diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,492 @@
1
+ # Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ from typing import List, Optional, Union
17
+
18
+ import torch
19
+ from PIL import Image
20
+ from transformers import (
21
+ CLIPTextModel,
22
+ CLIPTokenizer,
23
+ SiglipImageProcessor,
24
+ SiglipVisionModel,
25
+ T5EncoderModel,
26
+ T5TokenizerFast,
27
+ )
28
+
29
+ from ...image_processor import PipelineImageInput
30
+ from ...loaders import FluxLoraLoaderMixin, TextualInversionLoaderMixin
31
+ from ...utils import (
32
+ USE_PEFT_BACKEND,
33
+ is_torch_xla_available,
34
+ logging,
35
+ replace_example_docstring,
36
+ scale_lora_layers,
37
+ unscale_lora_layers,
38
+ )
39
+ from ..pipeline_utils import DiffusionPipeline
40
+ from .modeling_flux import ReduxImageEncoder
41
+ from .pipeline_output import FluxPriorReduxPipelineOutput
42
+
43
+
44
+ if is_torch_xla_available():
45
+ XLA_AVAILABLE = True
46
+ else:
47
+ XLA_AVAILABLE = False
48
+
49
+
50
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
51
+
52
+ EXAMPLE_DOC_STRING = """
53
+ Examples:
54
+ ```py
55
+ >>> import torch
56
+ >>> from diffusers import FluxPriorReduxPipeline, FluxPipeline
57
+ >>> from diffusers.utils import load_image
58
+
59
+ >>> device = "cuda"
60
+ >>> dtype = torch.bfloat16
61
+
62
+ >>> repo_redux = "black-forest-labs/FLUX.1-Redux-dev"
63
+ >>> repo_base = "black-forest-labs/FLUX.1-dev"
64
+ >>> pipe_prior_redux = FluxPriorReduxPipeline.from_pretrained(repo_redux, torch_dtype=dtype).to(device)
65
+ >>> pipe = FluxPipeline.from_pretrained(
66
+ ... repo_base, text_encoder=None, text_encoder_2=None, torch_dtype=torch.bfloat16
67
+ ... ).to(device)
68
+
69
+ >>> image = load_image(
70
+ ... "https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/style_ziggy/img5.png"
71
+ ... )
72
+ >>> pipe_prior_output = pipe_prior_redux(image)
73
+ >>> images = pipe(
74
+ ... guidance_scale=2.5,
75
+ ... num_inference_steps=50,
76
+ ... generator=torch.Generator("cpu").manual_seed(0),
77
+ ... **pipe_prior_output,
78
+ ... ).images
79
+ >>> images[0].save("flux-redux.png")
80
+ ```
81
+ """
82
+
83
+
84
+ class FluxPriorReduxPipeline(DiffusionPipeline):
85
+ r"""
86
+ The Flux Redux pipeline for image-to-image generation.
87
+
88
+ Reference: https://blackforestlabs.ai/flux-1-tools/
89
+
90
+ Args:
91
+ image_encoder ([`SiglipVisionModel`]):
92
+ SIGLIP vision model to encode the input image.
93
+ feature_extractor ([`SiglipImageProcessor`]):
94
+ Image processor for preprocessing images for the SIGLIP model.
95
+ image_embedder ([`ReduxImageEncoder`]):
96
+ Redux image encoder to process the SIGLIP embeddings.
97
+ text_encoder ([`CLIPTextModel`], *optional*):
98
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
99
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
100
+ text_encoder_2 ([`T5EncoderModel`], *optional*):
101
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
102
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
103
+ tokenizer (`CLIPTokenizer`, *optional*):
104
+ Tokenizer of class
105
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
106
+ tokenizer_2 (`T5TokenizerFast`, *optional*):
107
+ Second Tokenizer of class
108
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
109
+ """
110
+
111
+ model_cpu_offload_seq = "image_encoder->image_embedder"
112
+ _optional_components = [
113
+ "text_encoder",
114
+ "tokenizer",
115
+ "text_encoder_2",
116
+ "tokenizer_2",
117
+ ]
118
+ _callback_tensor_inputs = []
119
+
120
+ def __init__(
121
+ self,
122
+ image_encoder: SiglipVisionModel,
123
+ feature_extractor: SiglipImageProcessor,
124
+ image_embedder: ReduxImageEncoder,
125
+ text_encoder: CLIPTextModel = None,
126
+ tokenizer: CLIPTokenizer = None,
127
+ text_encoder_2: T5EncoderModel = None,
128
+ tokenizer_2: T5TokenizerFast = None,
129
+ ):
130
+ super().__init__()
131
+
132
+ self.register_modules(
133
+ image_encoder=image_encoder,
134
+ feature_extractor=feature_extractor,
135
+ image_embedder=image_embedder,
136
+ text_encoder=text_encoder,
137
+ tokenizer=tokenizer,
138
+ text_encoder_2=text_encoder_2,
139
+ tokenizer_2=tokenizer_2,
140
+ )
141
+ self.tokenizer_max_length = (
142
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
143
+ )
144
+
145
+ def check_inputs(
146
+ self,
147
+ image,
148
+ prompt,
149
+ prompt_2,
150
+ prompt_embeds=None,
151
+ pooled_prompt_embeds=None,
152
+ prompt_embeds_scale=1.0,
153
+ pooled_prompt_embeds_scale=1.0,
154
+ ):
155
+ if prompt is not None and prompt_embeds is not None:
156
+ raise ValueError(
157
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
158
+ " only forward one of the two."
159
+ )
160
+ elif prompt_2 is not None and prompt_embeds is not None:
161
+ raise ValueError(
162
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
163
+ " only forward one of the two."
164
+ )
165
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
166
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
167
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
168
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
169
+ if prompt is not None and (isinstance(prompt, list) and isinstance(image, list) and len(prompt) != len(image)):
170
+ raise ValueError(
171
+ f"number of prompts must be equal to number of images, but {len(prompt)} prompts were provided and {len(image)} images"
172
+ )
173
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
174
+ raise ValueError(
175
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
176
+ )
177
+ if isinstance(prompt_embeds_scale, list) and (
178
+ isinstance(image, list) and len(prompt_embeds_scale) != len(image)
179
+ ):
180
+ raise ValueError(
181
+ f"number of weights must be equal to number of images, but {len(prompt_embeds_scale)} weights were provided and {len(image)} images"
182
+ )
183
+
184
+ def encode_image(self, image, device, num_images_per_prompt):
185
+ dtype = next(self.image_encoder.parameters()).dtype
186
+ image = self.feature_extractor.preprocess(
187
+ images=image, do_resize=True, return_tensors="pt", do_convert_rgb=True
188
+ )
189
+ image = image.to(device=device, dtype=dtype)
190
+
191
+ image_enc_hidden_states = self.image_encoder(**image).last_hidden_state
192
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
193
+
194
+ return image_enc_hidden_states
195
+
196
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds
197
+ def _get_t5_prompt_embeds(
198
+ self,
199
+ prompt: Union[str, List[str]] = None,
200
+ num_images_per_prompt: int = 1,
201
+ max_sequence_length: int = 512,
202
+ device: Optional[torch.device] = None,
203
+ dtype: Optional[torch.dtype] = None,
204
+ ):
205
+ device = device or self._execution_device
206
+ dtype = dtype or self.text_encoder.dtype
207
+
208
+ prompt = [prompt] if isinstance(prompt, str) else prompt
209
+ batch_size = len(prompt)
210
+
211
+ if isinstance(self, TextualInversionLoaderMixin):
212
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)
213
+
214
+ text_inputs = self.tokenizer_2(
215
+ prompt,
216
+ padding="max_length",
217
+ max_length=max_sequence_length,
218
+ truncation=True,
219
+ return_length=False,
220
+ return_overflowing_tokens=False,
221
+ return_tensors="pt",
222
+ )
223
+ text_input_ids = text_inputs.input_ids
224
+ untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
225
+
226
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
227
+ removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
228
+ logger.warning(
229
+ "The following part of your input was truncated because `max_sequence_length` is set to "
230
+ f" {max_sequence_length} tokens: {removed_text}"
231
+ )
232
+
233
+ prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
234
+
235
+ dtype = self.text_encoder_2.dtype
236
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
237
+
238
+ _, seq_len, _ = prompt_embeds.shape
239
+
240
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
241
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
242
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
243
+
244
+ return prompt_embeds
245
+
246
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds
247
+ def _get_clip_prompt_embeds(
248
+ self,
249
+ prompt: Union[str, List[str]],
250
+ num_images_per_prompt: int = 1,
251
+ device: Optional[torch.device] = None,
252
+ ):
253
+ device = device or self._execution_device
254
+
255
+ prompt = [prompt] if isinstance(prompt, str) else prompt
256
+ batch_size = len(prompt)
257
+
258
+ if isinstance(self, TextualInversionLoaderMixin):
259
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
260
+
261
+ text_inputs = self.tokenizer(
262
+ prompt,
263
+ padding="max_length",
264
+ max_length=self.tokenizer_max_length,
265
+ truncation=True,
266
+ return_overflowing_tokens=False,
267
+ return_length=False,
268
+ return_tensors="pt",
269
+ )
270
+
271
+ text_input_ids = text_inputs.input_ids
272
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
273
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
274
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
275
+ logger.warning(
276
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
277
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
278
+ )
279
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
280
+
281
+ # Use pooled output of CLIPTextModel
282
+ prompt_embeds = prompt_embeds.pooler_output
283
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
284
+
285
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
286
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
287
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
288
+
289
+ return prompt_embeds
290
+
291
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt
292
+ def encode_prompt(
293
+ self,
294
+ prompt: Union[str, List[str]],
295
+ prompt_2: Union[str, List[str]],
296
+ device: Optional[torch.device] = None,
297
+ num_images_per_prompt: int = 1,
298
+ prompt_embeds: Optional[torch.FloatTensor] = None,
299
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
300
+ max_sequence_length: int = 512,
301
+ lora_scale: Optional[float] = None,
302
+ ):
303
+ r"""
304
+
305
+ Args:
306
+ prompt (`str` or `List[str]`, *optional*):
307
+ prompt to be encoded
308
+ prompt_2 (`str` or `List[str]`, *optional*):
309
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
310
+ used in all text-encoders
311
+ device: (`torch.device`):
312
+ torch device
313
+ num_images_per_prompt (`int`):
314
+ number of images that should be generated per prompt
315
+ prompt_embeds (`torch.FloatTensor`, *optional*):
316
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
317
+ provided, text embeddings will be generated from `prompt` input argument.
318
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
319
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
320
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
321
+ lora_scale (`float`, *optional*):
322
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
323
+ """
324
+ device = device or self._execution_device
325
+
326
+ # set lora scale so that monkey patched LoRA
327
+ # function of text encoder can correctly access it
328
+ if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
329
+ self._lora_scale = lora_scale
330
+
331
+ # dynamically adjust the LoRA scale
332
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
333
+ scale_lora_layers(self.text_encoder, lora_scale)
334
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
335
+ scale_lora_layers(self.text_encoder_2, lora_scale)
336
+
337
+ prompt = [prompt] if isinstance(prompt, str) else prompt
338
+
339
+ if prompt_embeds is None:
340
+ prompt_2 = prompt_2 or prompt
341
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
342
+
343
+ # We only use the pooled prompt output from the CLIPTextModel
344
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
345
+ prompt=prompt,
346
+ device=device,
347
+ num_images_per_prompt=num_images_per_prompt,
348
+ )
349
+ prompt_embeds = self._get_t5_prompt_embeds(
350
+ prompt=prompt_2,
351
+ num_images_per_prompt=num_images_per_prompt,
352
+ max_sequence_length=max_sequence_length,
353
+ device=device,
354
+ )
355
+
356
+ if self.text_encoder is not None:
357
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
358
+ # Retrieve the original scale by scaling back the LoRA layers
359
+ unscale_lora_layers(self.text_encoder, lora_scale)
360
+
361
+ if self.text_encoder_2 is not None:
362
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
363
+ # Retrieve the original scale by scaling back the LoRA layers
364
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
365
+
366
+ dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
367
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
368
+
369
+ return prompt_embeds, pooled_prompt_embeds, text_ids
370
+
371
+ @torch.no_grad()
372
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
373
+ def __call__(
374
+ self,
375
+ image: PipelineImageInput,
376
+ prompt: Union[str, List[str]] = None,
377
+ prompt_2: Optional[Union[str, List[str]]] = None,
378
+ prompt_embeds: Optional[torch.FloatTensor] = None,
379
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
380
+ prompt_embeds_scale: Optional[Union[float, List[float]]] = 1.0,
381
+ pooled_prompt_embeds_scale: Optional[Union[float, List[float]]] = 1.0,
382
+ return_dict: bool = True,
383
+ ):
384
+ r"""
385
+ Function invoked when calling the pipeline for generation.
386
+
387
+ Args:
388
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
389
+ `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
390
+ numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
391
+ or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
392
+ list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)`
393
+ prompt (`str` or `List[str]`, *optional*):
394
+ The prompt or prompts to guide the image generation. **experimental feature**: to use this feature,
395
+ make sure to explicitly load text encoders to the pipeline. Prompts will be ignored if text encoders
396
+ are not loaded.
397
+ prompt_2 (`str` or `List[str]`, *optional*):
398
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`.
399
+ prompt_embeds (`torch.FloatTensor`, *optional*):
400
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
401
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
402
+ Pre-generated pooled text embeddings.
403
+ return_dict (`bool`, *optional*, defaults to `True`):
404
+ Whether or not to return a [`~pipelines.flux.FluxPriorReduxPipelineOutput`] instead of a plain tuple.
405
+
406
+ Examples:
407
+
408
+ Returns:
409
+ [`~pipelines.flux.FluxPriorReduxPipelineOutput`] or `tuple`:
410
+ [`~pipelines.flux.FluxPriorReduxPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When
411
+ returning a tuple, the first element is a list with the generated images.
412
+ """
413
+
414
+ # 1. Check inputs. Raise error if not correct
415
+ self.check_inputs(
416
+ image,
417
+ prompt,
418
+ prompt_2,
419
+ prompt_embeds=prompt_embeds,
420
+ pooled_prompt_embeds=pooled_prompt_embeds,
421
+ prompt_embeds_scale=prompt_embeds_scale,
422
+ pooled_prompt_embeds_scale=pooled_prompt_embeds_scale,
423
+ )
424
+
425
+ # 2. Define call parameters
426
+ if image is not None and isinstance(image, Image.Image):
427
+ batch_size = 1
428
+ elif image is not None and isinstance(image, list):
429
+ batch_size = len(image)
430
+ else:
431
+ batch_size = image.shape[0]
432
+ if prompt is not None and isinstance(prompt, str):
433
+ prompt = batch_size * [prompt]
434
+ if isinstance(prompt_embeds_scale, float):
435
+ prompt_embeds_scale = batch_size * [prompt_embeds_scale]
436
+ if isinstance(pooled_prompt_embeds_scale, float):
437
+ pooled_prompt_embeds_scale = batch_size * [pooled_prompt_embeds_scale]
438
+
439
+ device = self._execution_device
440
+
441
+ # 3. Prepare image embeddings
442
+ image_latents = self.encode_image(image, device, 1)
443
+
444
+ image_embeds = self.image_embedder(image_latents).image_embeds
445
+ image_embeds = image_embeds.to(device=device)
446
+
447
+ # 3. Prepare (dummy) text embeddings
448
+ if hasattr(self, "text_encoder") and self.text_encoder is not None:
449
+ (
450
+ prompt_embeds,
451
+ pooled_prompt_embeds,
452
+ _,
453
+ ) = self.encode_prompt(
454
+ prompt=prompt,
455
+ prompt_2=prompt_2,
456
+ prompt_embeds=prompt_embeds,
457
+ pooled_prompt_embeds=pooled_prompt_embeds,
458
+ device=device,
459
+ num_images_per_prompt=1,
460
+ max_sequence_length=512,
461
+ lora_scale=None,
462
+ )
463
+ else:
464
+ if prompt is not None:
465
+ logger.warning(
466
+ "prompt input is ignored when text encoders are not loaded to the pipeline. "
467
+ "Make sure to explicitly load the text encoders to enable prompt input. "
468
+ )
469
+ # max_sequence_length is 512, t5 encoder hidden size is 4096
470
+ prompt_embeds = torch.zeros((batch_size, 512, 4096), device=device, dtype=image_embeds.dtype)
471
+ # pooled_prompt_embeds is 768, clip text encoder hidden size
472
+ pooled_prompt_embeds = torch.zeros((batch_size, 768), device=device, dtype=image_embeds.dtype)
473
+
474
+ # scale & concatenate image and text embeddings
475
+ prompt_embeds = torch.cat([prompt_embeds, image_embeds], dim=1)
476
+
477
+ prompt_embeds *= torch.tensor(prompt_embeds_scale, device=device, dtype=image_embeds.dtype)[:, None, None]
478
+ pooled_prompt_embeds *= torch.tensor(pooled_prompt_embeds_scale, device=device, dtype=image_embeds.dtype)[
479
+ :, None
480
+ ]
481
+
482
+ # weighted sum
483
+ prompt_embeds = torch.sum(prompt_embeds, dim=0, keepdim=True)
484
+ pooled_prompt_embeds = torch.sum(pooled_prompt_embeds, dim=0, keepdim=True)
485
+
486
+ # Offload all models
487
+ self.maybe_free_model_hooks()
488
+
489
+ if not return_dict:
490
+ return (prompt_embeds, pooled_prompt_embeds)
491
+
492
+ return FluxPriorReduxPipelineOutput(prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds)
@@ -0,0 +1,37 @@
1
+ from dataclasses import dataclass
2
+ from typing import List, Union
3
+
4
+ import numpy as np
5
+ import PIL.Image
6
+ import torch
7
+
8
+ from ...utils import BaseOutput
9
+
10
+
11
+ @dataclass
12
+ class FluxPipelineOutput(BaseOutput):
13
+ """
14
+ Output class for Stable Diffusion pipelines.
15
+
16
+ Args:
17
+ images (`List[PIL.Image.Image]` or `np.ndarray`)
18
+ List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
19
+ num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
20
+ """
21
+
22
+ images: Union[List[PIL.Image.Image], np.ndarray]
23
+
24
+
25
+ @dataclass
26
+ class FluxPriorReduxPipelineOutput(BaseOutput):
27
+ """
28
+ Output class for Flux Prior Redux pipelines.
29
+
30
+ Args:
31
+ images (`List[PIL.Image.Image]` or `np.ndarray`)
32
+ List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
33
+ num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
34
+ """
35
+
36
+ prompt_embeds: torch.Tensor
37
+ pooled_prompt_embeds: torch.Tensor
@@ -41,20 +41,20 @@ class FreeInitMixin:
41
41
  num_iters (`int`, *optional*, defaults to `3`):
42
42
  Number of FreeInit noise re-initialization iterations.
43
43
  use_fast_sampling (`bool`, *optional*, defaults to `False`):
44
- Whether or not to speedup sampling procedure at the cost of probably lower quality results. Enables
45
- the "Coarse-to-Fine Sampling" strategy, as mentioned in the paper, if set to `True`.
44
+ Whether or not to speedup sampling procedure at the cost of probably lower quality results. Enables the
45
+ "Coarse-to-Fine Sampling" strategy, as mentioned in the paper, if set to `True`.
46
46
  method (`str`, *optional*, defaults to `butterworth`):
47
- Must be one of `butterworth`, `ideal` or `gaussian` to use as the filtering method for the
48
- FreeInit low pass filter.
47
+ Must be one of `butterworth`, `ideal` or `gaussian` to use as the filtering method for the FreeInit low
48
+ pass filter.
49
49
  order (`int`, *optional*, defaults to `4`):
50
50
  Order of the filter used in `butterworth` method. Larger values lead to `ideal` method behaviour
51
51
  whereas lower values lead to `gaussian` method behaviour.
52
52
  spatial_stop_frequency (`float`, *optional*, defaults to `0.25`):
53
- Normalized stop frequency for spatial dimensions. Must be between 0 to 1. Referred to as `d_s` in
54
- the original implementation.
53
+ Normalized stop frequency for spatial dimensions. Must be between 0 to 1. Referred to as `d_s` in the
54
+ original implementation.
55
55
  temporal_stop_frequency (`float`, *optional*, defaults to `0.25`):
56
- Normalized stop frequency for temporal dimensions. Must be between 0 to 1. Referred to as `d_t` in
57
- the original implementation.
56
+ Normalized stop frequency for temporal dimensions. Must be between 0 to 1. Referred to as `d_t` in the
57
+ original implementation.
58
58
  """
59
59
  self._free_init_num_iters = num_iters
60
60
  self._free_init_use_fast_sampling = use_fast_sampling
@@ -146,39 +146,42 @@ class FreeInitMixin:
146
146
  ):
147
147
  if free_init_iteration == 0:
148
148
  self._free_init_initial_noise = latents.detach().clone()
149
- return latents, self.scheduler.timesteps
150
-
151
- latent_shape = latents.shape
152
-
153
- free_init_filter_shape = (1, *latent_shape[1:])
154
- free_init_freq_filter = self._get_free_init_freq_filter(
155
- shape=free_init_filter_shape,
156
- device=device,
157
- filter_type=self._free_init_method,
158
- order=self._free_init_order,
159
- spatial_stop_frequency=self._free_init_spatial_stop_frequency,
160
- temporal_stop_frequency=self._free_init_temporal_stop_frequency,
161
- )
162
-
163
- current_diffuse_timestep = self.scheduler.config.num_train_timesteps - 1
164
- diffuse_timesteps = torch.full((latent_shape[0],), current_diffuse_timestep).long()
165
-
166
- z_t = self.scheduler.add_noise(
167
- original_samples=latents, noise=self._free_init_initial_noise, timesteps=diffuse_timesteps.to(device)
168
- ).to(dtype=torch.float32)
169
-
170
- z_rand = randn_tensor(
171
- shape=latent_shape,
172
- generator=generator,
173
- device=device,
174
- dtype=torch.float32,
175
- )
176
- latents = self._apply_freq_filter(z_t, z_rand, low_pass_filter=free_init_freq_filter)
177
- latents = latents.to(dtype)
149
+ else:
150
+ latent_shape = latents.shape
151
+
152
+ free_init_filter_shape = (1, *latent_shape[1:])
153
+ free_init_freq_filter = self._get_free_init_freq_filter(
154
+ shape=free_init_filter_shape,
155
+ device=device,
156
+ filter_type=self._free_init_method,
157
+ order=self._free_init_order,
158
+ spatial_stop_frequency=self._free_init_spatial_stop_frequency,
159
+ temporal_stop_frequency=self._free_init_temporal_stop_frequency,
160
+ )
161
+
162
+ current_diffuse_timestep = self.scheduler.config.num_train_timesteps - 1
163
+ diffuse_timesteps = torch.full((latent_shape[0],), current_diffuse_timestep).long()
164
+
165
+ z_t = self.scheduler.add_noise(
166
+ original_samples=latents, noise=self._free_init_initial_noise, timesteps=diffuse_timesteps.to(device)
167
+ ).to(dtype=torch.float32)
168
+
169
+ z_rand = randn_tensor(
170
+ shape=latent_shape,
171
+ generator=generator,
172
+ device=device,
173
+ dtype=torch.float32,
174
+ )
175
+ latents = self._apply_freq_filter(z_t, z_rand, low_pass_filter=free_init_freq_filter)
176
+ latents = latents.to(dtype)
178
177
 
179
178
  # Coarse-to-Fine Sampling for faster inference (can lead to lower quality)
180
179
  if self._free_init_use_fast_sampling:
181
- num_inference_steps = int(num_inference_steps / self._free_init_num_iters * (free_init_iteration + 1))
180
+ num_inference_steps = max(
181
+ 1, int(num_inference_steps / self._free_init_num_iters * (free_init_iteration + 1))
182
+ )
183
+
184
+ if num_inference_steps > 0:
182
185
  self.scheduler.set_timesteps(num_inference_steps, device=device)
183
186
 
184
187
  return latents, self.scheduler.timesteps