diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +50 -53
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.0.dist-info/RECORD +0 -399
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,492 @@
|
|
1
|
+
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
|
16
|
+
from typing import List, Optional, Union
|
17
|
+
|
18
|
+
import torch
|
19
|
+
from PIL import Image
|
20
|
+
from transformers import (
|
21
|
+
CLIPTextModel,
|
22
|
+
CLIPTokenizer,
|
23
|
+
SiglipImageProcessor,
|
24
|
+
SiglipVisionModel,
|
25
|
+
T5EncoderModel,
|
26
|
+
T5TokenizerFast,
|
27
|
+
)
|
28
|
+
|
29
|
+
from ...image_processor import PipelineImageInput
|
30
|
+
from ...loaders import FluxLoraLoaderMixin, TextualInversionLoaderMixin
|
31
|
+
from ...utils import (
|
32
|
+
USE_PEFT_BACKEND,
|
33
|
+
is_torch_xla_available,
|
34
|
+
logging,
|
35
|
+
replace_example_docstring,
|
36
|
+
scale_lora_layers,
|
37
|
+
unscale_lora_layers,
|
38
|
+
)
|
39
|
+
from ..pipeline_utils import DiffusionPipeline
|
40
|
+
from .modeling_flux import ReduxImageEncoder
|
41
|
+
from .pipeline_output import FluxPriorReduxPipelineOutput
|
42
|
+
|
43
|
+
|
44
|
+
if is_torch_xla_available():
|
45
|
+
XLA_AVAILABLE = True
|
46
|
+
else:
|
47
|
+
XLA_AVAILABLE = False
|
48
|
+
|
49
|
+
|
50
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
51
|
+
|
52
|
+
EXAMPLE_DOC_STRING = """
|
53
|
+
Examples:
|
54
|
+
```py
|
55
|
+
>>> import torch
|
56
|
+
>>> from diffusers import FluxPriorReduxPipeline, FluxPipeline
|
57
|
+
>>> from diffusers.utils import load_image
|
58
|
+
|
59
|
+
>>> device = "cuda"
|
60
|
+
>>> dtype = torch.bfloat16
|
61
|
+
|
62
|
+
>>> repo_redux = "black-forest-labs/FLUX.1-Redux-dev"
|
63
|
+
>>> repo_base = "black-forest-labs/FLUX.1-dev"
|
64
|
+
>>> pipe_prior_redux = FluxPriorReduxPipeline.from_pretrained(repo_redux, torch_dtype=dtype).to(device)
|
65
|
+
>>> pipe = FluxPipeline.from_pretrained(
|
66
|
+
... repo_base, text_encoder=None, text_encoder_2=None, torch_dtype=torch.bfloat16
|
67
|
+
... ).to(device)
|
68
|
+
|
69
|
+
>>> image = load_image(
|
70
|
+
... "https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/style_ziggy/img5.png"
|
71
|
+
... )
|
72
|
+
>>> pipe_prior_output = pipe_prior_redux(image)
|
73
|
+
>>> images = pipe(
|
74
|
+
... guidance_scale=2.5,
|
75
|
+
... num_inference_steps=50,
|
76
|
+
... generator=torch.Generator("cpu").manual_seed(0),
|
77
|
+
... **pipe_prior_output,
|
78
|
+
... ).images
|
79
|
+
>>> images[0].save("flux-redux.png")
|
80
|
+
```
|
81
|
+
"""
|
82
|
+
|
83
|
+
|
84
|
+
class FluxPriorReduxPipeline(DiffusionPipeline):
|
85
|
+
r"""
|
86
|
+
The Flux Redux pipeline for image-to-image generation.
|
87
|
+
|
88
|
+
Reference: https://blackforestlabs.ai/flux-1-tools/
|
89
|
+
|
90
|
+
Args:
|
91
|
+
image_encoder ([`SiglipVisionModel`]):
|
92
|
+
SIGLIP vision model to encode the input image.
|
93
|
+
feature_extractor ([`SiglipImageProcessor`]):
|
94
|
+
Image processor for preprocessing images for the SIGLIP model.
|
95
|
+
image_embedder ([`ReduxImageEncoder`]):
|
96
|
+
Redux image encoder to process the SIGLIP embeddings.
|
97
|
+
text_encoder ([`CLIPTextModel`], *optional*):
|
98
|
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
99
|
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
100
|
+
text_encoder_2 ([`T5EncoderModel`], *optional*):
|
101
|
+
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
|
102
|
+
the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
|
103
|
+
tokenizer (`CLIPTokenizer`, *optional*):
|
104
|
+
Tokenizer of class
|
105
|
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
|
106
|
+
tokenizer_2 (`T5TokenizerFast`, *optional*):
|
107
|
+
Second Tokenizer of class
|
108
|
+
[T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
|
109
|
+
"""
|
110
|
+
|
111
|
+
model_cpu_offload_seq = "image_encoder->image_embedder"
|
112
|
+
_optional_components = [
|
113
|
+
"text_encoder",
|
114
|
+
"tokenizer",
|
115
|
+
"text_encoder_2",
|
116
|
+
"tokenizer_2",
|
117
|
+
]
|
118
|
+
_callback_tensor_inputs = []
|
119
|
+
|
120
|
+
def __init__(
|
121
|
+
self,
|
122
|
+
image_encoder: SiglipVisionModel,
|
123
|
+
feature_extractor: SiglipImageProcessor,
|
124
|
+
image_embedder: ReduxImageEncoder,
|
125
|
+
text_encoder: CLIPTextModel = None,
|
126
|
+
tokenizer: CLIPTokenizer = None,
|
127
|
+
text_encoder_2: T5EncoderModel = None,
|
128
|
+
tokenizer_2: T5TokenizerFast = None,
|
129
|
+
):
|
130
|
+
super().__init__()
|
131
|
+
|
132
|
+
self.register_modules(
|
133
|
+
image_encoder=image_encoder,
|
134
|
+
feature_extractor=feature_extractor,
|
135
|
+
image_embedder=image_embedder,
|
136
|
+
text_encoder=text_encoder,
|
137
|
+
tokenizer=tokenizer,
|
138
|
+
text_encoder_2=text_encoder_2,
|
139
|
+
tokenizer_2=tokenizer_2,
|
140
|
+
)
|
141
|
+
self.tokenizer_max_length = (
|
142
|
+
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
|
143
|
+
)
|
144
|
+
|
145
|
+
def check_inputs(
|
146
|
+
self,
|
147
|
+
image,
|
148
|
+
prompt,
|
149
|
+
prompt_2,
|
150
|
+
prompt_embeds=None,
|
151
|
+
pooled_prompt_embeds=None,
|
152
|
+
prompt_embeds_scale=1.0,
|
153
|
+
pooled_prompt_embeds_scale=1.0,
|
154
|
+
):
|
155
|
+
if prompt is not None and prompt_embeds is not None:
|
156
|
+
raise ValueError(
|
157
|
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
158
|
+
" only forward one of the two."
|
159
|
+
)
|
160
|
+
elif prompt_2 is not None and prompt_embeds is not None:
|
161
|
+
raise ValueError(
|
162
|
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
163
|
+
" only forward one of the two."
|
164
|
+
)
|
165
|
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
166
|
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
167
|
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
168
|
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
169
|
+
if prompt is not None and (isinstance(prompt, list) and isinstance(image, list) and len(prompt) != len(image)):
|
170
|
+
raise ValueError(
|
171
|
+
f"number of prompts must be equal to number of images, but {len(prompt)} prompts were provided and {len(image)} images"
|
172
|
+
)
|
173
|
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
174
|
+
raise ValueError(
|
175
|
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
176
|
+
)
|
177
|
+
if isinstance(prompt_embeds_scale, list) and (
|
178
|
+
isinstance(image, list) and len(prompt_embeds_scale) != len(image)
|
179
|
+
):
|
180
|
+
raise ValueError(
|
181
|
+
f"number of weights must be equal to number of images, but {len(prompt_embeds_scale)} weights were provided and {len(image)} images"
|
182
|
+
)
|
183
|
+
|
184
|
+
def encode_image(self, image, device, num_images_per_prompt):
|
185
|
+
dtype = next(self.image_encoder.parameters()).dtype
|
186
|
+
image = self.feature_extractor.preprocess(
|
187
|
+
images=image, do_resize=True, return_tensors="pt", do_convert_rgb=True
|
188
|
+
)
|
189
|
+
image = image.to(device=device, dtype=dtype)
|
190
|
+
|
191
|
+
image_enc_hidden_states = self.image_encoder(**image).last_hidden_state
|
192
|
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
193
|
+
|
194
|
+
return image_enc_hidden_states
|
195
|
+
|
196
|
+
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds
|
197
|
+
def _get_t5_prompt_embeds(
|
198
|
+
self,
|
199
|
+
prompt: Union[str, List[str]] = None,
|
200
|
+
num_images_per_prompt: int = 1,
|
201
|
+
max_sequence_length: int = 512,
|
202
|
+
device: Optional[torch.device] = None,
|
203
|
+
dtype: Optional[torch.dtype] = None,
|
204
|
+
):
|
205
|
+
device = device or self._execution_device
|
206
|
+
dtype = dtype or self.text_encoder.dtype
|
207
|
+
|
208
|
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
209
|
+
batch_size = len(prompt)
|
210
|
+
|
211
|
+
if isinstance(self, TextualInversionLoaderMixin):
|
212
|
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)
|
213
|
+
|
214
|
+
text_inputs = self.tokenizer_2(
|
215
|
+
prompt,
|
216
|
+
padding="max_length",
|
217
|
+
max_length=max_sequence_length,
|
218
|
+
truncation=True,
|
219
|
+
return_length=False,
|
220
|
+
return_overflowing_tokens=False,
|
221
|
+
return_tensors="pt",
|
222
|
+
)
|
223
|
+
text_input_ids = text_inputs.input_ids
|
224
|
+
untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
|
225
|
+
|
226
|
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
227
|
+
removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
228
|
+
logger.warning(
|
229
|
+
"The following part of your input was truncated because `max_sequence_length` is set to "
|
230
|
+
f" {max_sequence_length} tokens: {removed_text}"
|
231
|
+
)
|
232
|
+
|
233
|
+
prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
|
234
|
+
|
235
|
+
dtype = self.text_encoder_2.dtype
|
236
|
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
237
|
+
|
238
|
+
_, seq_len, _ = prompt_embeds.shape
|
239
|
+
|
240
|
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
241
|
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
242
|
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
243
|
+
|
244
|
+
return prompt_embeds
|
245
|
+
|
246
|
+
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds
|
247
|
+
def _get_clip_prompt_embeds(
|
248
|
+
self,
|
249
|
+
prompt: Union[str, List[str]],
|
250
|
+
num_images_per_prompt: int = 1,
|
251
|
+
device: Optional[torch.device] = None,
|
252
|
+
):
|
253
|
+
device = device or self._execution_device
|
254
|
+
|
255
|
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
256
|
+
batch_size = len(prompt)
|
257
|
+
|
258
|
+
if isinstance(self, TextualInversionLoaderMixin):
|
259
|
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
260
|
+
|
261
|
+
text_inputs = self.tokenizer(
|
262
|
+
prompt,
|
263
|
+
padding="max_length",
|
264
|
+
max_length=self.tokenizer_max_length,
|
265
|
+
truncation=True,
|
266
|
+
return_overflowing_tokens=False,
|
267
|
+
return_length=False,
|
268
|
+
return_tensors="pt",
|
269
|
+
)
|
270
|
+
|
271
|
+
text_input_ids = text_inputs.input_ids
|
272
|
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
273
|
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
274
|
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
275
|
+
logger.warning(
|
276
|
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
277
|
+
f" {self.tokenizer_max_length} tokens: {removed_text}"
|
278
|
+
)
|
279
|
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
|
280
|
+
|
281
|
+
# Use pooled output of CLIPTextModel
|
282
|
+
prompt_embeds = prompt_embeds.pooler_output
|
283
|
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
284
|
+
|
285
|
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
286
|
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
|
287
|
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
288
|
+
|
289
|
+
return prompt_embeds
|
290
|
+
|
291
|
+
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt
|
292
|
+
def encode_prompt(
|
293
|
+
self,
|
294
|
+
prompt: Union[str, List[str]],
|
295
|
+
prompt_2: Union[str, List[str]],
|
296
|
+
device: Optional[torch.device] = None,
|
297
|
+
num_images_per_prompt: int = 1,
|
298
|
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
299
|
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
300
|
+
max_sequence_length: int = 512,
|
301
|
+
lora_scale: Optional[float] = None,
|
302
|
+
):
|
303
|
+
r"""
|
304
|
+
|
305
|
+
Args:
|
306
|
+
prompt (`str` or `List[str]`, *optional*):
|
307
|
+
prompt to be encoded
|
308
|
+
prompt_2 (`str` or `List[str]`, *optional*):
|
309
|
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
310
|
+
used in all text-encoders
|
311
|
+
device: (`torch.device`):
|
312
|
+
torch device
|
313
|
+
num_images_per_prompt (`int`):
|
314
|
+
number of images that should be generated per prompt
|
315
|
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
316
|
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
317
|
+
provided, text embeddings will be generated from `prompt` input argument.
|
318
|
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
319
|
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
320
|
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
321
|
+
lora_scale (`float`, *optional*):
|
322
|
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
323
|
+
"""
|
324
|
+
device = device or self._execution_device
|
325
|
+
|
326
|
+
# set lora scale so that monkey patched LoRA
|
327
|
+
# function of text encoder can correctly access it
|
328
|
+
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
|
329
|
+
self._lora_scale = lora_scale
|
330
|
+
|
331
|
+
# dynamically adjust the LoRA scale
|
332
|
+
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
333
|
+
scale_lora_layers(self.text_encoder, lora_scale)
|
334
|
+
if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
|
335
|
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
336
|
+
|
337
|
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
338
|
+
|
339
|
+
if prompt_embeds is None:
|
340
|
+
prompt_2 = prompt_2 or prompt
|
341
|
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
342
|
+
|
343
|
+
# We only use the pooled prompt output from the CLIPTextModel
|
344
|
+
pooled_prompt_embeds = self._get_clip_prompt_embeds(
|
345
|
+
prompt=prompt,
|
346
|
+
device=device,
|
347
|
+
num_images_per_prompt=num_images_per_prompt,
|
348
|
+
)
|
349
|
+
prompt_embeds = self._get_t5_prompt_embeds(
|
350
|
+
prompt=prompt_2,
|
351
|
+
num_images_per_prompt=num_images_per_prompt,
|
352
|
+
max_sequence_length=max_sequence_length,
|
353
|
+
device=device,
|
354
|
+
)
|
355
|
+
|
356
|
+
if self.text_encoder is not None:
|
357
|
+
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
358
|
+
# Retrieve the original scale by scaling back the LoRA layers
|
359
|
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
360
|
+
|
361
|
+
if self.text_encoder_2 is not None:
|
362
|
+
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
363
|
+
# Retrieve the original scale by scaling back the LoRA layers
|
364
|
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
365
|
+
|
366
|
+
dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
|
367
|
+
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
|
368
|
+
|
369
|
+
return prompt_embeds, pooled_prompt_embeds, text_ids
|
370
|
+
|
371
|
+
@torch.no_grad()
|
372
|
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
373
|
+
def __call__(
|
374
|
+
self,
|
375
|
+
image: PipelineImageInput,
|
376
|
+
prompt: Union[str, List[str]] = None,
|
377
|
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
378
|
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
379
|
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
380
|
+
prompt_embeds_scale: Optional[Union[float, List[float]]] = 1.0,
|
381
|
+
pooled_prompt_embeds_scale: Optional[Union[float, List[float]]] = 1.0,
|
382
|
+
return_dict: bool = True,
|
383
|
+
):
|
384
|
+
r"""
|
385
|
+
Function invoked when calling the pipeline for generation.
|
386
|
+
|
387
|
+
Args:
|
388
|
+
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
389
|
+
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
|
390
|
+
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
|
391
|
+
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
|
392
|
+
list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)`
|
393
|
+
prompt (`str` or `List[str]`, *optional*):
|
394
|
+
The prompt or prompts to guide the image generation. **experimental feature**: to use this feature,
|
395
|
+
make sure to explicitly load text encoders to the pipeline. Prompts will be ignored if text encoders
|
396
|
+
are not loaded.
|
397
|
+
prompt_2 (`str` or `List[str]`, *optional*):
|
398
|
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`.
|
399
|
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
400
|
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
401
|
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
402
|
+
Pre-generated pooled text embeddings.
|
403
|
+
return_dict (`bool`, *optional*, defaults to `True`):
|
404
|
+
Whether or not to return a [`~pipelines.flux.FluxPriorReduxPipelineOutput`] instead of a plain tuple.
|
405
|
+
|
406
|
+
Examples:
|
407
|
+
|
408
|
+
Returns:
|
409
|
+
[`~pipelines.flux.FluxPriorReduxPipelineOutput`] or `tuple`:
|
410
|
+
[`~pipelines.flux.FluxPriorReduxPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
411
|
+
returning a tuple, the first element is a list with the generated images.
|
412
|
+
"""
|
413
|
+
|
414
|
+
# 1. Check inputs. Raise error if not correct
|
415
|
+
self.check_inputs(
|
416
|
+
image,
|
417
|
+
prompt,
|
418
|
+
prompt_2,
|
419
|
+
prompt_embeds=prompt_embeds,
|
420
|
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
421
|
+
prompt_embeds_scale=prompt_embeds_scale,
|
422
|
+
pooled_prompt_embeds_scale=pooled_prompt_embeds_scale,
|
423
|
+
)
|
424
|
+
|
425
|
+
# 2. Define call parameters
|
426
|
+
if image is not None and isinstance(image, Image.Image):
|
427
|
+
batch_size = 1
|
428
|
+
elif image is not None and isinstance(image, list):
|
429
|
+
batch_size = len(image)
|
430
|
+
else:
|
431
|
+
batch_size = image.shape[0]
|
432
|
+
if prompt is not None and isinstance(prompt, str):
|
433
|
+
prompt = batch_size * [prompt]
|
434
|
+
if isinstance(prompt_embeds_scale, float):
|
435
|
+
prompt_embeds_scale = batch_size * [prompt_embeds_scale]
|
436
|
+
if isinstance(pooled_prompt_embeds_scale, float):
|
437
|
+
pooled_prompt_embeds_scale = batch_size * [pooled_prompt_embeds_scale]
|
438
|
+
|
439
|
+
device = self._execution_device
|
440
|
+
|
441
|
+
# 3. Prepare image embeddings
|
442
|
+
image_latents = self.encode_image(image, device, 1)
|
443
|
+
|
444
|
+
image_embeds = self.image_embedder(image_latents).image_embeds
|
445
|
+
image_embeds = image_embeds.to(device=device)
|
446
|
+
|
447
|
+
# 3. Prepare (dummy) text embeddings
|
448
|
+
if hasattr(self, "text_encoder") and self.text_encoder is not None:
|
449
|
+
(
|
450
|
+
prompt_embeds,
|
451
|
+
pooled_prompt_embeds,
|
452
|
+
_,
|
453
|
+
) = self.encode_prompt(
|
454
|
+
prompt=prompt,
|
455
|
+
prompt_2=prompt_2,
|
456
|
+
prompt_embeds=prompt_embeds,
|
457
|
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
458
|
+
device=device,
|
459
|
+
num_images_per_prompt=1,
|
460
|
+
max_sequence_length=512,
|
461
|
+
lora_scale=None,
|
462
|
+
)
|
463
|
+
else:
|
464
|
+
if prompt is not None:
|
465
|
+
logger.warning(
|
466
|
+
"prompt input is ignored when text encoders are not loaded to the pipeline. "
|
467
|
+
"Make sure to explicitly load the text encoders to enable prompt input. "
|
468
|
+
)
|
469
|
+
# max_sequence_length is 512, t5 encoder hidden size is 4096
|
470
|
+
prompt_embeds = torch.zeros((batch_size, 512, 4096), device=device, dtype=image_embeds.dtype)
|
471
|
+
# pooled_prompt_embeds is 768, clip text encoder hidden size
|
472
|
+
pooled_prompt_embeds = torch.zeros((batch_size, 768), device=device, dtype=image_embeds.dtype)
|
473
|
+
|
474
|
+
# scale & concatenate image and text embeddings
|
475
|
+
prompt_embeds = torch.cat([prompt_embeds, image_embeds], dim=1)
|
476
|
+
|
477
|
+
prompt_embeds *= torch.tensor(prompt_embeds_scale, device=device, dtype=image_embeds.dtype)[:, None, None]
|
478
|
+
pooled_prompt_embeds *= torch.tensor(pooled_prompt_embeds_scale, device=device, dtype=image_embeds.dtype)[
|
479
|
+
:, None
|
480
|
+
]
|
481
|
+
|
482
|
+
# weighted sum
|
483
|
+
prompt_embeds = torch.sum(prompt_embeds, dim=0, keepdim=True)
|
484
|
+
pooled_prompt_embeds = torch.sum(pooled_prompt_embeds, dim=0, keepdim=True)
|
485
|
+
|
486
|
+
# Offload all models
|
487
|
+
self.maybe_free_model_hooks()
|
488
|
+
|
489
|
+
if not return_dict:
|
490
|
+
return (prompt_embeds, pooled_prompt_embeds)
|
491
|
+
|
492
|
+
return FluxPriorReduxPipelineOutput(prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds)
|
@@ -0,0 +1,37 @@
|
|
1
|
+
from dataclasses import dataclass
|
2
|
+
from typing import List, Union
|
3
|
+
|
4
|
+
import numpy as np
|
5
|
+
import PIL.Image
|
6
|
+
import torch
|
7
|
+
|
8
|
+
from ...utils import BaseOutput
|
9
|
+
|
10
|
+
|
11
|
+
@dataclass
|
12
|
+
class FluxPipelineOutput(BaseOutput):
|
13
|
+
"""
|
14
|
+
Output class for Stable Diffusion pipelines.
|
15
|
+
|
16
|
+
Args:
|
17
|
+
images (`List[PIL.Image.Image]` or `np.ndarray`)
|
18
|
+
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
|
19
|
+
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
|
20
|
+
"""
|
21
|
+
|
22
|
+
images: Union[List[PIL.Image.Image], np.ndarray]
|
23
|
+
|
24
|
+
|
25
|
+
@dataclass
|
26
|
+
class FluxPriorReduxPipelineOutput(BaseOutput):
|
27
|
+
"""
|
28
|
+
Output class for Flux Prior Redux pipelines.
|
29
|
+
|
30
|
+
Args:
|
31
|
+
images (`List[PIL.Image.Image]` or `np.ndarray`)
|
32
|
+
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
|
33
|
+
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
|
34
|
+
"""
|
35
|
+
|
36
|
+
prompt_embeds: torch.Tensor
|
37
|
+
pooled_prompt_embeds: torch.Tensor
|
@@ -41,20 +41,20 @@ class FreeInitMixin:
|
|
41
41
|
num_iters (`int`, *optional*, defaults to `3`):
|
42
42
|
Number of FreeInit noise re-initialization iterations.
|
43
43
|
use_fast_sampling (`bool`, *optional*, defaults to `False`):
|
44
|
-
Whether or not to speedup sampling procedure at the cost of probably lower quality results. Enables
|
45
|
-
|
44
|
+
Whether or not to speedup sampling procedure at the cost of probably lower quality results. Enables the
|
45
|
+
"Coarse-to-Fine Sampling" strategy, as mentioned in the paper, if set to `True`.
|
46
46
|
method (`str`, *optional*, defaults to `butterworth`):
|
47
|
-
Must be one of `butterworth`, `ideal` or `gaussian` to use as the filtering method for the
|
48
|
-
|
47
|
+
Must be one of `butterworth`, `ideal` or `gaussian` to use as the filtering method for the FreeInit low
|
48
|
+
pass filter.
|
49
49
|
order (`int`, *optional*, defaults to `4`):
|
50
50
|
Order of the filter used in `butterworth` method. Larger values lead to `ideal` method behaviour
|
51
51
|
whereas lower values lead to `gaussian` method behaviour.
|
52
52
|
spatial_stop_frequency (`float`, *optional*, defaults to `0.25`):
|
53
|
-
Normalized stop frequency for spatial dimensions. Must be between 0 to 1. Referred to as `d_s` in
|
54
|
-
|
53
|
+
Normalized stop frequency for spatial dimensions. Must be between 0 to 1. Referred to as `d_s` in the
|
54
|
+
original implementation.
|
55
55
|
temporal_stop_frequency (`float`, *optional*, defaults to `0.25`):
|
56
|
-
Normalized stop frequency for temporal dimensions. Must be between 0 to 1. Referred to as `d_t` in
|
57
|
-
|
56
|
+
Normalized stop frequency for temporal dimensions. Must be between 0 to 1. Referred to as `d_t` in the
|
57
|
+
original implementation.
|
58
58
|
"""
|
59
59
|
self._free_init_num_iters = num_iters
|
60
60
|
self._free_init_use_fast_sampling = use_fast_sampling
|
@@ -146,39 +146,42 @@ class FreeInitMixin:
|
|
146
146
|
):
|
147
147
|
if free_init_iteration == 0:
|
148
148
|
self._free_init_initial_noise = latents.detach().clone()
|
149
|
-
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
|
158
|
-
|
159
|
-
|
160
|
-
|
161
|
-
|
162
|
-
|
163
|
-
|
164
|
-
|
165
|
-
|
166
|
-
|
167
|
-
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
|
172
|
-
|
173
|
-
|
174
|
-
|
175
|
-
|
176
|
-
|
177
|
-
latents = latents.to(dtype)
|
149
|
+
else:
|
150
|
+
latent_shape = latents.shape
|
151
|
+
|
152
|
+
free_init_filter_shape = (1, *latent_shape[1:])
|
153
|
+
free_init_freq_filter = self._get_free_init_freq_filter(
|
154
|
+
shape=free_init_filter_shape,
|
155
|
+
device=device,
|
156
|
+
filter_type=self._free_init_method,
|
157
|
+
order=self._free_init_order,
|
158
|
+
spatial_stop_frequency=self._free_init_spatial_stop_frequency,
|
159
|
+
temporal_stop_frequency=self._free_init_temporal_stop_frequency,
|
160
|
+
)
|
161
|
+
|
162
|
+
current_diffuse_timestep = self.scheduler.config.num_train_timesteps - 1
|
163
|
+
diffuse_timesteps = torch.full((latent_shape[0],), current_diffuse_timestep).long()
|
164
|
+
|
165
|
+
z_t = self.scheduler.add_noise(
|
166
|
+
original_samples=latents, noise=self._free_init_initial_noise, timesteps=diffuse_timesteps.to(device)
|
167
|
+
).to(dtype=torch.float32)
|
168
|
+
|
169
|
+
z_rand = randn_tensor(
|
170
|
+
shape=latent_shape,
|
171
|
+
generator=generator,
|
172
|
+
device=device,
|
173
|
+
dtype=torch.float32,
|
174
|
+
)
|
175
|
+
latents = self._apply_freq_filter(z_t, z_rand, low_pass_filter=free_init_freq_filter)
|
176
|
+
latents = latents.to(dtype)
|
178
177
|
|
179
178
|
# Coarse-to-Fine Sampling for faster inference (can lead to lower quality)
|
180
179
|
if self._free_init_use_fast_sampling:
|
181
|
-
num_inference_steps =
|
180
|
+
num_inference_steps = max(
|
181
|
+
1, int(num_inference_steps / self._free_init_num_iters * (free_init_iteration + 1))
|
182
|
+
)
|
183
|
+
|
184
|
+
if num_inference_steps > 0:
|
182
185
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
183
186
|
|
184
187
|
return latents, self.scheduler.timesteps
|