diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,885 @@
1
+ # Copyright 2024 Lightricks and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ from transformers import T5EncoderModel, T5TokenizerFast
21
+
22
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
23
+ from ...image_processor import PipelineImageInput
24
+ from ...loaders import FromSingleFileMixin, LTXVideoLoraLoaderMixin
25
+ from ...models.autoencoders import AutoencoderKLLTXVideo
26
+ from ...models.transformers import LTXVideoTransformer3DModel
27
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
28
+ from ...utils import is_torch_xla_available, logging, replace_example_docstring
29
+ from ...utils.torch_utils import randn_tensor
30
+ from ...video_processor import VideoProcessor
31
+ from ..pipeline_utils import DiffusionPipeline
32
+ from .pipeline_output import LTXPipelineOutput
33
+
34
+
35
+ if is_torch_xla_available():
36
+ import torch_xla.core.xla_model as xm
37
+
38
+ XLA_AVAILABLE = True
39
+ else:
40
+ XLA_AVAILABLE = False
41
+
42
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
43
+
44
+ EXAMPLE_DOC_STRING = """
45
+ Examples:
46
+ ```py
47
+ >>> import torch
48
+ >>> from diffusers import LTXImageToVideoPipeline
49
+ >>> from diffusers.utils import export_to_video, load_image
50
+
51
+ >>> pipe = LTXImageToVideoPipeline.from_pretrained("Lightricks/LTX-Video", torch_dtype=torch.bfloat16)
52
+ >>> pipe.to("cuda")
53
+
54
+ >>> image = load_image(
55
+ ... "https://huggingface.co/datasets/a-r-r-o-w/tiny-meme-dataset-captioned/resolve/main/images/8.png"
56
+ ... )
57
+ >>> prompt = "A young girl stands calmly in the foreground, looking directly at the camera, as a house fire rages in the background. Flames engulf the structure, with smoke billowing into the air. Firefighters in protective gear rush to the scene, a fire truck labeled '38' visible behind them. The girl's neutral expression contrasts sharply with the chaos of the fire, creating a poignant and emotionally charged scene."
58
+ >>> negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
59
+
60
+ >>> video = pipe(
61
+ ... image=image,
62
+ ... prompt=prompt,
63
+ ... negative_prompt=negative_prompt,
64
+ ... width=704,
65
+ ... height=480,
66
+ ... num_frames=161,
67
+ ... num_inference_steps=50,
68
+ ... ).frames[0]
69
+ >>> export_to_video(video, "output.mp4", fps=24)
70
+ ```
71
+ """
72
+
73
+
74
+ # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
75
+ def calculate_shift(
76
+ image_seq_len,
77
+ base_seq_len: int = 256,
78
+ max_seq_len: int = 4096,
79
+ base_shift: float = 0.5,
80
+ max_shift: float = 1.16,
81
+ ):
82
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
83
+ b = base_shift - m * base_seq_len
84
+ mu = image_seq_len * m + b
85
+ return mu
86
+
87
+
88
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
89
+ def retrieve_timesteps(
90
+ scheduler,
91
+ num_inference_steps: Optional[int] = None,
92
+ device: Optional[Union[str, torch.device]] = None,
93
+ timesteps: Optional[List[int]] = None,
94
+ sigmas: Optional[List[float]] = None,
95
+ **kwargs,
96
+ ):
97
+ r"""
98
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
99
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
100
+
101
+ Args:
102
+ scheduler (`SchedulerMixin`):
103
+ The scheduler to get timesteps from.
104
+ num_inference_steps (`int`):
105
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
106
+ must be `None`.
107
+ device (`str` or `torch.device`, *optional*):
108
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
109
+ timesteps (`List[int]`, *optional*):
110
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
111
+ `num_inference_steps` and `sigmas` must be `None`.
112
+ sigmas (`List[float]`, *optional*):
113
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
114
+ `num_inference_steps` and `timesteps` must be `None`.
115
+
116
+ Returns:
117
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
118
+ second element is the number of inference steps.
119
+ """
120
+ if timesteps is not None and sigmas is not None:
121
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
122
+ if timesteps is not None:
123
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
124
+ if not accepts_timesteps:
125
+ raise ValueError(
126
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
127
+ f" timestep schedules. Please check whether you are using the correct scheduler."
128
+ )
129
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
130
+ timesteps = scheduler.timesteps
131
+ num_inference_steps = len(timesteps)
132
+ elif sigmas is not None:
133
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
134
+ if not accept_sigmas:
135
+ raise ValueError(
136
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
137
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
138
+ )
139
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
140
+ timesteps = scheduler.timesteps
141
+ num_inference_steps = len(timesteps)
142
+ else:
143
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
144
+ timesteps = scheduler.timesteps
145
+ return timesteps, num_inference_steps
146
+
147
+
148
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
149
+ def retrieve_latents(
150
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
151
+ ):
152
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
153
+ return encoder_output.latent_dist.sample(generator)
154
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
155
+ return encoder_output.latent_dist.mode()
156
+ elif hasattr(encoder_output, "latents"):
157
+ return encoder_output.latents
158
+ else:
159
+ raise AttributeError("Could not access latents of provided encoder_output")
160
+
161
+
162
+ class LTXImageToVideoPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraLoaderMixin):
163
+ r"""
164
+ Pipeline for image-to-video generation.
165
+
166
+ Reference: https://github.com/Lightricks/LTX-Video
167
+
168
+ Args:
169
+ transformer ([`LTXVideoTransformer3DModel`]):
170
+ Conditional Transformer architecture to denoise the encoded video latents.
171
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
172
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
173
+ vae ([`AutoencoderKLLTXVideo`]):
174
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
175
+ text_encoder ([`T5EncoderModel`]):
176
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
177
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
178
+ tokenizer (`CLIPTokenizer`):
179
+ Tokenizer of class
180
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
181
+ tokenizer (`T5TokenizerFast`):
182
+ Second Tokenizer of class
183
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
184
+ """
185
+
186
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
187
+ _optional_components = []
188
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
189
+
190
+ def __init__(
191
+ self,
192
+ scheduler: FlowMatchEulerDiscreteScheduler,
193
+ vae: AutoencoderKLLTXVideo,
194
+ text_encoder: T5EncoderModel,
195
+ tokenizer: T5TokenizerFast,
196
+ transformer: LTXVideoTransformer3DModel,
197
+ ):
198
+ super().__init__()
199
+
200
+ self.register_modules(
201
+ vae=vae,
202
+ text_encoder=text_encoder,
203
+ tokenizer=tokenizer,
204
+ transformer=transformer,
205
+ scheduler=scheduler,
206
+ )
207
+
208
+ self.vae_spatial_compression_ratio = self.vae.spatial_compression_ratio if hasattr(self, "vae") else 32
209
+ self.vae_temporal_compression_ratio = self.vae.temporal_compression_ratio if hasattr(self, "vae") else 8
210
+ self.transformer_spatial_patch_size = self.transformer.config.patch_size if hasattr(self, "transformer") else 1
211
+ self.transformer_temporal_patch_size = (
212
+ self.transformer.config.patch_size_t if hasattr(self, "transformer") else 1
213
+ )
214
+
215
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_spatial_compression_ratio)
216
+ self.tokenizer_max_length = (
217
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 128
218
+ )
219
+
220
+ self.default_height = 512
221
+ self.default_width = 704
222
+ self.default_frames = 121
223
+
224
+ def _get_t5_prompt_embeds(
225
+ self,
226
+ prompt: Union[str, List[str]] = None,
227
+ num_videos_per_prompt: int = 1,
228
+ max_sequence_length: int = 128,
229
+ device: Optional[torch.device] = None,
230
+ dtype: Optional[torch.dtype] = None,
231
+ ):
232
+ device = device or self._execution_device
233
+ dtype = dtype or self.text_encoder.dtype
234
+
235
+ prompt = [prompt] if isinstance(prompt, str) else prompt
236
+ batch_size = len(prompt)
237
+
238
+ text_inputs = self.tokenizer(
239
+ prompt,
240
+ padding="max_length",
241
+ max_length=max_sequence_length,
242
+ truncation=True,
243
+ add_special_tokens=True,
244
+ return_tensors="pt",
245
+ )
246
+ text_input_ids = text_inputs.input_ids
247
+ prompt_attention_mask = text_inputs.attention_mask
248
+ prompt_attention_mask = prompt_attention_mask.bool().to(device)
249
+
250
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
251
+
252
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
253
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
254
+ logger.warning(
255
+ "The following part of your input was truncated because `max_sequence_length` is set to "
256
+ f" {max_sequence_length} tokens: {removed_text}"
257
+ )
258
+
259
+ prompt_embeds = self.text_encoder(text_input_ids.to(device))[0]
260
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
261
+
262
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
263
+ _, seq_len, _ = prompt_embeds.shape
264
+ prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
265
+ prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
266
+
267
+ prompt_attention_mask = prompt_attention_mask.view(batch_size, -1)
268
+ prompt_attention_mask = prompt_attention_mask.repeat(num_videos_per_prompt, 1)
269
+
270
+ return prompt_embeds, prompt_attention_mask
271
+
272
+ # Copied from diffusers.pipelines.mochi.pipeline_mochi.MochiPipeline.encode_prompt with 256->128
273
+ def encode_prompt(
274
+ self,
275
+ prompt: Union[str, List[str]],
276
+ negative_prompt: Optional[Union[str, List[str]]] = None,
277
+ do_classifier_free_guidance: bool = True,
278
+ num_videos_per_prompt: int = 1,
279
+ prompt_embeds: Optional[torch.Tensor] = None,
280
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
281
+ prompt_attention_mask: Optional[torch.Tensor] = None,
282
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
283
+ max_sequence_length: int = 128,
284
+ device: Optional[torch.device] = None,
285
+ dtype: Optional[torch.dtype] = None,
286
+ ):
287
+ r"""
288
+ Encodes the prompt into text encoder hidden states.
289
+
290
+ Args:
291
+ prompt (`str` or `List[str]`, *optional*):
292
+ prompt to be encoded
293
+ negative_prompt (`str` or `List[str]`, *optional*):
294
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
295
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
296
+ less than `1`).
297
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
298
+ Whether to use classifier free guidance or not.
299
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
300
+ Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
301
+ prompt_embeds (`torch.Tensor`, *optional*):
302
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
303
+ provided, text embeddings will be generated from `prompt` input argument.
304
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
305
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
306
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
307
+ argument.
308
+ device: (`torch.device`, *optional*):
309
+ torch device
310
+ dtype: (`torch.dtype`, *optional*):
311
+ torch dtype
312
+ """
313
+ device = device or self._execution_device
314
+
315
+ prompt = [prompt] if isinstance(prompt, str) else prompt
316
+ if prompt is not None:
317
+ batch_size = len(prompt)
318
+ else:
319
+ batch_size = prompt_embeds.shape[0]
320
+
321
+ if prompt_embeds is None:
322
+ prompt_embeds, prompt_attention_mask = self._get_t5_prompt_embeds(
323
+ prompt=prompt,
324
+ num_videos_per_prompt=num_videos_per_prompt,
325
+ max_sequence_length=max_sequence_length,
326
+ device=device,
327
+ dtype=dtype,
328
+ )
329
+
330
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
331
+ negative_prompt = negative_prompt or ""
332
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
333
+
334
+ if prompt is not None and type(prompt) is not type(negative_prompt):
335
+ raise TypeError(
336
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
337
+ f" {type(prompt)}."
338
+ )
339
+ elif batch_size != len(negative_prompt):
340
+ raise ValueError(
341
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
342
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
343
+ " the batch size of `prompt`."
344
+ )
345
+
346
+ negative_prompt_embeds, negative_prompt_attention_mask = self._get_t5_prompt_embeds(
347
+ prompt=negative_prompt,
348
+ num_videos_per_prompt=num_videos_per_prompt,
349
+ max_sequence_length=max_sequence_length,
350
+ device=device,
351
+ dtype=dtype,
352
+ )
353
+
354
+ return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
355
+
356
+ # Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline.check_inputs
357
+ def check_inputs(
358
+ self,
359
+ prompt,
360
+ height,
361
+ width,
362
+ callback_on_step_end_tensor_inputs=None,
363
+ prompt_embeds=None,
364
+ negative_prompt_embeds=None,
365
+ prompt_attention_mask=None,
366
+ negative_prompt_attention_mask=None,
367
+ ):
368
+ if height % 32 != 0 or width % 32 != 0:
369
+ raise ValueError(f"`height` and `width` have to be divisible by 32 but are {height} and {width}.")
370
+
371
+ if callback_on_step_end_tensor_inputs is not None and not all(
372
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
373
+ ):
374
+ raise ValueError(
375
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
376
+ )
377
+
378
+ if prompt is not None and prompt_embeds is not None:
379
+ raise ValueError(
380
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
381
+ " only forward one of the two."
382
+ )
383
+ elif prompt is None and prompt_embeds is None:
384
+ raise ValueError(
385
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
386
+ )
387
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
388
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
389
+
390
+ if prompt_embeds is not None and prompt_attention_mask is None:
391
+ raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
392
+
393
+ if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
394
+ raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
395
+
396
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
397
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
398
+ raise ValueError(
399
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
400
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
401
+ f" {negative_prompt_embeds.shape}."
402
+ )
403
+ if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
404
+ raise ValueError(
405
+ "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
406
+ f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
407
+ f" {negative_prompt_attention_mask.shape}."
408
+ )
409
+
410
+ @staticmethod
411
+ # Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._pack_latents
412
+ def _pack_latents(latents: torch.Tensor, patch_size: int = 1, patch_size_t: int = 1) -> torch.Tensor:
413
+ # Unpacked latents of shape are [B, C, F, H, W] are patched into tokens of shape [B, C, F // p_t, p_t, H // p, p, W // p, p].
414
+ # The patch dimensions are then permuted and collapsed into the channel dimension of shape:
415
+ # [B, F // p_t * H // p * W // p, C * p_t * p * p] (an ndim=3 tensor).
416
+ # dim=0 is the batch size, dim=1 is the effective video sequence length, dim=2 is the effective number of input features
417
+ batch_size, num_channels, num_frames, height, width = latents.shape
418
+ post_patch_num_frames = num_frames // patch_size_t
419
+ post_patch_height = height // patch_size
420
+ post_patch_width = width // patch_size
421
+ latents = latents.reshape(
422
+ batch_size,
423
+ -1,
424
+ post_patch_num_frames,
425
+ patch_size_t,
426
+ post_patch_height,
427
+ patch_size,
428
+ post_patch_width,
429
+ patch_size,
430
+ )
431
+ latents = latents.permute(0, 2, 4, 6, 1, 3, 5, 7).flatten(4, 7).flatten(1, 3)
432
+ return latents
433
+
434
+ @staticmethod
435
+ # Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._unpack_latents
436
+ def _unpack_latents(
437
+ latents: torch.Tensor, num_frames: int, height: int, width: int, patch_size: int = 1, patch_size_t: int = 1
438
+ ) -> torch.Tensor:
439
+ # Packed latents of shape [B, S, D] (S is the effective video sequence length, D is the effective feature dimensions)
440
+ # are unpacked and reshaped into a video tensor of shape [B, C, F, H, W]. This is the inverse operation of
441
+ # what happens in the `_pack_latents` method.
442
+ batch_size = latents.size(0)
443
+ latents = latents.reshape(batch_size, num_frames, height, width, -1, patch_size_t, patch_size, patch_size)
444
+ latents = latents.permute(0, 4, 1, 5, 2, 6, 3, 7).flatten(6, 7).flatten(4, 5).flatten(2, 3)
445
+ return latents
446
+
447
+ @staticmethod
448
+ # Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._normalize_latents
449
+ def _normalize_latents(
450
+ latents: torch.Tensor, latents_mean: torch.Tensor, latents_std: torch.Tensor, scaling_factor: float = 1.0
451
+ ) -> torch.Tensor:
452
+ # Normalize latents across the channel dimension [B, C, F, H, W]
453
+ latents_mean = latents_mean.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
454
+ latents_std = latents_std.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
455
+ latents = (latents - latents_mean) * scaling_factor / latents_std
456
+ return latents
457
+
458
+ @staticmethod
459
+ # Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._denormalize_latents
460
+ def _denormalize_latents(
461
+ latents: torch.Tensor, latents_mean: torch.Tensor, latents_std: torch.Tensor, scaling_factor: float = 1.0
462
+ ) -> torch.Tensor:
463
+ # Denormalize latents across the channel dimension [B, C, F, H, W]
464
+ latents_mean = latents_mean.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
465
+ latents_std = latents_std.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
466
+ latents = latents * latents_std / scaling_factor + latents_mean
467
+ return latents
468
+
469
+ def prepare_latents(
470
+ self,
471
+ image: Optional[torch.Tensor] = None,
472
+ batch_size: int = 1,
473
+ num_channels_latents: int = 128,
474
+ height: int = 512,
475
+ width: int = 704,
476
+ num_frames: int = 161,
477
+ dtype: Optional[torch.dtype] = None,
478
+ device: Optional[torch.device] = None,
479
+ generator: Optional[torch.Generator] = None,
480
+ latents: Optional[torch.Tensor] = None,
481
+ ) -> torch.Tensor:
482
+ height = height // self.vae_spatial_compression_ratio
483
+ width = width // self.vae_spatial_compression_ratio
484
+ num_frames = (
485
+ (num_frames - 1) // self.vae_temporal_compression_ratio + 1 if latents is None else latents.size(2)
486
+ )
487
+
488
+ shape = (batch_size, num_channels_latents, num_frames, height, width)
489
+ mask_shape = (batch_size, 1, num_frames, height, width)
490
+
491
+ if latents is not None:
492
+ conditioning_mask = latents.new_zeros(shape)
493
+ conditioning_mask[:, :, 0] = 1.0
494
+ conditioning_mask = self._pack_latents(
495
+ conditioning_mask, self.transformer_spatial_patch_size, self.transformer_temporal_patch_size
496
+ )
497
+ return latents.to(device=device, dtype=dtype), conditioning_mask
498
+
499
+ if isinstance(generator, list):
500
+ if len(generator) != batch_size:
501
+ raise ValueError(
502
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
503
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
504
+ )
505
+
506
+ init_latents = [
507
+ retrieve_latents(self.vae.encode(image[i].unsqueeze(0).unsqueeze(2)), generator[i])
508
+ for i in range(batch_size)
509
+ ]
510
+ else:
511
+ init_latents = [
512
+ retrieve_latents(self.vae.encode(img.unsqueeze(0).unsqueeze(2)), generator) for img in image
513
+ ]
514
+
515
+ init_latents = torch.cat(init_latents, dim=0).to(dtype)
516
+ init_latents = self._normalize_latents(init_latents, self.vae.latents_mean, self.vae.latents_std)
517
+ init_latents = init_latents.repeat(1, 1, num_frames, 1, 1)
518
+ conditioning_mask = torch.zeros(mask_shape, device=device, dtype=dtype)
519
+ conditioning_mask[:, :, 0] = 1.0
520
+
521
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
522
+ latents = init_latents * conditioning_mask + noise * (1 - conditioning_mask)
523
+
524
+ conditioning_mask = self._pack_latents(
525
+ conditioning_mask, self.transformer_spatial_patch_size, self.transformer_temporal_patch_size
526
+ ).squeeze(-1)
527
+ latents = self._pack_latents(
528
+ latents, self.transformer_spatial_patch_size, self.transformer_temporal_patch_size
529
+ )
530
+
531
+ return latents, conditioning_mask
532
+
533
+ @property
534
+ def guidance_scale(self):
535
+ return self._guidance_scale
536
+
537
+ @property
538
+ def do_classifier_free_guidance(self):
539
+ return self._guidance_scale > 1.0
540
+
541
+ @property
542
+ def num_timesteps(self):
543
+ return self._num_timesteps
544
+
545
+ @property
546
+ def attention_kwargs(self):
547
+ return self._attention_kwargs
548
+
549
+ @property
550
+ def interrupt(self):
551
+ return self._interrupt
552
+
553
+ @torch.no_grad()
554
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
555
+ def __call__(
556
+ self,
557
+ image: PipelineImageInput = None,
558
+ prompt: Union[str, List[str]] = None,
559
+ negative_prompt: Optional[Union[str, List[str]]] = None,
560
+ height: int = 512,
561
+ width: int = 704,
562
+ num_frames: int = 161,
563
+ frame_rate: int = 25,
564
+ num_inference_steps: int = 50,
565
+ timesteps: List[int] = None,
566
+ guidance_scale: float = 3,
567
+ num_videos_per_prompt: Optional[int] = 1,
568
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
569
+ latents: Optional[torch.Tensor] = None,
570
+ prompt_embeds: Optional[torch.Tensor] = None,
571
+ prompt_attention_mask: Optional[torch.Tensor] = None,
572
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
573
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
574
+ decode_timestep: Union[float, List[float]] = 0.0,
575
+ decode_noise_scale: Optional[Union[float, List[float]]] = None,
576
+ output_type: Optional[str] = "pil",
577
+ return_dict: bool = True,
578
+ attention_kwargs: Optional[Dict[str, Any]] = None,
579
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
580
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
581
+ max_sequence_length: int = 128,
582
+ ):
583
+ r"""
584
+ Function invoked when calling the pipeline for generation.
585
+
586
+ Args:
587
+ image (`PipelineImageInput`):
588
+ The input image to condition the generation on. Must be an image, a list of images or a `torch.Tensor`.
589
+ prompt (`str` or `List[str]`, *optional*):
590
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
591
+ instead.
592
+ height (`int`, defaults to `512`):
593
+ The height in pixels of the generated image. This is set to 480 by default for the best results.
594
+ width (`int`, defaults to `704`):
595
+ The width in pixels of the generated image. This is set to 848 by default for the best results.
596
+ num_frames (`int`, defaults to `161`):
597
+ The number of video frames to generate
598
+ num_inference_steps (`int`, *optional*, defaults to 50):
599
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
600
+ expense of slower inference.
601
+ timesteps (`List[int]`, *optional*):
602
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
603
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
604
+ passed will be used. Must be in descending order.
605
+ guidance_scale (`float`, defaults to `3 `):
606
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
607
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
608
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
609
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
610
+ usually at the expense of lower image quality.
611
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
612
+ The number of videos to generate per prompt.
613
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
614
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
615
+ to make generation deterministic.
616
+ latents (`torch.Tensor`, *optional*):
617
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
618
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
619
+ tensor will ge generated by sampling using the supplied random `generator`.
620
+ prompt_embeds (`torch.Tensor`, *optional*):
621
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
622
+ provided, text embeddings will be generated from `prompt` input argument.
623
+ prompt_attention_mask (`torch.Tensor`, *optional*):
624
+ Pre-generated attention mask for text embeddings.
625
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
626
+ Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
627
+ provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
628
+ negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
629
+ Pre-generated attention mask for negative text embeddings.
630
+ decode_timestep (`float`, defaults to `0.0`):
631
+ The timestep at which generated video is decoded.
632
+ decode_noise_scale (`float`, defaults to `None`):
633
+ The interpolation factor between random noise and denoised latents at the decode timestep.
634
+ output_type (`str`, *optional*, defaults to `"pil"`):
635
+ The output format of the generate image. Choose between
636
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
637
+ return_dict (`bool`, *optional*, defaults to `True`):
638
+ Whether or not to return a [`~pipelines.ltx.LTXPipelineOutput`] instead of a plain tuple.
639
+ attention_kwargs (`dict`, *optional*):
640
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
641
+ `self.processor` in
642
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
643
+ callback_on_step_end (`Callable`, *optional*):
644
+ A function that calls at the end of each denoising steps during the inference. The function is called
645
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
646
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
647
+ `callback_on_step_end_tensor_inputs`.
648
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
649
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
650
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
651
+ `._callback_tensor_inputs` attribute of your pipeline class.
652
+ max_sequence_length (`int` defaults to `128 `):
653
+ Maximum sequence length to use with the `prompt`.
654
+
655
+ Examples:
656
+
657
+ Returns:
658
+ [`~pipelines.ltx.LTXPipelineOutput`] or `tuple`:
659
+ If `return_dict` is `True`, [`~pipelines.ltx.LTXPipelineOutput`] is returned, otherwise a `tuple` is
660
+ returned where the first element is a list with the generated images.
661
+ """
662
+
663
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
664
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
665
+
666
+ # 1. Check inputs. Raise error if not correct
667
+ self.check_inputs(
668
+ prompt=prompt,
669
+ height=height,
670
+ width=width,
671
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
672
+ prompt_embeds=prompt_embeds,
673
+ negative_prompt_embeds=negative_prompt_embeds,
674
+ prompt_attention_mask=prompt_attention_mask,
675
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
676
+ )
677
+
678
+ self._guidance_scale = guidance_scale
679
+ self._attention_kwargs = attention_kwargs
680
+ self._interrupt = False
681
+
682
+ # 2. Define call parameters
683
+ if prompt is not None and isinstance(prompt, str):
684
+ batch_size = 1
685
+ elif prompt is not None and isinstance(prompt, list):
686
+ batch_size = len(prompt)
687
+ else:
688
+ batch_size = prompt_embeds.shape[0]
689
+
690
+ device = self._execution_device
691
+
692
+ # 3. Prepare text embeddings
693
+ (
694
+ prompt_embeds,
695
+ prompt_attention_mask,
696
+ negative_prompt_embeds,
697
+ negative_prompt_attention_mask,
698
+ ) = self.encode_prompt(
699
+ prompt=prompt,
700
+ negative_prompt=negative_prompt,
701
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
702
+ num_videos_per_prompt=num_videos_per_prompt,
703
+ prompt_embeds=prompt_embeds,
704
+ negative_prompt_embeds=negative_prompt_embeds,
705
+ prompt_attention_mask=prompt_attention_mask,
706
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
707
+ max_sequence_length=max_sequence_length,
708
+ device=device,
709
+ )
710
+ if self.do_classifier_free_guidance:
711
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
712
+ prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
713
+
714
+ # 4. Prepare latent variables
715
+ if latents is None:
716
+ image = self.video_processor.preprocess(image, height=height, width=width)
717
+ image = image.to(device=device, dtype=prompt_embeds.dtype)
718
+
719
+ num_channels_latents = self.transformer.config.in_channels
720
+ latents, conditioning_mask = self.prepare_latents(
721
+ image,
722
+ batch_size * num_videos_per_prompt,
723
+ num_channels_latents,
724
+ height,
725
+ width,
726
+ num_frames,
727
+ torch.float32,
728
+ device,
729
+ generator,
730
+ latents,
731
+ )
732
+
733
+ if self.do_classifier_free_guidance:
734
+ conditioning_mask = torch.cat([conditioning_mask, conditioning_mask])
735
+
736
+ # 5. Prepare timesteps
737
+ latent_num_frames = (num_frames - 1) // self.vae_temporal_compression_ratio + 1
738
+ latent_height = height // self.vae_spatial_compression_ratio
739
+ latent_width = width // self.vae_spatial_compression_ratio
740
+ video_sequence_length = latent_num_frames * latent_height * latent_width
741
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
742
+ mu = calculate_shift(
743
+ video_sequence_length,
744
+ self.scheduler.config.base_image_seq_len,
745
+ self.scheduler.config.max_image_seq_len,
746
+ self.scheduler.config.base_shift,
747
+ self.scheduler.config.max_shift,
748
+ )
749
+ timesteps, num_inference_steps = retrieve_timesteps(
750
+ self.scheduler,
751
+ num_inference_steps,
752
+ device,
753
+ timesteps,
754
+ sigmas=sigmas,
755
+ mu=mu,
756
+ )
757
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
758
+ self._num_timesteps = len(timesteps)
759
+
760
+ # 6. Prepare micro-conditions
761
+ latent_frame_rate = frame_rate / self.vae_temporal_compression_ratio
762
+ rope_interpolation_scale = (
763
+ 1 / latent_frame_rate,
764
+ self.vae_spatial_compression_ratio,
765
+ self.vae_spatial_compression_ratio,
766
+ )
767
+
768
+ # 7. Denoising loop
769
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
770
+ for i, t in enumerate(timesteps):
771
+ if self.interrupt:
772
+ continue
773
+
774
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
775
+ latent_model_input = latent_model_input.to(prompt_embeds.dtype)
776
+
777
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
778
+ timestep = t.expand(latent_model_input.shape[0])
779
+ timestep = timestep.unsqueeze(-1) * (1 - conditioning_mask)
780
+
781
+ noise_pred = self.transformer(
782
+ hidden_states=latent_model_input,
783
+ encoder_hidden_states=prompt_embeds,
784
+ timestep=timestep,
785
+ encoder_attention_mask=prompt_attention_mask,
786
+ num_frames=latent_num_frames,
787
+ height=latent_height,
788
+ width=latent_width,
789
+ rope_interpolation_scale=rope_interpolation_scale,
790
+ attention_kwargs=attention_kwargs,
791
+ return_dict=False,
792
+ )[0]
793
+ noise_pred = noise_pred.float()
794
+
795
+ if self.do_classifier_free_guidance:
796
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
797
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
798
+ timestep, _ = timestep.chunk(2)
799
+
800
+ # compute the previous noisy sample x_t -> x_t-1
801
+ noise_pred = self._unpack_latents(
802
+ noise_pred,
803
+ latent_num_frames,
804
+ latent_height,
805
+ latent_width,
806
+ self.transformer_spatial_patch_size,
807
+ self.transformer_temporal_patch_size,
808
+ )
809
+ latents = self._unpack_latents(
810
+ latents,
811
+ latent_num_frames,
812
+ latent_height,
813
+ latent_width,
814
+ self.transformer_spatial_patch_size,
815
+ self.transformer_temporal_patch_size,
816
+ )
817
+
818
+ noise_pred = noise_pred[:, :, 1:]
819
+ noise_latents = latents[:, :, 1:]
820
+ pred_latents = self.scheduler.step(noise_pred, t, noise_latents, return_dict=False)[0]
821
+
822
+ latents = torch.cat([latents[:, :, :1], pred_latents], dim=2)
823
+ latents = self._pack_latents(
824
+ latents, self.transformer_spatial_patch_size, self.transformer_temporal_patch_size
825
+ )
826
+
827
+ if callback_on_step_end is not None:
828
+ callback_kwargs = {}
829
+ for k in callback_on_step_end_tensor_inputs:
830
+ callback_kwargs[k] = locals()[k]
831
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
832
+
833
+ latents = callback_outputs.pop("latents", latents)
834
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
835
+
836
+ # call the callback, if provided
837
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
838
+ progress_bar.update()
839
+
840
+ if XLA_AVAILABLE:
841
+ xm.mark_step()
842
+
843
+ if output_type == "latent":
844
+ video = latents
845
+ else:
846
+ latents = self._unpack_latents(
847
+ latents,
848
+ latent_num_frames,
849
+ latent_height,
850
+ latent_width,
851
+ self.transformer_spatial_patch_size,
852
+ self.transformer_temporal_patch_size,
853
+ )
854
+ latents = self._denormalize_latents(
855
+ latents, self.vae.latents_mean, self.vae.latents_std, self.vae.config.scaling_factor
856
+ )
857
+ latents = latents.to(prompt_embeds.dtype)
858
+
859
+ if not self.vae.config.timestep_conditioning:
860
+ timestep = None
861
+ else:
862
+ noise = torch.randn(latents.shape, generator=generator, device=device, dtype=latents.dtype)
863
+ if not isinstance(decode_timestep, list):
864
+ decode_timestep = [decode_timestep] * batch_size
865
+ if decode_noise_scale is None:
866
+ decode_noise_scale = decode_timestep
867
+ elif not isinstance(decode_noise_scale, list):
868
+ decode_noise_scale = [decode_noise_scale] * batch_size
869
+
870
+ timestep = torch.tensor(decode_timestep, device=device, dtype=latents.dtype)
871
+ decode_noise_scale = torch.tensor(decode_noise_scale, device=device, dtype=latents.dtype)[
872
+ :, None, None, None, None
873
+ ]
874
+ latents = (1 - decode_noise_scale) * latents + decode_noise_scale * noise
875
+
876
+ video = self.vae.decode(latents, timestep, return_dict=False)[0]
877
+ video = self.video_processor.postprocess_video(video, output_type=output_type)
878
+
879
+ # Offload all models
880
+ self.maybe_free_model_hooks()
881
+
882
+ if not return_dict:
883
+ return (video,)
884
+
885
+ return LTXPipelineOutput(frames=video)