diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -22,10 +22,14 @@ import numpy as np
22
22
  import torch
23
23
 
24
24
  from ..configuration_utils import ConfigMixin, register_to_config
25
- from ..utils import deprecate
25
+ from ..utils import deprecate, is_scipy_available
26
26
  from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
27
27
 
28
28
 
29
+ if is_scipy_available():
30
+ import scipy.stats
31
+
32
+
29
33
  # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
30
34
  def betas_for_alpha_bar(
31
35
  num_diffusion_timesteps,
@@ -61,7 +65,7 @@ def betas_for_alpha_bar(
61
65
  return math.exp(t * -12.0)
62
66
 
63
67
  else:
64
- raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
68
+ raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
65
69
 
66
70
  betas = []
67
71
  for i in range(num_diffusion_timesteps):
@@ -71,6 +75,43 @@ def betas_for_alpha_bar(
71
75
  return torch.tensor(betas, dtype=torch.float32)
72
76
 
73
77
 
78
+ # Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
79
+ def rescale_zero_terminal_snr(betas):
80
+ """
81
+ Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)
82
+
83
+
84
+ Args:
85
+ betas (`torch.Tensor`):
86
+ the betas that the scheduler is being initialized with.
87
+
88
+ Returns:
89
+ `torch.Tensor`: rescaled betas with zero terminal SNR
90
+ """
91
+ # Convert betas to alphas_bar_sqrt
92
+ alphas = 1.0 - betas
93
+ alphas_cumprod = torch.cumprod(alphas, dim=0)
94
+ alphas_bar_sqrt = alphas_cumprod.sqrt()
95
+
96
+ # Store old values.
97
+ alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
98
+ alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
99
+
100
+ # Shift so the last timestep is zero.
101
+ alphas_bar_sqrt -= alphas_bar_sqrt_T
102
+
103
+ # Scale so the first timestep is back to the old value.
104
+ alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
105
+
106
+ # Convert alphas_bar_sqrt to betas
107
+ alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
108
+ alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod
109
+ alphas = torch.cat([alphas_bar[0:1], alphas])
110
+ betas = 1 - alphas
111
+
112
+ return betas
113
+
114
+
74
115
  class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
75
116
  """
76
117
  `UniPCMultistepScheduler` is a training-free framework designed for the fast sampling of diffusion models.
@@ -122,11 +163,23 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
122
163
  use_karras_sigmas (`bool`, *optional*, defaults to `False`):
123
164
  Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
124
165
  the sigmas are determined according to a sequence of noise levels {σi}.
166
+ use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
167
+ Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
168
+ use_beta_sigmas (`bool`, *optional*, defaults to `False`):
169
+ Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
170
+ Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
125
171
  timestep_spacing (`str`, defaults to `"linspace"`):
126
172
  The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
127
173
  Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
128
174
  steps_offset (`int`, defaults to 0):
129
175
  An offset added to the inference steps, as required by some model families.
176
+ final_sigmas_type (`str`, defaults to `"zero"`):
177
+ The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
178
+ sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
179
+ rescale_betas_zero_snr (`bool`, defaults to `False`):
180
+ Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
181
+ dark samples instead of limiting it to samples with medium brightness. Loosely related to
182
+ [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
130
183
  """
131
184
 
132
185
  _compatibles = [e.name for e in KarrasDiffusionSchedulers]
@@ -151,9 +204,21 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
151
204
  disable_corrector: List[int] = [],
152
205
  solver_p: SchedulerMixin = None,
153
206
  use_karras_sigmas: Optional[bool] = False,
207
+ use_exponential_sigmas: Optional[bool] = False,
208
+ use_beta_sigmas: Optional[bool] = False,
209
+ use_flow_sigmas: Optional[bool] = False,
210
+ flow_shift: Optional[float] = 1.0,
154
211
  timestep_spacing: str = "linspace",
155
212
  steps_offset: int = 0,
213
+ final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min"
214
+ rescale_betas_zero_snr: bool = False,
156
215
  ):
216
+ if self.config.use_beta_sigmas and not is_scipy_available():
217
+ raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
218
+ if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
219
+ raise ValueError(
220
+ "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
221
+ )
157
222
  if trained_betas is not None:
158
223
  self.betas = torch.tensor(trained_betas, dtype=torch.float32)
159
224
  elif beta_schedule == "linear":
@@ -165,10 +230,19 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
165
230
  # Glide cosine schedule
166
231
  self.betas = betas_for_alpha_bar(num_train_timesteps)
167
232
  else:
168
- raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
233
+ raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
234
+
235
+ if rescale_betas_zero_snr:
236
+ self.betas = rescale_zero_terminal_snr(self.betas)
169
237
 
170
238
  self.alphas = 1.0 - self.betas
171
239
  self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
240
+
241
+ if rescale_betas_zero_snr:
242
+ # Close to 0 without being 0 so first sigma is not inf
243
+ # FP16 smallest positive subnormal works well here
244
+ self.alphas_cumprod[-1] = 2**-24
245
+
172
246
  # Currently we only support VP-type noise schedule
173
247
  self.alpha_t = torch.sqrt(self.alphas_cumprod)
174
248
  self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
@@ -182,7 +256,7 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
182
256
  if solver_type in ["midpoint", "heun", "logrho"]:
183
257
  self.register_to_config(solver_type="bh2")
184
258
  else:
185
- raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}")
259
+ raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
186
260
 
187
261
  self.predict_x0 = predict_x0
188
262
  # setable values
@@ -202,7 +276,7 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
202
276
  @property
203
277
  def step_index(self):
204
278
  """
205
- The index counter for current timestep. It will increae 1 after each scheduler step.
279
+ The index counter for current timestep. It will increase 1 after each scheduler step.
206
280
  """
207
281
  return self._step_index
208
282
 
@@ -265,10 +339,67 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
265
339
  sigmas = np.flip(sigmas).copy()
266
340
  sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
267
341
  timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
268
- sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
342
+ if self.config.final_sigmas_type == "sigma_min":
343
+ sigma_last = sigmas[-1]
344
+ elif self.config.final_sigmas_type == "zero":
345
+ sigma_last = 0
346
+ else:
347
+ raise ValueError(
348
+ f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
349
+ )
350
+ sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
351
+ elif self.config.use_exponential_sigmas:
352
+ log_sigmas = np.log(sigmas)
353
+ sigmas = np.flip(sigmas).copy()
354
+ sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
355
+ timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
356
+ if self.config.final_sigmas_type == "sigma_min":
357
+ sigma_last = sigmas[-1]
358
+ elif self.config.final_sigmas_type == "zero":
359
+ sigma_last = 0
360
+ else:
361
+ raise ValueError(
362
+ f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
363
+ )
364
+ sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
365
+ elif self.config.use_beta_sigmas:
366
+ log_sigmas = np.log(sigmas)
367
+ sigmas = np.flip(sigmas).copy()
368
+ sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
369
+ timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
370
+ if self.config.final_sigmas_type == "sigma_min":
371
+ sigma_last = sigmas[-1]
372
+ elif self.config.final_sigmas_type == "zero":
373
+ sigma_last = 0
374
+ else:
375
+ raise ValueError(
376
+ f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
377
+ )
378
+ sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
379
+ elif self.config.use_flow_sigmas:
380
+ alphas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1)
381
+ sigmas = 1.0 - alphas
382
+ sigmas = np.flip(self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas))[:-1].copy()
383
+ timesteps = (sigmas * self.config.num_train_timesteps).copy()
384
+ if self.config.final_sigmas_type == "sigma_min":
385
+ sigma_last = sigmas[-1]
386
+ elif self.config.final_sigmas_type == "zero":
387
+ sigma_last = 0
388
+ else:
389
+ raise ValueError(
390
+ f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
391
+ )
392
+ sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
269
393
  else:
270
394
  sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
271
- sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
395
+ if self.config.final_sigmas_type == "sigma_min":
396
+ sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
397
+ elif self.config.final_sigmas_type == "zero":
398
+ sigma_last = 0
399
+ else:
400
+ raise ValueError(
401
+ f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
402
+ )
272
403
  sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
273
404
 
274
405
  self.sigmas = torch.from_numpy(sigmas)
@@ -290,7 +421,7 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
290
421
  self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
291
422
 
292
423
  # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
293
- def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
424
+ def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
294
425
  """
295
426
  "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
296
427
  prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
@@ -349,13 +480,17 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
349
480
 
350
481
  # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
351
482
  def _sigma_to_alpha_sigma_t(self, sigma):
352
- alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
353
- sigma_t = sigma * alpha_t
483
+ if self.config.use_flow_sigmas:
484
+ alpha_t = 1 - sigma
485
+ sigma_t = sigma
486
+ else:
487
+ alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
488
+ sigma_t = sigma * alpha_t
354
489
 
355
490
  return alpha_t, sigma_t
356
491
 
357
492
  # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
358
- def _convert_to_karras(self, in_sigmas: torch.FloatTensor, num_inference_steps) -> torch.FloatTensor:
493
+ def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
359
494
  """Constructs the noise schedule of Karras et al. (2022)."""
360
495
 
361
496
  # Hack to make sure that other schedulers which copy this function don't break
@@ -380,26 +515,80 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
380
515
  sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
381
516
  return sigmas
382
517
 
518
+ # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
519
+ def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
520
+ """Constructs an exponential noise schedule."""
521
+
522
+ # Hack to make sure that other schedulers which copy this function don't break
523
+ # TODO: Add this logic to the other schedulers
524
+ if hasattr(self.config, "sigma_min"):
525
+ sigma_min = self.config.sigma_min
526
+ else:
527
+ sigma_min = None
528
+
529
+ if hasattr(self.config, "sigma_max"):
530
+ sigma_max = self.config.sigma_max
531
+ else:
532
+ sigma_max = None
533
+
534
+ sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
535
+ sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
536
+
537
+ sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
538
+ return sigmas
539
+
540
+ # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
541
+ def _convert_to_beta(
542
+ self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
543
+ ) -> torch.Tensor:
544
+ """From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""
545
+
546
+ # Hack to make sure that other schedulers which copy this function don't break
547
+ # TODO: Add this logic to the other schedulers
548
+ if hasattr(self.config, "sigma_min"):
549
+ sigma_min = self.config.sigma_min
550
+ else:
551
+ sigma_min = None
552
+
553
+ if hasattr(self.config, "sigma_max"):
554
+ sigma_max = self.config.sigma_max
555
+ else:
556
+ sigma_max = None
557
+
558
+ sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
559
+ sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
560
+
561
+ sigmas = np.array(
562
+ [
563
+ sigma_min + (ppf * (sigma_max - sigma_min))
564
+ for ppf in [
565
+ scipy.stats.beta.ppf(timestep, alpha, beta)
566
+ for timestep in 1 - np.linspace(0, 1, num_inference_steps)
567
+ ]
568
+ ]
569
+ )
570
+ return sigmas
571
+
383
572
  def convert_model_output(
384
573
  self,
385
- model_output: torch.FloatTensor,
574
+ model_output: torch.Tensor,
386
575
  *args,
387
- sample: torch.FloatTensor = None,
576
+ sample: torch.Tensor = None,
388
577
  **kwargs,
389
- ) -> torch.FloatTensor:
578
+ ) -> torch.Tensor:
390
579
  r"""
391
580
  Convert the model output to the corresponding type the UniPC algorithm needs.
392
581
 
393
582
  Args:
394
- model_output (`torch.FloatTensor`):
583
+ model_output (`torch.Tensor`):
395
584
  The direct output from the learned diffusion model.
396
585
  timestep (`int`):
397
586
  The current discrete timestep in the diffusion chain.
398
- sample (`torch.FloatTensor`):
587
+ sample (`torch.Tensor`):
399
588
  A current instance of a sample created by the diffusion process.
400
589
 
401
590
  Returns:
402
- `torch.FloatTensor`:
591
+ `torch.Tensor`:
403
592
  The converted model output.
404
593
  """
405
594
  timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
@@ -425,10 +614,13 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
425
614
  x0_pred = model_output
426
615
  elif self.config.prediction_type == "v_prediction":
427
616
  x0_pred = alpha_t * sample - sigma_t * model_output
617
+ elif self.config.prediction_type == "flow_prediction":
618
+ sigma_t = self.sigmas[self.step_index]
619
+ x0_pred = sample - sigma_t * model_output
428
620
  else:
429
621
  raise ValueError(
430
- f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
431
- " `v_prediction` for the UniPCMultistepScheduler."
622
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
623
+ "`v_prediction`, or `flow_prediction` for the UniPCMultistepScheduler."
432
624
  )
433
625
 
434
626
  if self.config.thresholding:
@@ -452,27 +644,27 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
452
644
 
453
645
  def multistep_uni_p_bh_update(
454
646
  self,
455
- model_output: torch.FloatTensor,
647
+ model_output: torch.Tensor,
456
648
  *args,
457
- sample: torch.FloatTensor = None,
649
+ sample: torch.Tensor = None,
458
650
  order: int = None,
459
651
  **kwargs,
460
- ) -> torch.FloatTensor:
652
+ ) -> torch.Tensor:
461
653
  """
462
654
  One step for the UniP (B(h) version). Alternatively, `self.solver_p` is used if is specified.
463
655
 
464
656
  Args:
465
- model_output (`torch.FloatTensor`):
657
+ model_output (`torch.Tensor`):
466
658
  The direct output from the learned diffusion model at the current timestep.
467
659
  prev_timestep (`int`):
468
660
  The previous discrete timestep in the diffusion chain.
469
- sample (`torch.FloatTensor`):
661
+ sample (`torch.Tensor`):
470
662
  A current instance of a sample created by the diffusion process.
471
663
  order (`int`):
472
664
  The order of UniP at this timestep (corresponds to the *p* in UniPC-p).
473
665
 
474
666
  Returns:
475
- `torch.FloatTensor`:
667
+ `torch.Tensor`:
476
668
  The sample tensor at the previous timestep.
477
669
  """
478
670
  prev_timestep = args[0] if len(args) > 0 else kwargs.pop("prev_timestep", None)
@@ -557,7 +749,7 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
557
749
  if order == 2:
558
750
  rhos_p = torch.tensor([0.5], dtype=x.dtype, device=device)
559
751
  else:
560
- rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
752
+ rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1]).to(device).to(x.dtype)
561
753
  else:
562
754
  D1s = None
563
755
 
@@ -581,30 +773,30 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
581
773
 
582
774
  def multistep_uni_c_bh_update(
583
775
  self,
584
- this_model_output: torch.FloatTensor,
776
+ this_model_output: torch.Tensor,
585
777
  *args,
586
- last_sample: torch.FloatTensor = None,
587
- this_sample: torch.FloatTensor = None,
778
+ last_sample: torch.Tensor = None,
779
+ this_sample: torch.Tensor = None,
588
780
  order: int = None,
589
781
  **kwargs,
590
- ) -> torch.FloatTensor:
782
+ ) -> torch.Tensor:
591
783
  """
592
784
  One step for the UniC (B(h) version).
593
785
 
594
786
  Args:
595
- this_model_output (`torch.FloatTensor`):
787
+ this_model_output (`torch.Tensor`):
596
788
  The model outputs at `x_t`.
597
789
  this_timestep (`int`):
598
790
  The current timestep `t`.
599
- last_sample (`torch.FloatTensor`):
791
+ last_sample (`torch.Tensor`):
600
792
  The generated sample before the last predictor `x_{t-1}`.
601
- this_sample (`torch.FloatTensor`):
793
+ this_sample (`torch.Tensor`):
602
794
  The generated sample after the last predictor `x_{t}`.
603
795
  order (`int`):
604
796
  The `p` of UniC-p at this step. The effective order of accuracy should be `order + 1`.
605
797
 
606
798
  Returns:
607
- `torch.FloatTensor`:
799
+ `torch.Tensor`:
608
800
  The corrected sample tensor at the current timestep.
609
801
  """
610
802
  this_timestep = args[0] if len(args) > 0 else kwargs.pop("this_timestep", None)
@@ -695,7 +887,7 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
695
887
  if order == 1:
696
888
  rhos_c = torch.tensor([0.5], dtype=x.dtype, device=device)
697
889
  else:
698
- rhos_c = torch.linalg.solve(R, b)
890
+ rhos_c = torch.linalg.solve(R, b).to(device).to(x.dtype)
699
891
 
700
892
  if self.predict_x0:
701
893
  x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0
@@ -751,9 +943,9 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
751
943
 
752
944
  def step(
753
945
  self,
754
- model_output: torch.FloatTensor,
755
- timestep: int,
756
- sample: torch.FloatTensor,
946
+ model_output: torch.Tensor,
947
+ timestep: Union[int, torch.Tensor],
948
+ sample: torch.Tensor,
757
949
  return_dict: bool = True,
758
950
  ) -> Union[SchedulerOutput, Tuple]:
759
951
  """
@@ -761,11 +953,11 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
761
953
  the multistep UniPC.
762
954
 
763
955
  Args:
764
- model_output (`torch.FloatTensor`):
956
+ model_output (`torch.Tensor`):
765
957
  The direct output from learned diffusion model.
766
958
  timestep (`int`):
767
959
  The current discrete timestep in the diffusion chain.
768
- sample (`torch.FloatTensor`):
960
+ sample (`torch.Tensor`):
769
961
  A current instance of a sample created by the diffusion process.
770
962
  return_dict (`bool`):
771
963
  Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
@@ -830,17 +1022,17 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
830
1022
 
831
1023
  return SchedulerOutput(prev_sample=prev_sample)
832
1024
 
833
- def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
1025
+ def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
834
1026
  """
835
1027
  Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
836
1028
  current timestep.
837
1029
 
838
1030
  Args:
839
- sample (`torch.FloatTensor`):
1031
+ sample (`torch.Tensor`):
840
1032
  The input sample.
841
1033
 
842
1034
  Returns:
843
- `torch.FloatTensor`:
1035
+ `torch.Tensor`:
844
1036
  A scaled input sample.
845
1037
  """
846
1038
  return sample
@@ -848,10 +1040,10 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
848
1040
  # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.add_noise
849
1041
  def add_noise(
850
1042
  self,
851
- original_samples: torch.FloatTensor,
852
- noise: torch.FloatTensor,
1043
+ original_samples: torch.Tensor,
1044
+ noise: torch.Tensor,
853
1045
  timesteps: torch.IntTensor,
854
- ) -> torch.FloatTensor:
1046
+ ) -> torch.Tensor:
855
1047
  # Make sure sigmas and timesteps have the same device and dtype as original_samples
856
1048
  sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
857
1049
  if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
@@ -862,10 +1054,14 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
862
1054
  schedule_timesteps = self.timesteps.to(original_samples.device)
863
1055
  timesteps = timesteps.to(original_samples.device)
864
1056
 
865
- # begin_index is None when the scheduler is used for training
1057
+ # begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index
866
1058
  if self.begin_index is None:
867
1059
  step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
1060
+ elif self.step_index is not None:
1061
+ # add_noise is called after first denoising step (for inpainting)
1062
+ step_indices = [self.step_index] * timesteps.shape[0]
868
1063
  else:
1064
+ # add noise is called before first denoising step to create initial latent(img2img)
869
1065
  step_indices = [self.begin_index] * timesteps.shape[0]
870
1066
 
871
1067
  sigma = sigmas[step_indices].flatten()
@@ -48,18 +48,27 @@ class KarrasDiffusionSchedulers(Enum):
48
48
  EDMEulerScheduler = 15
49
49
 
50
50
 
51
+ AysSchedules = {
52
+ "StableDiffusionTimesteps": [999, 850, 736, 645, 545, 455, 343, 233, 124, 24],
53
+ "StableDiffusionSigmas": [14.615, 6.475, 3.861, 2.697, 1.886, 1.396, 0.963, 0.652, 0.399, 0.152, 0.0],
54
+ "StableDiffusionXLTimesteps": [999, 845, 730, 587, 443, 310, 193, 116, 53, 13],
55
+ "StableDiffusionXLSigmas": [14.615, 6.315, 3.771, 2.181, 1.342, 0.862, 0.555, 0.380, 0.234, 0.113, 0.0],
56
+ "StableDiffusionVideoSigmas": [700.00, 54.5, 15.886, 7.977, 4.248, 1.789, 0.981, 0.403, 0.173, 0.034, 0.0],
57
+ }
58
+
59
+
51
60
  @dataclass
52
61
  class SchedulerOutput(BaseOutput):
53
62
  """
54
63
  Base class for the output of a scheduler's `step` function.
55
64
 
56
65
  Args:
57
- prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
66
+ prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
58
67
  Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
59
68
  denoising loop.
60
69
  """
61
70
 
62
- prev_sample: torch.FloatTensor
71
+ prev_sample: torch.Tensor
63
72
 
64
73
 
65
74
  class SchedulerMixin(PushToHubMixin):
@@ -112,9 +121,7 @@ class SchedulerMixin(PushToHubMixin):
112
121
  force_download (`bool`, *optional*, defaults to `False`):
113
122
  Whether or not to force the (re-)download of the model weights and configuration files, overriding the
114
123
  cached versions if they exist.
115
- resume_download (`bool`, *optional*, defaults to `False`):
116
- Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
117
- incompletely downloaded files are deleted.
124
+
118
125
  proxies (`Dict[str, str]`, *optional*):
119
126
  A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
120
127
  'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
@@ -102,9 +102,7 @@ class FlaxSchedulerMixin(PushToHubMixin):
102
102
  force_download (`bool`, *optional*, defaults to `False`):
103
103
  Whether or not to force the (re-)download of the model weights and configuration files, overriding the
104
104
  cached versions if they exist.
105
- resume_download (`bool`, *optional*, defaults to `False`):
106
- Whether or not to delete incompletely received files. Will attempt to resume the download if such a
107
- file exists.
105
+
108
106
  proxies (`Dict[str, str]`, *optional*):
109
107
  A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
110
108
  'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
@@ -38,7 +38,7 @@ class VQDiffusionSchedulerOutput(BaseOutput):
38
38
  prev_sample: torch.LongTensor
39
39
 
40
40
 
41
- def index_to_log_onehot(x: torch.LongTensor, num_classes: int) -> torch.FloatTensor:
41
+ def index_to_log_onehot(x: torch.LongTensor, num_classes: int) -> torch.Tensor:
42
42
  """
43
43
  Convert batch of vector of class indices into batch of log onehot vectors
44
44
 
@@ -50,7 +50,7 @@ def index_to_log_onehot(x: torch.LongTensor, num_classes: int) -> torch.FloatTen
50
50
  number of classes to be used for the onehot vectors
51
51
 
52
52
  Returns:
53
- `torch.FloatTensor` of shape `(batch size, num classes, vector length)`:
53
+ `torch.Tensor` of shape `(batch size, num classes, vector length)`:
54
54
  Log onehot vectors
55
55
  """
56
56
  x_onehot = F.one_hot(x, num_classes)
@@ -59,7 +59,7 @@ def index_to_log_onehot(x: torch.LongTensor, num_classes: int) -> torch.FloatTen
59
59
  return log_x
60
60
 
61
61
 
62
- def gumbel_noised(logits: torch.FloatTensor, generator: Optional[torch.Generator]) -> torch.FloatTensor:
62
+ def gumbel_noised(logits: torch.Tensor, generator: Optional[torch.Generator]) -> torch.Tensor:
63
63
  """
64
64
  Apply gumbel noise to `logits`
65
65
  """
@@ -199,7 +199,7 @@ class VQDiffusionScheduler(SchedulerMixin, ConfigMixin):
199
199
 
200
200
  def step(
201
201
  self,
202
- model_output: torch.FloatTensor,
202
+ model_output: torch.Tensor,
203
203
  timestep: torch.long,
204
204
  sample: torch.LongTensor,
205
205
  generator: Optional[torch.Generator] = None,
@@ -210,7 +210,7 @@ class VQDiffusionScheduler(SchedulerMixin, ConfigMixin):
210
210
  [`~VQDiffusionScheduler.q_posterior`] for more details about how the distribution is computer.
211
211
 
212
212
  Args:
213
- log_p_x_0: (`torch.FloatTensor` of shape `(batch size, num classes - 1, num latent pixels)`):
213
+ log_p_x_0: (`torch.Tensor` of shape `(batch size, num classes - 1, num latent pixels)`):
214
214
  The log probabilities for the predicted classes of the initial latent pixels. Does not include a
215
215
  prediction for the masked class as the initial unnoised image cannot be masked.
216
216
  t (`torch.long`):
@@ -251,7 +251,7 @@ class VQDiffusionScheduler(SchedulerMixin, ConfigMixin):
251
251
  ```
252
252
 
253
253
  Args:
254
- log_p_x_0 (`torch.FloatTensor` of shape `(batch size, num classes - 1, num latent pixels)`):
254
+ log_p_x_0 (`torch.Tensor` of shape `(batch size, num classes - 1, num latent pixels)`):
255
255
  The log probabilities for the predicted classes of the initial latent pixels. Does not include a
256
256
  prediction for the masked class as the initial unnoised image cannot be masked.
257
257
  x_t (`torch.LongTensor` of shape `(batch size, num latent pixels)`):
@@ -260,7 +260,7 @@ class VQDiffusionScheduler(SchedulerMixin, ConfigMixin):
260
260
  The timestep that determines which transition matrix is used.
261
261
 
262
262
  Returns:
263
- `torch.FloatTensor` of shape `(batch size, num classes, num latent pixels)`:
263
+ `torch.Tensor` of shape `(batch size, num classes, num latent pixels)`:
264
264
  The log probabilities for the predicted classes of the image at timestep `t-1`.
265
265
  """
266
266
  log_onehot_x_t = index_to_log_onehot(x_t, self.num_embed)
@@ -354,7 +354,7 @@ class VQDiffusionScheduler(SchedulerMixin, ConfigMixin):
354
354
  return log_p_x_t_min_1
355
355
 
356
356
  def log_Q_t_transitioning_to_known_class(
357
- self, *, t: torch.int, x_t: torch.LongTensor, log_onehot_x_t: torch.FloatTensor, cumulative: bool
357
+ self, *, t: torch.int, x_t: torch.LongTensor, log_onehot_x_t: torch.Tensor, cumulative: bool
358
358
  ):
359
359
  """
360
360
  Calculates the log probabilities of the rows from the (cumulative or non-cumulative) transition matrix for each
@@ -365,14 +365,14 @@ class VQDiffusionScheduler(SchedulerMixin, ConfigMixin):
365
365
  The timestep that determines which transition matrix is used.
366
366
  x_t (`torch.LongTensor` of shape `(batch size, num latent pixels)`):
367
367
  The classes of each latent pixel at time `t`.
368
- log_onehot_x_t (`torch.FloatTensor` of shape `(batch size, num classes, num latent pixels)`):
368
+ log_onehot_x_t (`torch.Tensor` of shape `(batch size, num classes, num latent pixels)`):
369
369
  The log one-hot vectors of `x_t`.
370
370
  cumulative (`bool`):
371
371
  If cumulative is `False`, the single step transition matrix `t-1`->`t` is used. If cumulative is
372
372
  `True`, the cumulative transition matrix `0`->`t` is used.
373
373
 
374
374
  Returns:
375
- `torch.FloatTensor` of shape `(batch size, num classes - 1, num latent pixels)`:
375
+ `torch.Tensor` of shape `(batch size, num classes - 1, num latent pixels)`:
376
376
  Each _column_ of the returned matrix is a _row_ of log probabilities of the complete probability
377
377
  transition matrix.
378
378