876
|
output_type: Optional[str] = "pil",
|
852
877
|
return_dict: bool = True,
|
853
|
-
callback: Optional[Callable[[int, int, torch.
|
878
|
+
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
854
879
|
callback_steps: int = 1,
|
855
880
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
856
881
|
guidance_rescale: float = 0.0,
|
@@ -874,9 +899,9 @@ class StableDiffusionXLAdapterPipeline(
|
|
874
899
|
prompt_2 (`str` or `List[str]`, *optional*):
|
875
900
|
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
876
901
|
used in both text-encoders
|
877
|
-
image (`torch.
|
902
|
+
image (`torch.Tensor`, `PIL.Image.Image`, `List[torch.Tensor]` or `List[PIL.Image.Image]` or `List[List[PIL.Image.Image]]`):
|
878
903
|
The Adapter input condition. Adapter uses this input condition to generate guidance to Unet. If the
|
879
|
-
type is specified as `
|
904
|
+
type is specified as `torch.Tensor`, it is passed to Adapter as is. PIL.Image.Image` can also be
|
880
905
|
accepted as an image. The control image is automatically resized to fit the output image.
|
881
906
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
882
907
|
The height in pixels of the generated image. Anything below 512 pixels won't work well for
|
@@ -893,6 +918,10 @@ class StableDiffusionXLAdapterPipeline(
|
|
893
918
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
894
919
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
895
920
|
passed will be used. Must be in descending order.
|
921
|
+
sigmas (`List[float]`, *optional*):
|
922
|
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
923
|
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
924
|
+
will be used.
|
896
925
|
denoising_end (`float`, *optional*):
|
897
926
|
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
898
927
|
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
@@ -921,30 +950,30 @@ class StableDiffusionXLAdapterPipeline(
|
|
921
950
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
922
951
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
923
952
|
to make generation deterministic.
|
924
|
-
latents (`torch.
|
953
|
+
latents (`torch.Tensor`, *optional*):
|
925
954
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
926
955
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
927
956
|
tensor will ge generated by sampling using the supplied random `generator`.
|
928
|
-
prompt_embeds (`torch.
|
957
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
929
958
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
930
959
|
provided, text embeddings will be generated from `prompt` input argument.
|
931
|
-
negative_prompt_embeds (`torch.
|
960
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
932
961
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
933
962
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
934
963
|
argument.
|
935
|
-
pooled_prompt_embeds (`torch.
|
964
|
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
936
965
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
937
966
|
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
938
|
-
negative_pooled_prompt_embeds (`torch.
|
967
|
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
939
968
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
940
969
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
941
970
|
input argument.
|
942
971
|
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
943
|
-
ip_adapter_image_embeds (`List[torch.
|
944
|
-
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
945
|
-
Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
946
|
-
if `do_classifier_free_guidance` is set to `True`.
|
947
|
-
|
972
|
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
973
|
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
974
|
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
975
|
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
976
|
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
948
977
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
949
978
|
The output format of the generate image. Choose between
|
950
979
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
@@ -953,7 +982,7 @@ class StableDiffusionXLAdapterPipeline(
|
|
953
982
|
instead of a plain tuple.
|
954
983
|
callback (`Callable`, *optional*):
|
955
984
|
A function that will be called every `callback_steps` steps during inference. The function will be
|
956
|
-
called with the following arguments: `callback(step: int, timestep: int, latents: torch.
|
985
|
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
957
986
|
callback_steps (`int`, *optional*, defaults to 1):
|
958
987
|
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
959
988
|
called at every step.
|
@@ -1094,7 +1123,9 @@ class StableDiffusionXLAdapterPipeline(
|
|
1094
1123
|
)
|
1095
1124
|
|
1096
1125
|
# 4. Prepare timesteps
|
1097
|
-
timesteps, num_inference_steps = retrieve_timesteps(
|
1126
|
+
timesteps, num_inference_steps = retrieve_timesteps(
|
1127
|
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
1128
|
+
)
|
1098
1129
|
|
1099
1130
|
# 5. Prepare latent variables
|
1100
1131
|
num_channels_latents = self.unet.config.in_channels
|