diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +50 -53
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.0.dist-info/RECORD +0 -399
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -22,10 +22,14 @@ import numpy as np
|
|
22
22
|
import torch
|
23
23
|
|
24
24
|
from ..configuration_utils import ConfigMixin, register_to_config
|
25
|
-
from ..utils import deprecate
|
25
|
+
from ..utils import deprecate, is_scipy_available
|
26
26
|
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
|
27
27
|
|
28
28
|
|
29
|
+
if is_scipy_available():
|
30
|
+
import scipy.stats
|
31
|
+
|
32
|
+
|
29
33
|
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
30
34
|
def betas_for_alpha_bar(
|
31
35
|
num_diffusion_timesteps,
|
@@ -61,7 +65,7 @@ def betas_for_alpha_bar(
|
|
61
65
|
return math.exp(t * -12.0)
|
62
66
|
|
63
67
|
else:
|
64
|
-
raise ValueError(f"Unsupported
|
68
|
+
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
|
65
69
|
|
66
70
|
betas = []
|
67
71
|
for i in range(num_diffusion_timesteps):
|
@@ -71,6 +75,43 @@ def betas_for_alpha_bar(
|
|
71
75
|
return torch.tensor(betas, dtype=torch.float32)
|
72
76
|
|
73
77
|
|
78
|
+
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
|
79
|
+
def rescale_zero_terminal_snr(betas):
|
80
|
+
"""
|
81
|
+
Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)
|
82
|
+
|
83
|
+
|
84
|
+
Args:
|
85
|
+
betas (`torch.Tensor`):
|
86
|
+
the betas that the scheduler is being initialized with.
|
87
|
+
|
88
|
+
Returns:
|
89
|
+
`torch.Tensor`: rescaled betas with zero terminal SNR
|
90
|
+
"""
|
91
|
+
# Convert betas to alphas_bar_sqrt
|
92
|
+
alphas = 1.0 - betas
|
93
|
+
alphas_cumprod = torch.cumprod(alphas, dim=0)
|
94
|
+
alphas_bar_sqrt = alphas_cumprod.sqrt()
|
95
|
+
|
96
|
+
# Store old values.
|
97
|
+
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
|
98
|
+
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
|
99
|
+
|
100
|
+
# Shift so the last timestep is zero.
|
101
|
+
alphas_bar_sqrt -= alphas_bar_sqrt_T
|
102
|
+
|
103
|
+
# Scale so the first timestep is back to the old value.
|
104
|
+
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
|
105
|
+
|
106
|
+
# Convert alphas_bar_sqrt to betas
|
107
|
+
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
|
108
|
+
alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod
|
109
|
+
alphas = torch.cat([alphas_bar[0:1], alphas])
|
110
|
+
betas = 1 - alphas
|
111
|
+
|
112
|
+
return betas
|
113
|
+
|
114
|
+
|
74
115
|
class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
75
116
|
"""
|
76
117
|
`UniPCMultistepScheduler` is a training-free framework designed for the fast sampling of diffusion models.
|
@@ -122,11 +163,23 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
122
163
|
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
|
123
164
|
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
|
124
165
|
the sigmas are determined according to a sequence of noise levels {σi}.
|
166
|
+
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
|
167
|
+
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
|
168
|
+
use_beta_sigmas (`bool`, *optional*, defaults to `False`):
|
169
|
+
Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
|
170
|
+
Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
|
125
171
|
timestep_spacing (`str`, defaults to `"linspace"`):
|
126
172
|
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
127
173
|
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
128
174
|
steps_offset (`int`, defaults to 0):
|
129
175
|
An offset added to the inference steps, as required by some model families.
|
176
|
+
final_sigmas_type (`str`, defaults to `"zero"`):
|
177
|
+
The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
|
178
|
+
sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
|
179
|
+
rescale_betas_zero_snr (`bool`, defaults to `False`):
|
180
|
+
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
|
181
|
+
dark samples instead of limiting it to samples with medium brightness. Loosely related to
|
182
|
+
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
|
130
183
|
"""
|
131
184
|
|
132
185
|
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
@@ -151,9 +204,21 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
151
204
|
disable_corrector: List[int] = [],
|
152
205
|
solver_p: SchedulerMixin = None,
|
153
206
|
use_karras_sigmas: Optional[bool] = False,
|
207
|
+
use_exponential_sigmas: Optional[bool] = False,
|
208
|
+
use_beta_sigmas: Optional[bool] = False,
|
209
|
+
use_flow_sigmas: Optional[bool] = False,
|
210
|
+
flow_shift: Optional[float] = 1.0,
|
154
211
|
timestep_spacing: str = "linspace",
|
155
212
|
steps_offset: int = 0,
|
213
|
+
final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min"
|
214
|
+
rescale_betas_zero_snr: bool = False,
|
156
215
|
):
|
216
|
+
if self.config.use_beta_sigmas and not is_scipy_available():
|
217
|
+
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
|
218
|
+
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
|
219
|
+
raise ValueError(
|
220
|
+
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
|
221
|
+
)
|
157
222
|
if trained_betas is not None:
|
158
223
|
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
159
224
|
elif beta_schedule == "linear":
|
@@ -165,10 +230,19 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
165
230
|
# Glide cosine schedule
|
166
231
|
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
167
232
|
else:
|
168
|
-
raise NotImplementedError(f"{beta_schedule}
|
233
|
+
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
234
|
+
|
235
|
+
if rescale_betas_zero_snr:
|
236
|
+
self.betas = rescale_zero_terminal_snr(self.betas)
|
169
237
|
|
170
238
|
self.alphas = 1.0 - self.betas
|
171
239
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
240
|
+
|
241
|
+
if rescale_betas_zero_snr:
|
242
|
+
# Close to 0 without being 0 so first sigma is not inf
|
243
|
+
# FP16 smallest positive subnormal works well here
|
244
|
+
self.alphas_cumprod[-1] = 2**-24
|
245
|
+
|
172
246
|
# Currently we only support VP-type noise schedule
|
173
247
|
self.alpha_t = torch.sqrt(self.alphas_cumprod)
|
174
248
|
self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
|
@@ -182,7 +256,7 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
182
256
|
if solver_type in ["midpoint", "heun", "logrho"]:
|
183
257
|
self.register_to_config(solver_type="bh2")
|
184
258
|
else:
|
185
|
-
raise NotImplementedError(f"{solver_type}
|
259
|
+
raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
|
186
260
|
|
187
261
|
self.predict_x0 = predict_x0
|
188
262
|
# setable values
|
@@ -202,7 +276,7 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
202
276
|
@property
|
203
277
|
def step_index(self):
|
204
278
|
"""
|
205
|
-
The index counter for current timestep. It will
|
279
|
+
The index counter for current timestep. It will increase 1 after each scheduler step.
|
206
280
|
"""
|
207
281
|
return self._step_index
|
208
282
|
|
@@ -265,10 +339,67 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
265
339
|
sigmas = np.flip(sigmas).copy()
|
266
340
|
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
267
341
|
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
|
268
|
-
|
342
|
+
if self.config.final_sigmas_type == "sigma_min":
|
343
|
+
sigma_last = sigmas[-1]
|
344
|
+
elif self.config.final_sigmas_type == "zero":
|
345
|
+
sigma_last = 0
|
346
|
+
else:
|
347
|
+
raise ValueError(
|
348
|
+
f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
|
349
|
+
)
|
350
|
+
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
|
351
|
+
elif self.config.use_exponential_sigmas:
|
352
|
+
log_sigmas = np.log(sigmas)
|
353
|
+
sigmas = np.flip(sigmas).copy()
|
354
|
+
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
355
|
+
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
356
|
+
if self.config.final_sigmas_type == "sigma_min":
|
357
|
+
sigma_last = sigmas[-1]
|
358
|
+
elif self.config.final_sigmas_type == "zero":
|
359
|
+
sigma_last = 0
|
360
|
+
else:
|
361
|
+
raise ValueError(
|
362
|
+
f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
|
363
|
+
)
|
364
|
+
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
|
365
|
+
elif self.config.use_beta_sigmas:
|
366
|
+
log_sigmas = np.log(sigmas)
|
367
|
+
sigmas = np.flip(sigmas).copy()
|
368
|
+
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
369
|
+
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
370
|
+
if self.config.final_sigmas_type == "sigma_min":
|
371
|
+
sigma_last = sigmas[-1]
|
372
|
+
elif self.config.final_sigmas_type == "zero":
|
373
|
+
sigma_last = 0
|
374
|
+
else:
|
375
|
+
raise ValueError(
|
376
|
+
f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
|
377
|
+
)
|
378
|
+
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
|
379
|
+
elif self.config.use_flow_sigmas:
|
380
|
+
alphas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1)
|
381
|
+
sigmas = 1.0 - alphas
|
382
|
+
sigmas = np.flip(self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas))[:-1].copy()
|
383
|
+
timesteps = (sigmas * self.config.num_train_timesteps).copy()
|
384
|
+
if self.config.final_sigmas_type == "sigma_min":
|
385
|
+
sigma_last = sigmas[-1]
|
386
|
+
elif self.config.final_sigmas_type == "zero":
|
387
|
+
sigma_last = 0
|
388
|
+
else:
|
389
|
+
raise ValueError(
|
390
|
+
f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
|
391
|
+
)
|
392
|
+
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
|
269
393
|
else:
|
270
394
|
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
|
271
|
-
|
395
|
+
if self.config.final_sigmas_type == "sigma_min":
|
396
|
+
sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
|
397
|
+
elif self.config.final_sigmas_type == "zero":
|
398
|
+
sigma_last = 0
|
399
|
+
else:
|
400
|
+
raise ValueError(
|
401
|
+
f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
|
402
|
+
)
|
272
403
|
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
|
273
404
|
|
274
405
|
self.sigmas = torch.from_numpy(sigmas)
|
@@ -290,7 +421,7 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
290
421
|
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
291
422
|
|
292
423
|
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
|
293
|
-
def _threshold_sample(self, sample: torch.
|
424
|
+
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
|
294
425
|
"""
|
295
426
|
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
|
296
427
|
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
|
@@ -349,13 +480,17 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
349
480
|
|
350
481
|
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
|
351
482
|
def _sigma_to_alpha_sigma_t(self, sigma):
|
352
|
-
|
353
|
-
|
483
|
+
if self.config.use_flow_sigmas:
|
484
|
+
alpha_t = 1 - sigma
|
485
|
+
sigma_t = sigma
|
486
|
+
else:
|
487
|
+
alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
|
488
|
+
sigma_t = sigma * alpha_t
|
354
489
|
|
355
490
|
return alpha_t, sigma_t
|
356
491
|
|
357
492
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
|
358
|
-
def _convert_to_karras(self, in_sigmas: torch.
|
493
|
+
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
|
359
494
|
"""Constructs the noise schedule of Karras et al. (2022)."""
|
360
495
|
|
361
496
|
# Hack to make sure that other schedulers which copy this function don't break
|
@@ -380,26 +515,80 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
380
515
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
381
516
|
return sigmas
|
382
517
|
|
518
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
|
519
|
+
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
|
520
|
+
"""Constructs an exponential noise schedule."""
|
521
|
+
|
522
|
+
# Hack to make sure that other schedulers which copy this function don't break
|
523
|
+
# TODO: Add this logic to the other schedulers
|
524
|
+
if hasattr(self.config, "sigma_min"):
|
525
|
+
sigma_min = self.config.sigma_min
|
526
|
+
else:
|
527
|
+
sigma_min = None
|
528
|
+
|
529
|
+
if hasattr(self.config, "sigma_max"):
|
530
|
+
sigma_max = self.config.sigma_max
|
531
|
+
else:
|
532
|
+
sigma_max = None
|
533
|
+
|
534
|
+
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
535
|
+
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
536
|
+
|
537
|
+
sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
|
538
|
+
return sigmas
|
539
|
+
|
540
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
|
541
|
+
def _convert_to_beta(
|
542
|
+
self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
|
543
|
+
) -> torch.Tensor:
|
544
|
+
"""From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""
|
545
|
+
|
546
|
+
# Hack to make sure that other schedulers which copy this function don't break
|
547
|
+
# TODO: Add this logic to the other schedulers
|
548
|
+
if hasattr(self.config, "sigma_min"):
|
549
|
+
sigma_min = self.config.sigma_min
|
550
|
+
else:
|
551
|
+
sigma_min = None
|
552
|
+
|
553
|
+
if hasattr(self.config, "sigma_max"):
|
554
|
+
sigma_max = self.config.sigma_max
|
555
|
+
else:
|
556
|
+
sigma_max = None
|
557
|
+
|
558
|
+
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
559
|
+
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
560
|
+
|
561
|
+
sigmas = np.array(
|
562
|
+
[
|
563
|
+
sigma_min + (ppf * (sigma_max - sigma_min))
|
564
|
+
for ppf in [
|
565
|
+
scipy.stats.beta.ppf(timestep, alpha, beta)
|
566
|
+
for timestep in 1 - np.linspace(0, 1, num_inference_steps)
|
567
|
+
]
|
568
|
+
]
|
569
|
+
)
|
570
|
+
return sigmas
|
571
|
+
|
383
572
|
def convert_model_output(
|
384
573
|
self,
|
385
|
-
model_output: torch.
|
574
|
+
model_output: torch.Tensor,
|
386
575
|
*args,
|
387
|
-
sample: torch.
|
576
|
+
sample: torch.Tensor = None,
|
388
577
|
**kwargs,
|
389
|
-
) -> torch.
|
578
|
+
) -> torch.Tensor:
|
390
579
|
r"""
|
391
580
|
Convert the model output to the corresponding type the UniPC algorithm needs.
|
392
581
|
|
393
582
|
Args:
|
394
|
-
model_output (`torch.
|
583
|
+
model_output (`torch.Tensor`):
|
395
584
|
The direct output from the learned diffusion model.
|
396
585
|
timestep (`int`):
|
397
586
|
The current discrete timestep in the diffusion chain.
|
398
|
-
sample (`torch.
|
587
|
+
sample (`torch.Tensor`):
|
399
588
|
A current instance of a sample created by the diffusion process.
|
400
589
|
|
401
590
|
Returns:
|
402
|
-
`torch.
|
591
|
+
`torch.Tensor`:
|
403
592
|
The converted model output.
|
404
593
|
"""
|
405
594
|
timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
|
@@ -425,10 +614,13 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
425
614
|
x0_pred = model_output
|
426
615
|
elif self.config.prediction_type == "v_prediction":
|
427
616
|
x0_pred = alpha_t * sample - sigma_t * model_output
|
617
|
+
elif self.config.prediction_type == "flow_prediction":
|
618
|
+
sigma_t = self.sigmas[self.step_index]
|
619
|
+
x0_pred = sample - sigma_t * model_output
|
428
620
|
else:
|
429
621
|
raise ValueError(
|
430
|
-
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`,
|
431
|
-
"
|
622
|
+
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
|
623
|
+
"`v_prediction`, or `flow_prediction` for the UniPCMultistepScheduler."
|
432
624
|
)
|
433
625
|
|
434
626
|
if self.config.thresholding:
|
@@ -452,27 +644,27 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
452
644
|
|
453
645
|
def multistep_uni_p_bh_update(
|
454
646
|
self,
|
455
|
-
model_output: torch.
|
647
|
+
model_output: torch.Tensor,
|
456
648
|
*args,
|
457
|
-
sample: torch.
|
649
|
+
sample: torch.Tensor = None,
|
458
650
|
order: int = None,
|
459
651
|
**kwargs,
|
460
|
-
) -> torch.
|
652
|
+
) -> torch.Tensor:
|
461
653
|
"""
|
462
654
|
One step for the UniP (B(h) version). Alternatively, `self.solver_p` is used if is specified.
|
463
655
|
|
464
656
|
Args:
|
465
|
-
model_output (`torch.
|
657
|
+
model_output (`torch.Tensor`):
|
466
658
|
The direct output from the learned diffusion model at the current timestep.
|
467
659
|
prev_timestep (`int`):
|
468
660
|
The previous discrete timestep in the diffusion chain.
|
469
|
-
sample (`torch.
|
661
|
+
sample (`torch.Tensor`):
|
470
662
|
A current instance of a sample created by the diffusion process.
|
471
663
|
order (`int`):
|
472
664
|
The order of UniP at this timestep (corresponds to the *p* in UniPC-p).
|
473
665
|
|
474
666
|
Returns:
|
475
|
-
`torch.
|
667
|
+
`torch.Tensor`:
|
476
668
|
The sample tensor at the previous timestep.
|
477
669
|
"""
|
478
670
|
prev_timestep = args[0] if len(args) > 0 else kwargs.pop("prev_timestep", None)
|
@@ -557,7 +749,7 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
557
749
|
if order == 2:
|
558
750
|
rhos_p = torch.tensor([0.5], dtype=x.dtype, device=device)
|
559
751
|
else:
|
560
|
-
rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
|
752
|
+
rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1]).to(device).to(x.dtype)
|
561
753
|
else:
|
562
754
|
D1s = None
|
563
755
|
|
@@ -581,30 +773,30 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
581
773
|
|
582
774
|
def multistep_uni_c_bh_update(
|
583
775
|
self,
|
584
|
-
this_model_output: torch.
|
776
|
+
this_model_output: torch.Tensor,
|
585
777
|
*args,
|
586
|
-
last_sample: torch.
|
587
|
-
this_sample: torch.
|
778
|
+
last_sample: torch.Tensor = None,
|
779
|
+
this_sample: torch.Tensor = None,
|
588
780
|
order: int = None,
|
589
781
|
**kwargs,
|
590
|
-
) -> torch.
|
782
|
+
) -> torch.Tensor:
|
591
783
|
"""
|
592
784
|
One step for the UniC (B(h) version).
|
593
785
|
|
594
786
|
Args:
|
595
|
-
this_model_output (`torch.
|
787
|
+
this_model_output (`torch.Tensor`):
|
596
788
|
The model outputs at `x_t`.
|
597
789
|
this_timestep (`int`):
|
598
790
|
The current timestep `t`.
|
599
|
-
last_sample (`torch.
|
791
|
+
last_sample (`torch.Tensor`):
|
600
792
|
The generated sample before the last predictor `x_{t-1}`.
|
601
|
-
this_sample (`torch.
|
793
|
+
this_sample (`torch.Tensor`):
|
602
794
|
The generated sample after the last predictor `x_{t}`.
|
603
795
|
order (`int`):
|
604
796
|
The `p` of UniC-p at this step. The effective order of accuracy should be `order + 1`.
|
605
797
|
|
606
798
|
Returns:
|
607
|
-
`torch.
|
799
|
+
`torch.Tensor`:
|
608
800
|
The corrected sample tensor at the current timestep.
|
609
801
|
"""
|
610
802
|
this_timestep = args[0] if len(args) > 0 else kwargs.pop("this_timestep", None)
|
@@ -695,7 +887,7 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
695
887
|
if order == 1:
|
696
888
|
rhos_c = torch.tensor([0.5], dtype=x.dtype, device=device)
|
697
889
|
else:
|
698
|
-
rhos_c = torch.linalg.solve(R, b)
|
890
|
+
rhos_c = torch.linalg.solve(R, b).to(device).to(x.dtype)
|
699
891
|
|
700
892
|
if self.predict_x0:
|
701
893
|
x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0
|
@@ -751,9 +943,9 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
751
943
|
|
752
944
|
def step(
|
753
945
|
self,
|
754
|
-
model_output: torch.
|
755
|
-
timestep: int,
|
756
|
-
sample: torch.
|
946
|
+
model_output: torch.Tensor,
|
947
|
+
timestep: Union[int, torch.Tensor],
|
948
|
+
sample: torch.Tensor,
|
757
949
|
return_dict: bool = True,
|
758
950
|
) -> Union[SchedulerOutput, Tuple]:
|
759
951
|
"""
|
@@ -761,11 +953,11 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
761
953
|
the multistep UniPC.
|
762
954
|
|
763
955
|
Args:
|
764
|
-
model_output (`torch.
|
956
|
+
model_output (`torch.Tensor`):
|
765
957
|
The direct output from learned diffusion model.
|
766
958
|
timestep (`int`):
|
767
959
|
The current discrete timestep in the diffusion chain.
|
768
|
-
sample (`torch.
|
960
|
+
sample (`torch.Tensor`):
|
769
961
|
A current instance of a sample created by the diffusion process.
|
770
962
|
return_dict (`bool`):
|
771
963
|
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
|
@@ -830,17 +1022,17 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
830
1022
|
|
831
1023
|
return SchedulerOutput(prev_sample=prev_sample)
|
832
1024
|
|
833
|
-
def scale_model_input(self, sample: torch.
|
1025
|
+
def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
834
1026
|
"""
|
835
1027
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
836
1028
|
current timestep.
|
837
1029
|
|
838
1030
|
Args:
|
839
|
-
sample (`torch.
|
1031
|
+
sample (`torch.Tensor`):
|
840
1032
|
The input sample.
|
841
1033
|
|
842
1034
|
Returns:
|
843
|
-
`torch.
|
1035
|
+
`torch.Tensor`:
|
844
1036
|
A scaled input sample.
|
845
1037
|
"""
|
846
1038
|
return sample
|
@@ -848,10 +1040,10 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
848
1040
|
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.add_noise
|
849
1041
|
def add_noise(
|
850
1042
|
self,
|
851
|
-
original_samples: torch.
|
852
|
-
noise: torch.
|
1043
|
+
original_samples: torch.Tensor,
|
1044
|
+
noise: torch.Tensor,
|
853
1045
|
timesteps: torch.IntTensor,
|
854
|
-
) -> torch.
|
1046
|
+
) -> torch.Tensor:
|
855
1047
|
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
856
1048
|
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
|
857
1049
|
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
@@ -862,10 +1054,14 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
862
1054
|
schedule_timesteps = self.timesteps.to(original_samples.device)
|
863
1055
|
timesteps = timesteps.to(original_samples.device)
|
864
1056
|
|
865
|
-
# begin_index is None when the scheduler is used for training
|
1057
|
+
# begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index
|
866
1058
|
if self.begin_index is None:
|
867
1059
|
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
|
1060
|
+
elif self.step_index is not None:
|
1061
|
+
# add_noise is called after first denoising step (for inpainting)
|
1062
|
+
step_indices = [self.step_index] * timesteps.shape[0]
|
868
1063
|
else:
|
1064
|
+
# add noise is called before first denoising step to create initial latent(img2img)
|
869
1065
|
step_indices = [self.begin_index] * timesteps.shape[0]
|
870
1066
|
|
871
1067
|
sigma = sigmas[step_indices].flatten()
|
@@ -48,18 +48,27 @@ class KarrasDiffusionSchedulers(Enum):
|
|
48
48
|
EDMEulerScheduler = 15
|
49
49
|
|
50
50
|
|
51
|
+
AysSchedules = {
|
52
|
+
"StableDiffusionTimesteps": [999, 850, 736, 645, 545, 455, 343, 233, 124, 24],
|
53
|
+
"StableDiffusionSigmas": [14.615, 6.475, 3.861, 2.697, 1.886, 1.396, 0.963, 0.652, 0.399, 0.152, 0.0],
|
54
|
+
"StableDiffusionXLTimesteps": [999, 845, 730, 587, 443, 310, 193, 116, 53, 13],
|
55
|
+
"StableDiffusionXLSigmas": [14.615, 6.315, 3.771, 2.181, 1.342, 0.862, 0.555, 0.380, 0.234, 0.113, 0.0],
|
56
|
+
"StableDiffusionVideoSigmas": [700.00, 54.5, 15.886, 7.977, 4.248, 1.789, 0.981, 0.403, 0.173, 0.034, 0.0],
|
57
|
+
}
|
58
|
+
|
59
|
+
|
51
60
|
@dataclass
|
52
61
|
class SchedulerOutput(BaseOutput):
|
53
62
|
"""
|
54
63
|
Base class for the output of a scheduler's `step` function.
|
55
64
|
|
56
65
|
Args:
|
57
|
-
prev_sample (`torch.
|
66
|
+
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
58
67
|
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
59
68
|
denoising loop.
|
60
69
|
"""
|
61
70
|
|
62
|
-
prev_sample: torch.
|
71
|
+
prev_sample: torch.Tensor
|
63
72
|
|
64
73
|
|
65
74
|
class SchedulerMixin(PushToHubMixin):
|
@@ -112,9 +121,7 @@ class SchedulerMixin(PushToHubMixin):
|
|
112
121
|
force_download (`bool`, *optional*, defaults to `False`):
|
113
122
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
114
123
|
cached versions if they exist.
|
115
|
-
|
116
|
-
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
|
117
|
-
incompletely downloaded files are deleted.
|
124
|
+
|
118
125
|
proxies (`Dict[str, str]`, *optional*):
|
119
126
|
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
120
127
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
@@ -102,9 +102,7 @@ class FlaxSchedulerMixin(PushToHubMixin):
|
|
102
102
|
force_download (`bool`, *optional*, defaults to `False`):
|
103
103
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
104
104
|
cached versions if they exist.
|
105
|
-
|
106
|
-
Whether or not to delete incompletely received files. Will attempt to resume the download if such a
|
107
|
-
file exists.
|
105
|
+
|
108
106
|
proxies (`Dict[str, str]`, *optional*):
|
109
107
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
110
108
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
@@ -38,7 +38,7 @@ class VQDiffusionSchedulerOutput(BaseOutput):
|
|
38
38
|
prev_sample: torch.LongTensor
|
39
39
|
|
40
40
|
|
41
|
-
def index_to_log_onehot(x: torch.LongTensor, num_classes: int) -> torch.
|
41
|
+
def index_to_log_onehot(x: torch.LongTensor, num_classes: int) -> torch.Tensor:
|
42
42
|
"""
|
43
43
|
Convert batch of vector of class indices into batch of log onehot vectors
|
44
44
|
|
@@ -50,7 +50,7 @@ def index_to_log_onehot(x: torch.LongTensor, num_classes: int) -> torch.FloatTen
|
|
50
50
|
number of classes to be used for the onehot vectors
|
51
51
|
|
52
52
|
Returns:
|
53
|
-
`torch.
|
53
|
+
`torch.Tensor` of shape `(batch size, num classes, vector length)`:
|
54
54
|
Log onehot vectors
|
55
55
|
"""
|
56
56
|
x_onehot = F.one_hot(x, num_classes)
|
@@ -59,7 +59,7 @@ def index_to_log_onehot(x: torch.LongTensor, num_classes: int) -> torch.FloatTen
|
|
59
59
|
return log_x
|
60
60
|
|
61
61
|
|
62
|
-
def gumbel_noised(logits: torch.
|
62
|
+
def gumbel_noised(logits: torch.Tensor, generator: Optional[torch.Generator]) -> torch.Tensor:
|
63
63
|
"""
|
64
64
|
Apply gumbel noise to `logits`
|
65
65
|
"""
|
@@ -199,7 +199,7 @@ class VQDiffusionScheduler(SchedulerMixin, ConfigMixin):
|
|
199
199
|
|
200
200
|
def step(
|
201
201
|
self,
|
202
|
-
model_output: torch.
|
202
|
+
model_output: torch.Tensor,
|
203
203
|
timestep: torch.long,
|
204
204
|
sample: torch.LongTensor,
|
205
205
|
generator: Optional[torch.Generator] = None,
|
@@ -210,7 +210,7 @@ class VQDiffusionScheduler(SchedulerMixin, ConfigMixin):
|
|
210
210
|
[`~VQDiffusionScheduler.q_posterior`] for more details about how the distribution is computer.
|
211
211
|
|
212
212
|
Args:
|
213
|
-
log_p_x_0: (`torch.
|
213
|
+
log_p_x_0: (`torch.Tensor` of shape `(batch size, num classes - 1, num latent pixels)`):
|
214
214
|
The log probabilities for the predicted classes of the initial latent pixels. Does not include a
|
215
215
|
prediction for the masked class as the initial unnoised image cannot be masked.
|
216
216
|
t (`torch.long`):
|
@@ -251,7 +251,7 @@ class VQDiffusionScheduler(SchedulerMixin, ConfigMixin):
|
|
251
251
|
```
|
252
252
|
|
253
253
|
Args:
|
254
|
-
log_p_x_0 (`torch.
|
254
|
+
log_p_x_0 (`torch.Tensor` of shape `(batch size, num classes - 1, num latent pixels)`):
|
255
255
|
The log probabilities for the predicted classes of the initial latent pixels. Does not include a
|
256
256
|
prediction for the masked class as the initial unnoised image cannot be masked.
|
257
257
|
x_t (`torch.LongTensor` of shape `(batch size, num latent pixels)`):
|
@@ -260,7 +260,7 @@ class VQDiffusionScheduler(SchedulerMixin, ConfigMixin):
|
|
260
260
|
The timestep that determines which transition matrix is used.
|
261
261
|
|
262
262
|
Returns:
|
263
|
-
`torch.
|
263
|
+
`torch.Tensor` of shape `(batch size, num classes, num latent pixels)`:
|
264
264
|
The log probabilities for the predicted classes of the image at timestep `t-1`.
|
265
265
|
"""
|
266
266
|
log_onehot_x_t = index_to_log_onehot(x_t, self.num_embed)
|
@@ -354,7 +354,7 @@ class VQDiffusionScheduler(SchedulerMixin, ConfigMixin):
|
|
354
354
|
return log_p_x_t_min_1
|
355
355
|
|
356
356
|
def log_Q_t_transitioning_to_known_class(
|
357
|
-
self, *, t: torch.int, x_t: torch.LongTensor, log_onehot_x_t: torch.
|
357
|
+
self, *, t: torch.int, x_t: torch.LongTensor, log_onehot_x_t: torch.Tensor, cumulative: bool
|
358
358
|
):
|
359
359
|
"""
|
360
360
|
Calculates the log probabilities of the rows from the (cumulative or non-cumulative) transition matrix for each
|
@@ -365,14 +365,14 @@ class VQDiffusionScheduler(SchedulerMixin, ConfigMixin):
|
|
365
365
|
The timestep that determines which transition matrix is used.
|
366
366
|
x_t (`torch.LongTensor` of shape `(batch size, num latent pixels)`):
|
367
367
|
The classes of each latent pixel at time `t`.
|
368
|
-
log_onehot_x_t (`torch.
|
368
|
+
log_onehot_x_t (`torch.Tensor` of shape `(batch size, num classes, num latent pixels)`):
|
369
369
|
The log one-hot vectors of `x_t`.
|
370
370
|
cumulative (`bool`):
|
371
371
|
If cumulative is `False`, the single step transition matrix `t-1`->`t` is used. If cumulative is
|
372
372
|
`True`, the cumulative transition matrix `0`->`t` is used.
|
373
373
|
|
374
374
|
Returns:
|
375
|
-
`torch.
|
375
|
+
`torch.Tensor` of shape `(batch size, num classes - 1, num latent pixels)`:
|
376
376
|
Each _column_ of the returned matrix is a _row_ of log probabilities of the complete probability
|
377
377
|
transition matrix.
|
378
378
|
|