diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1062 @@
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import inspect
15
+ from typing import Any, Callable, Dict, List, Optional, Union
16
+
17
+ import torch
18
+ from packaging import version
19
+ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
20
+
21
+ from ...configuration_utils import FrozenDict
22
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
23
+ from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
24
+ from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
25
+ from ...models.lora import adjust_lora_scale_text_encoder
26
+ from ...schedulers import KarrasDiffusionSchedulers
27
+ from ...utils import (
28
+ USE_PEFT_BACKEND,
29
+ deprecate,
30
+ logging,
31
+ replace_example_docstring,
32
+ scale_lora_layers,
33
+ unscale_lora_layers,
34
+ )
35
+ from ...utils.torch_utils import randn_tensor
36
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
37
+ from ..stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
38
+ from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
39
+ from .pag_utils import PAGMixin
40
+
41
+
42
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
43
+
44
+ EXAMPLE_DOC_STRING = """
45
+ Examples:
46
+ ```py
47
+ >>> import torch
48
+ >>> from diffusers import AutoPipelineForText2Image
49
+
50
+ >>> pipe = AutoPipelineForText2Image.from_pretrained(
51
+ ... "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, enable_pag=True
52
+ ... )
53
+ >>> pipe = pipe.to("cuda")
54
+
55
+ >>> prompt = "a photo of an astronaut riding a horse on mars"
56
+ >>> image = pipe(prompt, pag_scale=0.3).images[0]
57
+ ```
58
+ """
59
+
60
+
61
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
62
+ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
63
+ r"""
64
+ Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
65
+ Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
66
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf).
67
+
68
+ Args:
69
+ noise_cfg (`torch.Tensor`):
70
+ The predicted noise tensor for the guided diffusion process.
71
+ noise_pred_text (`torch.Tensor`):
72
+ The predicted noise tensor for the text-guided diffusion process.
73
+ guidance_rescale (`float`, *optional*, defaults to 0.0):
74
+ A rescale factor applied to the noise predictions.
75
+
76
+ Returns:
77
+ noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
78
+ """
79
+ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
80
+ std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
81
+ # rescale the results from guidance (fixes overexposure)
82
+ noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
83
+ # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
84
+ noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
85
+ return noise_cfg
86
+
87
+
88
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
89
+ def retrieve_timesteps(
90
+ scheduler,
91
+ num_inference_steps: Optional[int] = None,
92
+ device: Optional[Union[str, torch.device]] = None,
93
+ timesteps: Optional[List[int]] = None,
94
+ sigmas: Optional[List[float]] = None,
95
+ **kwargs,
96
+ ):
97
+ r"""
98
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
99
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
100
+
101
+ Args:
102
+ scheduler (`SchedulerMixin`):
103
+ The scheduler to get timesteps from.
104
+ num_inference_steps (`int`):
105
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
106
+ must be `None`.
107
+ device (`str` or `torch.device`, *optional*):
108
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
109
+ timesteps (`List[int]`, *optional*):
110
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
111
+ `num_inference_steps` and `sigmas` must be `None`.
112
+ sigmas (`List[float]`, *optional*):
113
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
114
+ `num_inference_steps` and `timesteps` must be `None`.
115
+
116
+ Returns:
117
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
118
+ second element is the number of inference steps.
119
+ """
120
+ if timesteps is not None and sigmas is not None:
121
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
122
+ if timesteps is not None:
123
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
124
+ if not accepts_timesteps:
125
+ raise ValueError(
126
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
127
+ f" timestep schedules. Please check whether you are using the correct scheduler."
128
+ )
129
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
130
+ timesteps = scheduler.timesteps
131
+ num_inference_steps = len(timesteps)
132
+ elif sigmas is not None:
133
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
134
+ if not accept_sigmas:
135
+ raise ValueError(
136
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
137
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
138
+ )
139
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
140
+ timesteps = scheduler.timesteps
141
+ num_inference_steps = len(timesteps)
142
+ else:
143
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
144
+ timesteps = scheduler.timesteps
145
+ return timesteps, num_inference_steps
146
+
147
+
148
+ class StableDiffusionPAGPipeline(
149
+ DiffusionPipeline,
150
+ StableDiffusionMixin,
151
+ TextualInversionLoaderMixin,
152
+ StableDiffusionLoraLoaderMixin,
153
+ IPAdapterMixin,
154
+ FromSingleFileMixin,
155
+ PAGMixin,
156
+ ):
157
+ r"""
158
+ Pipeline for text-to-image generation using Stable Diffusion.
159
+
160
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
161
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
162
+
163
+ The pipeline also inherits the following loading methods:
164
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
165
+ - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
166
+ - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
167
+ - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
168
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
169
+
170
+ Args:
171
+ vae ([`AutoencoderKL`]):
172
+ Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
173
+ text_encoder ([`~transformers.CLIPTextModel`]):
174
+ Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
175
+ tokenizer ([`~transformers.CLIPTokenizer`]):
176
+ A `CLIPTokenizer` to tokenize text.
177
+ unet ([`UNet2DConditionModel`]):
178
+ A `UNet2DConditionModel` to denoise the encoded image latents.
179
+ scheduler ([`SchedulerMixin`]):
180
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
181
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
182
+ safety_checker ([`StableDiffusionSafetyChecker`]):
183
+ Classification module that estimates whether generated images could be considered offensive or harmful.
184
+ Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
185
+ about a model's potential harms.
186
+ feature_extractor ([`~transformers.CLIPImageProcessor`]):
187
+ A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
188
+ """
189
+
190
+ model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
191
+ _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
192
+ _exclude_from_cpu_offload = ["safety_checker"]
193
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
194
+
195
+ def __init__(
196
+ self,
197
+ vae: AutoencoderKL,
198
+ text_encoder: CLIPTextModel,
199
+ tokenizer: CLIPTokenizer,
200
+ unet: UNet2DConditionModel,
201
+ scheduler: KarrasDiffusionSchedulers,
202
+ safety_checker: StableDiffusionSafetyChecker,
203
+ feature_extractor: CLIPImageProcessor,
204
+ image_encoder: CLIPVisionModelWithProjection = None,
205
+ requires_safety_checker: bool = True,
206
+ pag_applied_layers: Union[str, List[str]] = "mid",
207
+ ):
208
+ super().__init__()
209
+
210
+ if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
211
+ deprecation_message = (
212
+ f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
213
+ f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
214
+ "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
215
+ " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
216
+ " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
217
+ " file"
218
+ )
219
+ deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
220
+ new_config = dict(scheduler.config)
221
+ new_config["steps_offset"] = 1
222
+ scheduler._internal_dict = FrozenDict(new_config)
223
+
224
+ if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
225
+ deprecation_message = (
226
+ f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
227
+ " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
228
+ " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
229
+ " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
230
+ " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
231
+ )
232
+ deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
233
+ new_config = dict(scheduler.config)
234
+ new_config["clip_sample"] = False
235
+ scheduler._internal_dict = FrozenDict(new_config)
236
+
237
+ if safety_checker is None and requires_safety_checker:
238
+ logger.warning(
239
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
240
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
241
+ " results in services or applications open to the public. Both the diffusers team and Hugging Face"
242
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
243
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
244
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
245
+ )
246
+
247
+ if safety_checker is not None and feature_extractor is None:
248
+ raise ValueError(
249
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
250
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
251
+ )
252
+
253
+ is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
254
+ version.parse(unet.config._diffusers_version).base_version
255
+ ) < version.parse("0.9.0.dev0")
256
+ is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
257
+ if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
258
+ deprecation_message = (
259
+ "The configuration file of the unet has set the default `sample_size` to smaller than"
260
+ " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
261
+ " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
262
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
263
+ " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
264
+ " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
265
+ " in the config might lead to incorrect results in future versions. If you have downloaded this"
266
+ " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
267
+ " the `unet/config.json` file"
268
+ )
269
+ deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
270
+ new_config = dict(unet.config)
271
+ new_config["sample_size"] = 64
272
+ unet._internal_dict = FrozenDict(new_config)
273
+
274
+ self.register_modules(
275
+ vae=vae,
276
+ text_encoder=text_encoder,
277
+ tokenizer=tokenizer,
278
+ unet=unet,
279
+ scheduler=scheduler,
280
+ safety_checker=safety_checker,
281
+ feature_extractor=feature_extractor,
282
+ image_encoder=image_encoder,
283
+ )
284
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
285
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
286
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
287
+
288
+ self.set_pag_applied_layers(pag_applied_layers)
289
+
290
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
291
+ def encode_prompt(
292
+ self,
293
+ prompt,
294
+ device,
295
+ num_images_per_prompt,
296
+ do_classifier_free_guidance,
297
+ negative_prompt=None,
298
+ prompt_embeds: Optional[torch.Tensor] = None,
299
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
300
+ lora_scale: Optional[float] = None,
301
+ clip_skip: Optional[int] = None,
302
+ ):
303
+ r"""
304
+ Encodes the prompt into text encoder hidden states.
305
+
306
+ Args:
307
+ prompt (`str` or `List[str]`, *optional*):
308
+ prompt to be encoded
309
+ device: (`torch.device`):
310
+ torch device
311
+ num_images_per_prompt (`int`):
312
+ number of images that should be generated per prompt
313
+ do_classifier_free_guidance (`bool`):
314
+ whether to use classifier free guidance or not
315
+ negative_prompt (`str` or `List[str]`, *optional*):
316
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
317
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
318
+ less than `1`).
319
+ prompt_embeds (`torch.Tensor`, *optional*):
320
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
321
+ provided, text embeddings will be generated from `prompt` input argument.
322
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
323
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
324
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
325
+ argument.
326
+ lora_scale (`float`, *optional*):
327
+ A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
328
+ clip_skip (`int`, *optional*):
329
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
330
+ the output of the pre-final layer will be used for computing the prompt embeddings.
331
+ """
332
+ # set lora scale so that monkey patched LoRA
333
+ # function of text encoder can correctly access it
334
+ if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
335
+ self._lora_scale = lora_scale
336
+
337
+ # dynamically adjust the LoRA scale
338
+ if not USE_PEFT_BACKEND:
339
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
340
+ else:
341
+ scale_lora_layers(self.text_encoder, lora_scale)
342
+
343
+ if prompt is not None and isinstance(prompt, str):
344
+ batch_size = 1
345
+ elif prompt is not None and isinstance(prompt, list):
346
+ batch_size = len(prompt)
347
+ else:
348
+ batch_size = prompt_embeds.shape[0]
349
+
350
+ if prompt_embeds is None:
351
+ # textual inversion: process multi-vector tokens if necessary
352
+ if isinstance(self, TextualInversionLoaderMixin):
353
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
354
+
355
+ text_inputs = self.tokenizer(
356
+ prompt,
357
+ padding="max_length",
358
+ max_length=self.tokenizer.model_max_length,
359
+ truncation=True,
360
+ return_tensors="pt",
361
+ )
362
+ text_input_ids = text_inputs.input_ids
363
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
364
+
365
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
366
+ text_input_ids, untruncated_ids
367
+ ):
368
+ removed_text = self.tokenizer.batch_decode(
369
+ untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
370
+ )
371
+ logger.warning(
372
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
373
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
374
+ )
375
+
376
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
377
+ attention_mask = text_inputs.attention_mask.to(device)
378
+ else:
379
+ attention_mask = None
380
+
381
+ if clip_skip is None:
382
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
383
+ prompt_embeds = prompt_embeds[0]
384
+ else:
385
+ prompt_embeds = self.text_encoder(
386
+ text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
387
+ )
388
+ # Access the `hidden_states` first, that contains a tuple of
389
+ # all the hidden states from the encoder layers. Then index into
390
+ # the tuple to access the hidden states from the desired layer.
391
+ prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
392
+ # We also need to apply the final LayerNorm here to not mess with the
393
+ # representations. The `last_hidden_states` that we typically use for
394
+ # obtaining the final prompt representations passes through the LayerNorm
395
+ # layer.
396
+ prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
397
+
398
+ if self.text_encoder is not None:
399
+ prompt_embeds_dtype = self.text_encoder.dtype
400
+ elif self.unet is not None:
401
+ prompt_embeds_dtype = self.unet.dtype
402
+ else:
403
+ prompt_embeds_dtype = prompt_embeds.dtype
404
+
405
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
406
+
407
+ bs_embed, seq_len, _ = prompt_embeds.shape
408
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
409
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
410
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
411
+
412
+ # get unconditional embeddings for classifier free guidance
413
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
414
+ uncond_tokens: List[str]
415
+ if negative_prompt is None:
416
+ uncond_tokens = [""] * batch_size
417
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
418
+ raise TypeError(
419
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
420
+ f" {type(prompt)}."
421
+ )
422
+ elif isinstance(negative_prompt, str):
423
+ uncond_tokens = [negative_prompt]
424
+ elif batch_size != len(negative_prompt):
425
+ raise ValueError(
426
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
427
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
428
+ " the batch size of `prompt`."
429
+ )
430
+ else:
431
+ uncond_tokens = negative_prompt
432
+
433
+ # textual inversion: process multi-vector tokens if necessary
434
+ if isinstance(self, TextualInversionLoaderMixin):
435
+ uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
436
+
437
+ max_length = prompt_embeds.shape[1]
438
+ uncond_input = self.tokenizer(
439
+ uncond_tokens,
440
+ padding="max_length",
441
+ max_length=max_length,
442
+ truncation=True,
443
+ return_tensors="pt",
444
+ )
445
+
446
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
447
+ attention_mask = uncond_input.attention_mask.to(device)
448
+ else:
449
+ attention_mask = None
450
+
451
+ negative_prompt_embeds = self.text_encoder(
452
+ uncond_input.input_ids.to(device),
453
+ attention_mask=attention_mask,
454
+ )
455
+ negative_prompt_embeds = negative_prompt_embeds[0]
456
+
457
+ if do_classifier_free_guidance:
458
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
459
+ seq_len = negative_prompt_embeds.shape[1]
460
+
461
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
462
+
463
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
464
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
465
+
466
+ if self.text_encoder is not None:
467
+ if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
468
+ # Retrieve the original scale by scaling back the LoRA layers
469
+ unscale_lora_layers(self.text_encoder, lora_scale)
470
+
471
+ return prompt_embeds, negative_prompt_embeds
472
+
473
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
474
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
475
+ dtype = next(self.image_encoder.parameters()).dtype
476
+
477
+ if not isinstance(image, torch.Tensor):
478
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
479
+
480
+ image = image.to(device=device, dtype=dtype)
481
+ if output_hidden_states:
482
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
483
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
484
+ uncond_image_enc_hidden_states = self.image_encoder(
485
+ torch.zeros_like(image), output_hidden_states=True
486
+ ).hidden_states[-2]
487
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
488
+ num_images_per_prompt, dim=0
489
+ )
490
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
491
+ else:
492
+ image_embeds = self.image_encoder(image).image_embeds
493
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
494
+ uncond_image_embeds = torch.zeros_like(image_embeds)
495
+
496
+ return image_embeds, uncond_image_embeds
497
+
498
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
499
+ def prepare_ip_adapter_image_embeds(
500
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
501
+ ):
502
+ image_embeds = []
503
+ if do_classifier_free_guidance:
504
+ negative_image_embeds = []
505
+ if ip_adapter_image_embeds is None:
506
+ if not isinstance(ip_adapter_image, list):
507
+ ip_adapter_image = [ip_adapter_image]
508
+
509
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
510
+ raise ValueError(
511
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
512
+ )
513
+
514
+ for single_ip_adapter_image, image_proj_layer in zip(
515
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
516
+ ):
517
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
518
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
519
+ single_ip_adapter_image, device, 1, output_hidden_state
520
+ )
521
+
522
+ image_embeds.append(single_image_embeds[None, :])
523
+ if do_classifier_free_guidance:
524
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
525
+ else:
526
+ for single_image_embeds in ip_adapter_image_embeds:
527
+ if do_classifier_free_guidance:
528
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
529
+ negative_image_embeds.append(single_negative_image_embeds)
530
+ image_embeds.append(single_image_embeds)
531
+
532
+ ip_adapter_image_embeds = []
533
+ for i, single_image_embeds in enumerate(image_embeds):
534
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
535
+ if do_classifier_free_guidance:
536
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
537
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
538
+
539
+ single_image_embeds = single_image_embeds.to(device=device)
540
+ ip_adapter_image_embeds.append(single_image_embeds)
541
+
542
+ return ip_adapter_image_embeds
543
+
544
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
545
+ def run_safety_checker(self, image, device, dtype):
546
+ if self.safety_checker is None:
547
+ has_nsfw_concept = None
548
+ else:
549
+ if torch.is_tensor(image):
550
+ feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
551
+ else:
552
+ feature_extractor_input = self.image_processor.numpy_to_pil(image)
553
+ safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
554
+ image, has_nsfw_concept = self.safety_checker(
555
+ images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
556
+ )
557
+ return image, has_nsfw_concept
558
+
559
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
560
+ def prepare_extra_step_kwargs(self, generator, eta):
561
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
562
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
563
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
564
+ # and should be between [0, 1]
565
+
566
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
567
+ extra_step_kwargs = {}
568
+ if accepts_eta:
569
+ extra_step_kwargs["eta"] = eta
570
+
571
+ # check if the scheduler accepts generator
572
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
573
+ if accepts_generator:
574
+ extra_step_kwargs["generator"] = generator
575
+ return extra_step_kwargs
576
+
577
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.check_inputs
578
+ def check_inputs(
579
+ self,
580
+ prompt,
581
+ height,
582
+ width,
583
+ callback_steps,
584
+ negative_prompt=None,
585
+ prompt_embeds=None,
586
+ negative_prompt_embeds=None,
587
+ ip_adapter_image=None,
588
+ ip_adapter_image_embeds=None,
589
+ callback_on_step_end_tensor_inputs=None,
590
+ ):
591
+ if height % 8 != 0 or width % 8 != 0:
592
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
593
+
594
+ if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
595
+ raise ValueError(
596
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
597
+ f" {type(callback_steps)}."
598
+ )
599
+ if callback_on_step_end_tensor_inputs is not None and not all(
600
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
601
+ ):
602
+ raise ValueError(
603
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
604
+ )
605
+
606
+ if prompt is not None and prompt_embeds is not None:
607
+ raise ValueError(
608
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
609
+ " only forward one of the two."
610
+ )
611
+ elif prompt is None and prompt_embeds is None:
612
+ raise ValueError(
613
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
614
+ )
615
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
616
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
617
+
618
+ if negative_prompt is not None and negative_prompt_embeds is not None:
619
+ raise ValueError(
620
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
621
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
622
+ )
623
+
624
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
625
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
626
+ raise ValueError(
627
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
628
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
629
+ f" {negative_prompt_embeds.shape}."
630
+ )
631
+
632
+ if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
633
+ raise ValueError(
634
+ "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
635
+ )
636
+
637
+ if ip_adapter_image_embeds is not None:
638
+ if not isinstance(ip_adapter_image_embeds, list):
639
+ raise ValueError(
640
+ f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
641
+ )
642
+ elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
643
+ raise ValueError(
644
+ f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
645
+ )
646
+
647
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
648
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
649
+ shape = (
650
+ batch_size,
651
+ num_channels_latents,
652
+ int(height) // self.vae_scale_factor,
653
+ int(width) // self.vae_scale_factor,
654
+ )
655
+ if isinstance(generator, list) and len(generator) != batch_size:
656
+ raise ValueError(
657
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
658
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
659
+ )
660
+
661
+ if latents is None:
662
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
663
+ else:
664
+ latents = latents.to(device)
665
+
666
+ # scale the initial noise by the standard deviation required by the scheduler
667
+ latents = latents * self.scheduler.init_noise_sigma
668
+ return latents
669
+
670
+ # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
671
+ def get_guidance_scale_embedding(
672
+ self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
673
+ ) -> torch.Tensor:
674
+ """
675
+ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
676
+
677
+ Args:
678
+ w (`torch.Tensor`):
679
+ Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
680
+ embedding_dim (`int`, *optional*, defaults to 512):
681
+ Dimension of the embeddings to generate.
682
+ dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
683
+ Data type of the generated embeddings.
684
+
685
+ Returns:
686
+ `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
687
+ """
688
+ assert len(w.shape) == 1
689
+ w = w * 1000.0
690
+
691
+ half_dim = embedding_dim // 2
692
+ emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
693
+ emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
694
+ emb = w.to(dtype)[:, None] * emb[None, :]
695
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
696
+ if embedding_dim % 2 == 1: # zero pad
697
+ emb = torch.nn.functional.pad(emb, (0, 1))
698
+ assert emb.shape == (w.shape[0], embedding_dim)
699
+ return emb
700
+
701
+ @property
702
+ def guidance_scale(self):
703
+ return self._guidance_scale
704
+
705
+ @property
706
+ def guidance_rescale(self):
707
+ return self._guidance_rescale
708
+
709
+ @property
710
+ def clip_skip(self):
711
+ return self._clip_skip
712
+
713
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
714
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
715
+ # corresponds to doing no classifier free guidance.
716
+ @property
717
+ def do_classifier_free_guidance(self):
718
+ return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
719
+
720
+ @property
721
+ def cross_attention_kwargs(self):
722
+ return self._cross_attention_kwargs
723
+
724
+ @property
725
+ def num_timesteps(self):
726
+ return self._num_timesteps
727
+
728
+ @property
729
+ def interrupt(self):
730
+ return self._interrupt
731
+
732
+ @torch.no_grad()
733
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
734
+ def __call__(
735
+ self,
736
+ prompt: Union[str, List[str]] = None,
737
+ height: Optional[int] = None,
738
+ width: Optional[int] = None,
739
+ num_inference_steps: int = 50,
740
+ timesteps: List[int] = None,
741
+ sigmas: List[float] = None,
742
+ guidance_scale: float = 7.5,
743
+ negative_prompt: Optional[Union[str, List[str]]] = None,
744
+ num_images_per_prompt: Optional[int] = 1,
745
+ eta: float = 0.0,
746
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
747
+ latents: Optional[torch.Tensor] = None,
748
+ prompt_embeds: Optional[torch.Tensor] = None,
749
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
750
+ ip_adapter_image: Optional[PipelineImageInput] = None,
751
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
752
+ output_type: Optional[str] = "pil",
753
+ return_dict: bool = True,
754
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
755
+ guidance_rescale: float = 0.0,
756
+ clip_skip: Optional[int] = None,
757
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
758
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
759
+ pag_scale: float = 3.0,
760
+ pag_adaptive_scale: float = 0.0,
761
+ ):
762
+ r"""
763
+ The call function to the pipeline for generation.
764
+
765
+ Args:
766
+ prompt (`str` or `List[str]`, *optional*):
767
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
768
+ height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
769
+ The height in pixels of the generated image.
770
+ width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
771
+ The width in pixels of the generated image.
772
+ num_inference_steps (`int`, *optional*, defaults to 50):
773
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
774
+ expense of slower inference.
775
+ timesteps (`List[int]`, *optional*):
776
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
777
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
778
+ passed will be used. Must be in descending order.
779
+ sigmas (`List[float]`, *optional*):
780
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
781
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
782
+ will be used.
783
+ guidance_scale (`float`, *optional*, defaults to 7.5):
784
+ A higher guidance scale value encourages the model to generate images closely linked to the text
785
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
786
+ negative_prompt (`str` or `List[str]`, *optional*):
787
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
788
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
789
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
790
+ The number of images to generate per prompt.
791
+ eta (`float`, *optional*, defaults to 0.0):
792
+ Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
793
+ to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
794
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
795
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
796
+ generation deterministic.
797
+ latents (`torch.Tensor`, *optional*):
798
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
799
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
800
+ tensor is generated by sampling using the supplied random `generator`.
801
+ prompt_embeds (`torch.Tensor`, *optional*):
802
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
803
+ provided, text embeddings are generated from the `prompt` input argument.
804
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
805
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
806
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
807
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
808
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
809
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
810
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
811
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
812
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
813
+ output_type (`str`, *optional*, defaults to `"pil"`):
814
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
815
+ return_dict (`bool`, *optional*, defaults to `True`):
816
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
817
+ plain tuple.
818
+ cross_attention_kwargs (`dict`, *optional*):
819
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
820
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
821
+ guidance_rescale (`float`, *optional*, defaults to 0.0):
822
+ Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
823
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
824
+ using zero terminal SNR.
825
+ clip_skip (`int`, *optional*):
826
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
827
+ the output of the pre-final layer will be used for computing the prompt embeddings.
828
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
829
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
830
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
831
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
832
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
833
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
834
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
835
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
836
+ `._callback_tensor_inputs` attribute of your pipeline class.
837
+ pag_scale (`float`, *optional*, defaults to 3.0):
838
+ The scale factor for the perturbed attention guidance. If it is set to 0.0, the perturbed attention
839
+ guidance will not be used.
840
+ pag_adaptive_scale (`float`, *optional*, defaults to 0.0):
841
+ The adaptive scale factor for the perturbed attention guidance. If it is set to 0.0, `pag_scale` is
842
+ used.
843
+
844
+ Examples:
845
+
846
+ Returns:
847
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
848
+ If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
849
+ otherwise a `tuple` is returned where the first element is a list with the generated images and the
850
+ second element is a list of `bool`s indicating whether the corresponding generated image contains
851
+ "not-safe-for-work" (nsfw) content.
852
+ """
853
+
854
+ # 0. Default height and width to unet
855
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
856
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
857
+ # to deal with lora scaling and other possible forward hooks
858
+
859
+ # 1. Check inputs. Raise error if not correct
860
+ self.check_inputs(
861
+ prompt,
862
+ height,
863
+ width,
864
+ None,
865
+ negative_prompt,
866
+ prompt_embeds,
867
+ negative_prompt_embeds,
868
+ ip_adapter_image,
869
+ ip_adapter_image_embeds,
870
+ callback_on_step_end_tensor_inputs,
871
+ )
872
+
873
+ self._guidance_scale = guidance_scale
874
+ self._guidance_rescale = guidance_rescale
875
+ self._clip_skip = clip_skip
876
+ self._cross_attention_kwargs = cross_attention_kwargs
877
+ self._interrupt = False
878
+ self._pag_scale = pag_scale
879
+ self._pag_adaptive_scale = pag_adaptive_scale
880
+
881
+ # 2. Define call parameters
882
+ if prompt is not None and isinstance(prompt, str):
883
+ batch_size = 1
884
+ elif prompt is not None and isinstance(prompt, list):
885
+ batch_size = len(prompt)
886
+ else:
887
+ batch_size = prompt_embeds.shape[0]
888
+
889
+ device = self._execution_device
890
+
891
+ # 3. Encode input prompt
892
+ lora_scale = (
893
+ self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
894
+ )
895
+
896
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
897
+ prompt,
898
+ device,
899
+ num_images_per_prompt,
900
+ self.do_classifier_free_guidance,
901
+ negative_prompt,
902
+ prompt_embeds=prompt_embeds,
903
+ negative_prompt_embeds=negative_prompt_embeds,
904
+ lora_scale=lora_scale,
905
+ clip_skip=self.clip_skip,
906
+ )
907
+
908
+ # For classifier free guidance, we need to do two forward passes.
909
+ # Here we concatenate the unconditional and text embeddings into a single batch
910
+ # to avoid doing two forward passes
911
+ if self.do_perturbed_attention_guidance:
912
+ prompt_embeds = self._prepare_perturbed_attention_guidance(
913
+ prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance
914
+ )
915
+ elif self.do_classifier_free_guidance:
916
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
917
+
918
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
919
+ ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds(
920
+ ip_adapter_image,
921
+ ip_adapter_image_embeds,
922
+ device,
923
+ batch_size * num_images_per_prompt,
924
+ self.do_classifier_free_guidance,
925
+ )
926
+
927
+ for i, image_embeds in enumerate(ip_adapter_image_embeds):
928
+ negative_image_embeds = None
929
+ if self.do_classifier_free_guidance:
930
+ negative_image_embeds, image_embeds = image_embeds.chunk(2)
931
+ if self.do_perturbed_attention_guidance:
932
+ image_embeds = self._prepare_perturbed_attention_guidance(
933
+ image_embeds, negative_image_embeds, self.do_classifier_free_guidance
934
+ )
935
+
936
+ elif self.do_classifier_free_guidance:
937
+ image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0)
938
+ image_embeds = image_embeds.to(device)
939
+ ip_adapter_image_embeds[i] = image_embeds
940
+
941
+ # 4. Prepare timesteps
942
+ timesteps, num_inference_steps = retrieve_timesteps(
943
+ self.scheduler, num_inference_steps, device, timesteps, sigmas
944
+ )
945
+
946
+ # 5. Prepare latent variables
947
+ num_channels_latents = self.unet.config.in_channels
948
+ latents = self.prepare_latents(
949
+ batch_size * num_images_per_prompt,
950
+ num_channels_latents,
951
+ height,
952
+ width,
953
+ prompt_embeds.dtype,
954
+ device,
955
+ generator,
956
+ latents,
957
+ )
958
+
959
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
960
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
961
+
962
+ # 6.1 Add image embeds for IP-Adapter
963
+ added_cond_kwargs = (
964
+ {"image_embeds": ip_adapter_image_embeds}
965
+ if (ip_adapter_image is not None or ip_adapter_image_embeds is not None)
966
+ else None
967
+ )
968
+
969
+ # 6.2 Optionally get Guidance Scale Embedding
970
+ timestep_cond = None
971
+ if self.unet.config.time_cond_proj_dim is not None:
972
+ guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
973
+ timestep_cond = self.get_guidance_scale_embedding(
974
+ guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
975
+ ).to(device=device, dtype=latents.dtype)
976
+
977
+ # 7. Denoising loop
978
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
979
+ if self.do_perturbed_attention_guidance:
980
+ original_attn_proc = self.unet.attn_processors
981
+ self._set_pag_attn_processor(
982
+ pag_applied_layers=self.pag_applied_layers,
983
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
984
+ )
985
+ self._num_timesteps = len(timesteps)
986
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
987
+ for i, t in enumerate(timesteps):
988
+ if self.interrupt:
989
+ continue
990
+
991
+ # expand the latents if we are doing classifier free guidance
992
+ latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0]))
993
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
994
+
995
+ # predict the noise residual
996
+ noise_pred = self.unet(
997
+ latent_model_input,
998
+ t,
999
+ encoder_hidden_states=prompt_embeds,
1000
+ timestep_cond=timestep_cond,
1001
+ cross_attention_kwargs=self.cross_attention_kwargs,
1002
+ added_cond_kwargs=added_cond_kwargs,
1003
+ return_dict=False,
1004
+ )[0]
1005
+
1006
+ # perform guidance
1007
+ if self.do_perturbed_attention_guidance:
1008
+ noise_pred, noise_pred_text = self._apply_perturbed_attention_guidance(
1009
+ noise_pred, self.do_classifier_free_guidance, self.guidance_scale, t, True
1010
+ )
1011
+
1012
+ elif self.do_classifier_free_guidance:
1013
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1014
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
1015
+
1016
+ if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
1017
+ # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
1018
+ noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
1019
+
1020
+ # compute the previous noisy sample x_t -> x_t-1
1021
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1022
+
1023
+ if callback_on_step_end is not None:
1024
+ callback_kwargs = {}
1025
+ for k in callback_on_step_end_tensor_inputs:
1026
+ callback_kwargs[k] = locals()[k]
1027
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1028
+
1029
+ latents = callback_outputs.pop("latents", latents)
1030
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1031
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1032
+
1033
+ # call the callback, if provided
1034
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1035
+ progress_bar.update()
1036
+
1037
+ if not output_type == "latent":
1038
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
1039
+ 0
1040
+ ]
1041
+ image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
1042
+ else:
1043
+ image = latents
1044
+ has_nsfw_concept = None
1045
+
1046
+ if has_nsfw_concept is None:
1047
+ do_denormalize = [True] * image.shape[0]
1048
+ else:
1049
+ do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
1050
+
1051
+ image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
1052
+
1053
+ # Offload all models
1054
+ self.maybe_free_model_hooks()
1055
+
1056
+ if self.do_perturbed_attention_guidance:
1057
+ self.unet.set_attn_processor(original_attn_proc)
1058
+
1059
+ if not return_dict:
1060
+ return (image, has_nsfw_concept)
1061
+
1062
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)