diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1338 @@
1
+ # Copyright 2024 The Lightricks team and The HuggingFace Team.
2
+ # All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ from typing import Optional, Tuple, Union
17
+
18
+ import torch
19
+ import torch.nn as nn
20
+
21
+ from ...configuration_utils import ConfigMixin, register_to_config
22
+ from ...loaders import FromOriginalModelMixin
23
+ from ...utils.accelerate_utils import apply_forward_hook
24
+ from ..activations import get_activation
25
+ from ..embeddings import PixArtAlphaCombinedTimestepSizeEmbeddings
26
+ from ..modeling_outputs import AutoencoderKLOutput
27
+ from ..modeling_utils import ModelMixin
28
+ from ..normalization import RMSNorm
29
+ from .vae import DecoderOutput, DiagonalGaussianDistribution
30
+
31
+
32
+ class LTXVideoCausalConv3d(nn.Module):
33
+ def __init__(
34
+ self,
35
+ in_channels: int,
36
+ out_channels: int,
37
+ kernel_size: Union[int, Tuple[int, int, int]] = 3,
38
+ stride: Union[int, Tuple[int, int, int]] = 1,
39
+ dilation: Union[int, Tuple[int, int, int]] = 1,
40
+ groups: int = 1,
41
+ padding_mode: str = "zeros",
42
+ is_causal: bool = True,
43
+ ):
44
+ super().__init__()
45
+
46
+ self.in_channels = in_channels
47
+ self.out_channels = out_channels
48
+ self.is_causal = is_causal
49
+ self.kernel_size = kernel_size if isinstance(kernel_size, tuple) else (kernel_size, kernel_size, kernel_size)
50
+
51
+ dilation = dilation if isinstance(dilation, tuple) else (dilation, 1, 1)
52
+ stride = stride if isinstance(stride, tuple) else (stride, stride, stride)
53
+ height_pad = self.kernel_size[1] // 2
54
+ width_pad = self.kernel_size[2] // 2
55
+ padding = (0, height_pad, width_pad)
56
+
57
+ self.conv = nn.Conv3d(
58
+ in_channels,
59
+ out_channels,
60
+ self.kernel_size,
61
+ stride=stride,
62
+ dilation=dilation,
63
+ groups=groups,
64
+ padding=padding,
65
+ padding_mode=padding_mode,
66
+ )
67
+
68
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
69
+ time_kernel_size = self.kernel_size[0]
70
+
71
+ if self.is_causal:
72
+ pad_left = hidden_states[:, :, :1, :, :].repeat((1, 1, time_kernel_size - 1, 1, 1))
73
+ hidden_states = torch.concatenate([pad_left, hidden_states], dim=2)
74
+ else:
75
+ pad_left = hidden_states[:, :, :1, :, :].repeat((1, 1, (time_kernel_size - 1) // 2, 1, 1))
76
+ pad_right = hidden_states[:, :, -1:, :, :].repeat((1, 1, (time_kernel_size - 1) // 2, 1, 1))
77
+ hidden_states = torch.concatenate([pad_left, hidden_states, pad_right], dim=2)
78
+
79
+ hidden_states = self.conv(hidden_states)
80
+ return hidden_states
81
+
82
+
83
+ class LTXVideoResnetBlock3d(nn.Module):
84
+ r"""
85
+ A 3D ResNet block used in the LTXVideo model.
86
+
87
+ Args:
88
+ in_channels (`int`):
89
+ Number of input channels.
90
+ out_channels (`int`, *optional*):
91
+ Number of output channels. If None, defaults to `in_channels`.
92
+ dropout (`float`, defaults to `0.0`):
93
+ Dropout rate.
94
+ eps (`float`, defaults to `1e-6`):
95
+ Epsilon value for normalization layers.
96
+ elementwise_affine (`bool`, defaults to `False`):
97
+ Whether to enable elementwise affinity in the normalization layers.
98
+ non_linearity (`str`, defaults to `"swish"`):
99
+ Activation function to use.
100
+ conv_shortcut (bool, defaults to `False`):
101
+ Whether or not to use a convolution shortcut.
102
+ """
103
+
104
+ def __init__(
105
+ self,
106
+ in_channels: int,
107
+ out_channels: Optional[int] = None,
108
+ dropout: float = 0.0,
109
+ eps: float = 1e-6,
110
+ elementwise_affine: bool = False,
111
+ non_linearity: str = "swish",
112
+ is_causal: bool = True,
113
+ inject_noise: bool = False,
114
+ timestep_conditioning: bool = False,
115
+ ) -> None:
116
+ super().__init__()
117
+
118
+ out_channels = out_channels or in_channels
119
+
120
+ self.nonlinearity = get_activation(non_linearity)
121
+
122
+ self.norm1 = RMSNorm(in_channels, eps=1e-8, elementwise_affine=elementwise_affine)
123
+ self.conv1 = LTXVideoCausalConv3d(
124
+ in_channels=in_channels, out_channels=out_channels, kernel_size=3, is_causal=is_causal
125
+ )
126
+
127
+ self.norm2 = RMSNorm(out_channels, eps=1e-8, elementwise_affine=elementwise_affine)
128
+ self.dropout = nn.Dropout(dropout)
129
+ self.conv2 = LTXVideoCausalConv3d(
130
+ in_channels=out_channels, out_channels=out_channels, kernel_size=3, is_causal=is_causal
131
+ )
132
+
133
+ self.norm3 = None
134
+ self.conv_shortcut = None
135
+ if in_channels != out_channels:
136
+ self.norm3 = nn.LayerNorm(in_channels, eps=eps, elementwise_affine=True, bias=True)
137
+ self.conv_shortcut = LTXVideoCausalConv3d(
138
+ in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, is_causal=is_causal
139
+ )
140
+
141
+ self.per_channel_scale1 = None
142
+ self.per_channel_scale2 = None
143
+ if inject_noise:
144
+ self.per_channel_scale1 = nn.Parameter(torch.zeros(in_channels, 1, 1))
145
+ self.per_channel_scale2 = nn.Parameter(torch.zeros(in_channels, 1, 1))
146
+
147
+ self.scale_shift_table = None
148
+ if timestep_conditioning:
149
+ self.scale_shift_table = nn.Parameter(torch.randn(4, in_channels) / in_channels**0.5)
150
+
151
+ def forward(
152
+ self, inputs: torch.Tensor, temb: Optional[torch.Tensor] = None, generator: Optional[torch.Generator] = None
153
+ ) -> torch.Tensor:
154
+ hidden_states = inputs
155
+
156
+ hidden_states = self.norm1(hidden_states.movedim(1, -1)).movedim(-1, 1)
157
+
158
+ if self.scale_shift_table is not None:
159
+ temb = temb.unflatten(1, (4, -1)) + self.scale_shift_table[None, ..., None, None, None]
160
+ shift_1, scale_1, shift_2, scale_2 = temb.unbind(dim=1)
161
+ hidden_states = hidden_states * (1 + scale_1) + shift_1
162
+
163
+ hidden_states = self.nonlinearity(hidden_states)
164
+ hidden_states = self.conv1(hidden_states)
165
+
166
+ if self.per_channel_scale1 is not None:
167
+ spatial_shape = hidden_states.shape[-2:]
168
+ spatial_noise = torch.randn(
169
+ spatial_shape, generator=generator, device=hidden_states.device, dtype=hidden_states.dtype
170
+ )[None]
171
+ hidden_states = hidden_states + (spatial_noise * self.per_channel_scale1)[None, :, None, ...]
172
+
173
+ hidden_states = self.norm2(hidden_states.movedim(1, -1)).movedim(-1, 1)
174
+
175
+ if self.scale_shift_table is not None:
176
+ hidden_states = hidden_states * (1 + scale_2) + shift_2
177
+
178
+ hidden_states = self.nonlinearity(hidden_states)
179
+ hidden_states = self.dropout(hidden_states)
180
+ hidden_states = self.conv2(hidden_states)
181
+
182
+ if self.per_channel_scale2 is not None:
183
+ spatial_shape = hidden_states.shape[-2:]
184
+ spatial_noise = torch.randn(
185
+ spatial_shape, generator=generator, device=hidden_states.device, dtype=hidden_states.dtype
186
+ )[None]
187
+ hidden_states = hidden_states + (spatial_noise * self.per_channel_scale2)[None, :, None, ...]
188
+
189
+ if self.norm3 is not None:
190
+ inputs = self.norm3(inputs.movedim(1, -1)).movedim(-1, 1)
191
+
192
+ if self.conv_shortcut is not None:
193
+ inputs = self.conv_shortcut(inputs)
194
+
195
+ hidden_states = hidden_states + inputs
196
+ return hidden_states
197
+
198
+
199
+ class LTXVideoUpsampler3d(nn.Module):
200
+ def __init__(
201
+ self,
202
+ in_channels: int,
203
+ stride: Union[int, Tuple[int, int, int]] = 1,
204
+ is_causal: bool = True,
205
+ residual: bool = False,
206
+ upscale_factor: int = 1,
207
+ ) -> None:
208
+ super().__init__()
209
+
210
+ self.stride = stride if isinstance(stride, tuple) else (stride, stride, stride)
211
+ self.residual = residual
212
+ self.upscale_factor = upscale_factor
213
+
214
+ out_channels = (in_channels * stride[0] * stride[1] * stride[2]) // upscale_factor
215
+
216
+ self.conv = LTXVideoCausalConv3d(
217
+ in_channels=in_channels,
218
+ out_channels=out_channels,
219
+ kernel_size=3,
220
+ stride=1,
221
+ is_causal=is_causal,
222
+ )
223
+
224
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
225
+ batch_size, num_channels, num_frames, height, width = hidden_states.shape
226
+
227
+ if self.residual:
228
+ residual = hidden_states.reshape(
229
+ batch_size, -1, self.stride[0], self.stride[1], self.stride[2], num_frames, height, width
230
+ )
231
+ residual = residual.permute(0, 1, 5, 2, 6, 3, 7, 4).flatten(6, 7).flatten(4, 5).flatten(2, 3)
232
+ repeats = (self.stride[0] * self.stride[1] * self.stride[2]) // self.upscale_factor
233
+ residual = residual.repeat(1, repeats, 1, 1, 1)
234
+ residual = residual[:, :, self.stride[0] - 1 :]
235
+
236
+ hidden_states = self.conv(hidden_states)
237
+ hidden_states = hidden_states.reshape(
238
+ batch_size, -1, self.stride[0], self.stride[1], self.stride[2], num_frames, height, width
239
+ )
240
+ hidden_states = hidden_states.permute(0, 1, 5, 2, 6, 3, 7, 4).flatten(6, 7).flatten(4, 5).flatten(2, 3)
241
+ hidden_states = hidden_states[:, :, self.stride[0] - 1 :]
242
+
243
+ if self.residual:
244
+ hidden_states = hidden_states + residual
245
+
246
+ return hidden_states
247
+
248
+
249
+ class LTXVideoDownBlock3D(nn.Module):
250
+ r"""
251
+ Down block used in the LTXVideo model.
252
+
253
+ Args:
254
+ in_channels (`int`):
255
+ Number of input channels.
256
+ out_channels (`int`, *optional*):
257
+ Number of output channels. If None, defaults to `in_channels`.
258
+ num_layers (`int`, defaults to `1`):
259
+ Number of resnet layers.
260
+ dropout (`float`, defaults to `0.0`):
261
+ Dropout rate.
262
+ resnet_eps (`float`, defaults to `1e-6`):
263
+ Epsilon value for normalization layers.
264
+ resnet_act_fn (`str`, defaults to `"swish"`):
265
+ Activation function to use.
266
+ spatio_temporal_scale (`bool`, defaults to `True`):
267
+ Whether or not to use a downsampling layer. If not used, output dimension would be same as input dimension.
268
+ Whether or not to downsample across temporal dimension.
269
+ is_causal (`bool`, defaults to `True`):
270
+ Whether this layer behaves causally (future frames depend only on past frames) or not.
271
+ """
272
+
273
+ _supports_gradient_checkpointing = True
274
+
275
+ def __init__(
276
+ self,
277
+ in_channels: int,
278
+ out_channels: Optional[int] = None,
279
+ num_layers: int = 1,
280
+ dropout: float = 0.0,
281
+ resnet_eps: float = 1e-6,
282
+ resnet_act_fn: str = "swish",
283
+ spatio_temporal_scale: bool = True,
284
+ is_causal: bool = True,
285
+ ):
286
+ super().__init__()
287
+
288
+ out_channels = out_channels or in_channels
289
+
290
+ resnets = []
291
+ for _ in range(num_layers):
292
+ resnets.append(
293
+ LTXVideoResnetBlock3d(
294
+ in_channels=in_channels,
295
+ out_channels=in_channels,
296
+ dropout=dropout,
297
+ eps=resnet_eps,
298
+ non_linearity=resnet_act_fn,
299
+ is_causal=is_causal,
300
+ )
301
+ )
302
+ self.resnets = nn.ModuleList(resnets)
303
+
304
+ self.downsamplers = None
305
+ if spatio_temporal_scale:
306
+ self.downsamplers = nn.ModuleList(
307
+ [
308
+ LTXVideoCausalConv3d(
309
+ in_channels=in_channels,
310
+ out_channels=in_channels,
311
+ kernel_size=3,
312
+ stride=(2, 2, 2),
313
+ is_causal=is_causal,
314
+ )
315
+ ]
316
+ )
317
+
318
+ self.conv_out = None
319
+ if in_channels != out_channels:
320
+ self.conv_out = LTXVideoResnetBlock3d(
321
+ in_channels=in_channels,
322
+ out_channels=out_channels,
323
+ dropout=dropout,
324
+ eps=resnet_eps,
325
+ non_linearity=resnet_act_fn,
326
+ is_causal=is_causal,
327
+ )
328
+
329
+ self.gradient_checkpointing = False
330
+
331
+ def forward(
332
+ self,
333
+ hidden_states: torch.Tensor,
334
+ temb: Optional[torch.Tensor] = None,
335
+ generator: Optional[torch.Generator] = None,
336
+ ) -> torch.Tensor:
337
+ r"""Forward method of the `LTXDownBlock3D` class."""
338
+
339
+ for i, resnet in enumerate(self.resnets):
340
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
341
+
342
+ def create_custom_forward(module):
343
+ def create_forward(*inputs):
344
+ return module(*inputs)
345
+
346
+ return create_forward
347
+
348
+ hidden_states = torch.utils.checkpoint.checkpoint(
349
+ create_custom_forward(resnet), hidden_states, temb, generator
350
+ )
351
+ else:
352
+ hidden_states = resnet(hidden_states, temb, generator)
353
+
354
+ if self.downsamplers is not None:
355
+ for downsampler in self.downsamplers:
356
+ hidden_states = downsampler(hidden_states)
357
+
358
+ if self.conv_out is not None:
359
+ hidden_states = self.conv_out(hidden_states, temb, generator)
360
+
361
+ return hidden_states
362
+
363
+
364
+ # Adapted from diffusers.models.autoencoders.autoencoder_kl_cogvideox.CogVideoMidBlock3d
365
+ class LTXVideoMidBlock3d(nn.Module):
366
+ r"""
367
+ A middle block used in the LTXVideo model.
368
+
369
+ Args:
370
+ in_channels (`int`):
371
+ Number of input channels.
372
+ num_layers (`int`, defaults to `1`):
373
+ Number of resnet layers.
374
+ dropout (`float`, defaults to `0.0`):
375
+ Dropout rate.
376
+ resnet_eps (`float`, defaults to `1e-6`):
377
+ Epsilon value for normalization layers.
378
+ resnet_act_fn (`str`, defaults to `"swish"`):
379
+ Activation function to use.
380
+ is_causal (`bool`, defaults to `True`):
381
+ Whether this layer behaves causally (future frames depend only on past frames) or not.
382
+ """
383
+
384
+ _supports_gradient_checkpointing = True
385
+
386
+ def __init__(
387
+ self,
388
+ in_channels: int,
389
+ num_layers: int = 1,
390
+ dropout: float = 0.0,
391
+ resnet_eps: float = 1e-6,
392
+ resnet_act_fn: str = "swish",
393
+ is_causal: bool = True,
394
+ inject_noise: bool = False,
395
+ timestep_conditioning: bool = False,
396
+ ) -> None:
397
+ super().__init__()
398
+
399
+ self.time_embedder = None
400
+ if timestep_conditioning:
401
+ self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(in_channels * 4, 0)
402
+
403
+ resnets = []
404
+ for _ in range(num_layers):
405
+ resnets.append(
406
+ LTXVideoResnetBlock3d(
407
+ in_channels=in_channels,
408
+ out_channels=in_channels,
409
+ dropout=dropout,
410
+ eps=resnet_eps,
411
+ non_linearity=resnet_act_fn,
412
+ is_causal=is_causal,
413
+ inject_noise=inject_noise,
414
+ timestep_conditioning=timestep_conditioning,
415
+ )
416
+ )
417
+ self.resnets = nn.ModuleList(resnets)
418
+
419
+ self.gradient_checkpointing = False
420
+
421
+ def forward(
422
+ self,
423
+ hidden_states: torch.Tensor,
424
+ temb: Optional[torch.Tensor] = None,
425
+ generator: Optional[torch.Generator] = None,
426
+ ) -> torch.Tensor:
427
+ r"""Forward method of the `LTXMidBlock3D` class."""
428
+
429
+ if self.time_embedder is not None:
430
+ temb = self.time_embedder(
431
+ timestep=temb.flatten(),
432
+ resolution=None,
433
+ aspect_ratio=None,
434
+ batch_size=hidden_states.size(0),
435
+ hidden_dtype=hidden_states.dtype,
436
+ )
437
+ temb = temb.view(hidden_states.size(0), -1, 1, 1, 1)
438
+
439
+ for i, resnet in enumerate(self.resnets):
440
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
441
+
442
+ def create_custom_forward(module):
443
+ def create_forward(*inputs):
444
+ return module(*inputs)
445
+
446
+ return create_forward
447
+
448
+ hidden_states = torch.utils.checkpoint.checkpoint(
449
+ create_custom_forward(resnet), hidden_states, temb, generator
450
+ )
451
+ else:
452
+ hidden_states = resnet(hidden_states, temb, generator)
453
+
454
+ return hidden_states
455
+
456
+
457
+ class LTXVideoUpBlock3d(nn.Module):
458
+ r"""
459
+ Up block used in the LTXVideo model.
460
+
461
+ Args:
462
+ in_channels (`int`):
463
+ Number of input channels.
464
+ out_channels (`int`, *optional*):
465
+ Number of output channels. If None, defaults to `in_channels`.
466
+ num_layers (`int`, defaults to `1`):
467
+ Number of resnet layers.
468
+ dropout (`float`, defaults to `0.0`):
469
+ Dropout rate.
470
+ resnet_eps (`float`, defaults to `1e-6`):
471
+ Epsilon value for normalization layers.
472
+ resnet_act_fn (`str`, defaults to `"swish"`):
473
+ Activation function to use.
474
+ spatio_temporal_scale (`bool`, defaults to `True`):
475
+ Whether or not to use a downsampling layer. If not used, output dimension would be same as input dimension.
476
+ Whether or not to downsample across temporal dimension.
477
+ is_causal (`bool`, defaults to `True`):
478
+ Whether this layer behaves causally (future frames depend only on past frames) or not.
479
+ """
480
+
481
+ _supports_gradient_checkpointing = True
482
+
483
+ def __init__(
484
+ self,
485
+ in_channels: int,
486
+ out_channels: Optional[int] = None,
487
+ num_layers: int = 1,
488
+ dropout: float = 0.0,
489
+ resnet_eps: float = 1e-6,
490
+ resnet_act_fn: str = "swish",
491
+ spatio_temporal_scale: bool = True,
492
+ is_causal: bool = True,
493
+ inject_noise: bool = False,
494
+ timestep_conditioning: bool = False,
495
+ upsample_residual: bool = False,
496
+ upscale_factor: int = 1,
497
+ ):
498
+ super().__init__()
499
+
500
+ out_channels = out_channels or in_channels
501
+
502
+ self.time_embedder = None
503
+ if timestep_conditioning:
504
+ self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(in_channels * 4, 0)
505
+
506
+ self.conv_in = None
507
+ if in_channels != out_channels:
508
+ self.conv_in = LTXVideoResnetBlock3d(
509
+ in_channels=in_channels,
510
+ out_channels=out_channels,
511
+ dropout=dropout,
512
+ eps=resnet_eps,
513
+ non_linearity=resnet_act_fn,
514
+ is_causal=is_causal,
515
+ inject_noise=inject_noise,
516
+ timestep_conditioning=timestep_conditioning,
517
+ )
518
+
519
+ self.upsamplers = None
520
+ if spatio_temporal_scale:
521
+ self.upsamplers = nn.ModuleList(
522
+ [
523
+ LTXVideoUpsampler3d(
524
+ out_channels * upscale_factor,
525
+ stride=(2, 2, 2),
526
+ is_causal=is_causal,
527
+ residual=upsample_residual,
528
+ upscale_factor=upscale_factor,
529
+ )
530
+ ]
531
+ )
532
+
533
+ resnets = []
534
+ for _ in range(num_layers):
535
+ resnets.append(
536
+ LTXVideoResnetBlock3d(
537
+ in_channels=out_channels,
538
+ out_channels=out_channels,
539
+ dropout=dropout,
540
+ eps=resnet_eps,
541
+ non_linearity=resnet_act_fn,
542
+ is_causal=is_causal,
543
+ inject_noise=inject_noise,
544
+ timestep_conditioning=timestep_conditioning,
545
+ )
546
+ )
547
+ self.resnets = nn.ModuleList(resnets)
548
+
549
+ self.gradient_checkpointing = False
550
+
551
+ def forward(
552
+ self,
553
+ hidden_states: torch.Tensor,
554
+ temb: Optional[torch.Tensor] = None,
555
+ generator: Optional[torch.Generator] = None,
556
+ ) -> torch.Tensor:
557
+ if self.conv_in is not None:
558
+ hidden_states = self.conv_in(hidden_states, temb, generator)
559
+
560
+ if self.time_embedder is not None:
561
+ temb = self.time_embedder(
562
+ timestep=temb.flatten(),
563
+ resolution=None,
564
+ aspect_ratio=None,
565
+ batch_size=hidden_states.size(0),
566
+ hidden_dtype=hidden_states.dtype,
567
+ )
568
+ temb = temb.view(hidden_states.size(0), -1, 1, 1, 1)
569
+
570
+ if self.upsamplers is not None:
571
+ for upsampler in self.upsamplers:
572
+ hidden_states = upsampler(hidden_states)
573
+
574
+ for i, resnet in enumerate(self.resnets):
575
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
576
+
577
+ def create_custom_forward(module):
578
+ def create_forward(*inputs):
579
+ return module(*inputs)
580
+
581
+ return create_forward
582
+
583
+ hidden_states = torch.utils.checkpoint.checkpoint(
584
+ create_custom_forward(resnet), hidden_states, temb, generator
585
+ )
586
+ else:
587
+ hidden_states = resnet(hidden_states, temb, generator)
588
+
589
+ return hidden_states
590
+
591
+
592
+ class LTXVideoEncoder3d(nn.Module):
593
+ r"""
594
+ The `LTXVideoEncoder3d` layer of a variational autoencoder that encodes input video samples to its latent
595
+ representation.
596
+
597
+ Args:
598
+ in_channels (`int`, defaults to 3):
599
+ Number of input channels.
600
+ out_channels (`int`, defaults to 128):
601
+ Number of latent channels.
602
+ block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`):
603
+ The number of output channels for each block.
604
+ spatio_temporal_scaling (`Tuple[bool, ...], defaults to `(True, True, True, False)`:
605
+ Whether a block should contain spatio-temporal downscaling layers or not.
606
+ layers_per_block (`Tuple[int, ...]`, defaults to `(4, 3, 3, 3, 4)`):
607
+ The number of layers per block.
608
+ patch_size (`int`, defaults to `4`):
609
+ The size of spatial patches.
610
+ patch_size_t (`int`, defaults to `1`):
611
+ The size of temporal patches.
612
+ resnet_norm_eps (`float`, defaults to `1e-6`):
613
+ Epsilon value for ResNet normalization layers.
614
+ is_causal (`bool`, defaults to `True`):
615
+ Whether this layer behaves causally (future frames depend only on past frames) or not.
616
+ """
617
+
618
+ def __init__(
619
+ self,
620
+ in_channels: int = 3,
621
+ out_channels: int = 128,
622
+ block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
623
+ spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False),
624
+ layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4),
625
+ patch_size: int = 4,
626
+ patch_size_t: int = 1,
627
+ resnet_norm_eps: float = 1e-6,
628
+ is_causal: bool = True,
629
+ ):
630
+ super().__init__()
631
+
632
+ self.patch_size = patch_size
633
+ self.patch_size_t = patch_size_t
634
+ self.in_channels = in_channels * patch_size**2
635
+
636
+ output_channel = block_out_channels[0]
637
+
638
+ self.conv_in = LTXVideoCausalConv3d(
639
+ in_channels=self.in_channels,
640
+ out_channels=output_channel,
641
+ kernel_size=3,
642
+ stride=1,
643
+ is_causal=is_causal,
644
+ )
645
+
646
+ # down blocks
647
+ num_block_out_channels = len(block_out_channels)
648
+ self.down_blocks = nn.ModuleList([])
649
+ for i in range(num_block_out_channels):
650
+ input_channel = output_channel
651
+ output_channel = block_out_channels[i + 1] if i + 1 < num_block_out_channels else block_out_channels[i]
652
+
653
+ down_block = LTXVideoDownBlock3D(
654
+ in_channels=input_channel,
655
+ out_channels=output_channel,
656
+ num_layers=layers_per_block[i],
657
+ resnet_eps=resnet_norm_eps,
658
+ spatio_temporal_scale=spatio_temporal_scaling[i],
659
+ is_causal=is_causal,
660
+ )
661
+
662
+ self.down_blocks.append(down_block)
663
+
664
+ # mid block
665
+ self.mid_block = LTXVideoMidBlock3d(
666
+ in_channels=output_channel,
667
+ num_layers=layers_per_block[-1],
668
+ resnet_eps=resnet_norm_eps,
669
+ is_causal=is_causal,
670
+ )
671
+
672
+ # out
673
+ self.norm_out = RMSNorm(out_channels, eps=1e-8, elementwise_affine=False)
674
+ self.conv_act = nn.SiLU()
675
+ self.conv_out = LTXVideoCausalConv3d(
676
+ in_channels=output_channel, out_channels=out_channels + 1, kernel_size=3, stride=1, is_causal=is_causal
677
+ )
678
+
679
+ self.gradient_checkpointing = False
680
+
681
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
682
+ r"""The forward method of the `LTXVideoEncoder3d` class."""
683
+
684
+ p = self.patch_size
685
+ p_t = self.patch_size_t
686
+
687
+ batch_size, num_channels, num_frames, height, width = hidden_states.shape
688
+ post_patch_num_frames = num_frames // p_t
689
+ post_patch_height = height // p
690
+ post_patch_width = width // p
691
+
692
+ hidden_states = hidden_states.reshape(
693
+ batch_size, num_channels, post_patch_num_frames, p_t, post_patch_height, p, post_patch_width, p
694
+ )
695
+ # Thanks for driving me insane with the weird patching order :(
696
+ hidden_states = hidden_states.permute(0, 1, 3, 7, 5, 2, 4, 6).flatten(1, 4)
697
+ hidden_states = self.conv_in(hidden_states)
698
+
699
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
700
+
701
+ def create_custom_forward(module):
702
+ def create_forward(*inputs):
703
+ return module(*inputs)
704
+
705
+ return create_forward
706
+
707
+ for down_block in self.down_blocks:
708
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), hidden_states)
709
+
710
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), hidden_states)
711
+ else:
712
+ for down_block in self.down_blocks:
713
+ hidden_states = down_block(hidden_states)
714
+
715
+ hidden_states = self.mid_block(hidden_states)
716
+
717
+ hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
718
+ hidden_states = self.conv_act(hidden_states)
719
+ hidden_states = self.conv_out(hidden_states)
720
+
721
+ last_channel = hidden_states[:, -1:]
722
+ last_channel = last_channel.repeat(1, hidden_states.size(1) - 2, 1, 1, 1)
723
+ hidden_states = torch.cat([hidden_states, last_channel], dim=1)
724
+
725
+ return hidden_states
726
+
727
+
728
+ class LTXVideoDecoder3d(nn.Module):
729
+ r"""
730
+ The `LTXVideoDecoder3d` layer of a variational autoencoder that decodes its latent representation into an output
731
+ sample.
732
+
733
+ Args:
734
+ in_channels (`int`, defaults to 128):
735
+ Number of latent channels.
736
+ out_channels (`int`, defaults to 3):
737
+ Number of output channels.
738
+ block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`):
739
+ The number of output channels for each block.
740
+ spatio_temporal_scaling (`Tuple[bool, ...], defaults to `(True, True, True, False)`:
741
+ Whether a block should contain spatio-temporal upscaling layers or not.
742
+ layers_per_block (`Tuple[int, ...]`, defaults to `(4, 3, 3, 3, 4)`):
743
+ The number of layers per block.
744
+ patch_size (`int`, defaults to `4`):
745
+ The size of spatial patches.
746
+ patch_size_t (`int`, defaults to `1`):
747
+ The size of temporal patches.
748
+ resnet_norm_eps (`float`, defaults to `1e-6`):
749
+ Epsilon value for ResNet normalization layers.
750
+ is_causal (`bool`, defaults to `False`):
751
+ Whether this layer behaves causally (future frames depend only on past frames) or not.
752
+ timestep_conditioning (`bool`, defaults to `False`):
753
+ Whether to condition the model on timesteps.
754
+ """
755
+
756
+ def __init__(
757
+ self,
758
+ in_channels: int = 128,
759
+ out_channels: int = 3,
760
+ block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
761
+ spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False),
762
+ layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4),
763
+ patch_size: int = 4,
764
+ patch_size_t: int = 1,
765
+ resnet_norm_eps: float = 1e-6,
766
+ is_causal: bool = False,
767
+ inject_noise: Tuple[bool, ...] = (False, False, False, False),
768
+ timestep_conditioning: bool = False,
769
+ upsample_residual: Tuple[bool, ...] = (False, False, False, False),
770
+ upsample_factor: Tuple[bool, ...] = (1, 1, 1, 1),
771
+ ) -> None:
772
+ super().__init__()
773
+
774
+ self.patch_size = patch_size
775
+ self.patch_size_t = patch_size_t
776
+ self.out_channels = out_channels * patch_size**2
777
+
778
+ block_out_channels = tuple(reversed(block_out_channels))
779
+ spatio_temporal_scaling = tuple(reversed(spatio_temporal_scaling))
780
+ layers_per_block = tuple(reversed(layers_per_block))
781
+ inject_noise = tuple(reversed(inject_noise))
782
+ upsample_residual = tuple(reversed(upsample_residual))
783
+ upsample_factor = tuple(reversed(upsample_factor))
784
+ output_channel = block_out_channels[0]
785
+
786
+ self.conv_in = LTXVideoCausalConv3d(
787
+ in_channels=in_channels, out_channels=output_channel, kernel_size=3, stride=1, is_causal=is_causal
788
+ )
789
+
790
+ self.mid_block = LTXVideoMidBlock3d(
791
+ in_channels=output_channel,
792
+ num_layers=layers_per_block[0],
793
+ resnet_eps=resnet_norm_eps,
794
+ is_causal=is_causal,
795
+ inject_noise=inject_noise[0],
796
+ timestep_conditioning=timestep_conditioning,
797
+ )
798
+
799
+ # up blocks
800
+ num_block_out_channels = len(block_out_channels)
801
+ self.up_blocks = nn.ModuleList([])
802
+ for i in range(num_block_out_channels):
803
+ input_channel = output_channel // upsample_factor[i]
804
+ output_channel = block_out_channels[i] // upsample_factor[i]
805
+
806
+ up_block = LTXVideoUpBlock3d(
807
+ in_channels=input_channel,
808
+ out_channels=output_channel,
809
+ num_layers=layers_per_block[i + 1],
810
+ resnet_eps=resnet_norm_eps,
811
+ spatio_temporal_scale=spatio_temporal_scaling[i],
812
+ is_causal=is_causal,
813
+ inject_noise=inject_noise[i + 1],
814
+ timestep_conditioning=timestep_conditioning,
815
+ upsample_residual=upsample_residual[i],
816
+ upscale_factor=upsample_factor[i],
817
+ )
818
+
819
+ self.up_blocks.append(up_block)
820
+
821
+ # out
822
+ self.norm_out = RMSNorm(out_channels, eps=1e-8, elementwise_affine=False)
823
+ self.conv_act = nn.SiLU()
824
+ self.conv_out = LTXVideoCausalConv3d(
825
+ in_channels=output_channel, out_channels=self.out_channels, kernel_size=3, stride=1, is_causal=is_causal
826
+ )
827
+
828
+ # timestep embedding
829
+ self.time_embedder = None
830
+ self.scale_shift_table = None
831
+ if timestep_conditioning:
832
+ self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(output_channel * 2, 0)
833
+ self.scale_shift_table = nn.Parameter(torch.randn(2, output_channel) / output_channel**0.5)
834
+
835
+ self.gradient_checkpointing = False
836
+
837
+ def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor] = None) -> torch.Tensor:
838
+ hidden_states = self.conv_in(hidden_states)
839
+
840
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
841
+
842
+ def create_custom_forward(module):
843
+ def create_forward(*inputs):
844
+ return module(*inputs)
845
+
846
+ return create_forward
847
+
848
+ hidden_states = torch.utils.checkpoint.checkpoint(
849
+ create_custom_forward(self.mid_block), hidden_states, temb
850
+ )
851
+
852
+ for up_block in self.up_blocks:
853
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), hidden_states, temb)
854
+ else:
855
+ hidden_states = self.mid_block(hidden_states, temb)
856
+
857
+ for up_block in self.up_blocks:
858
+ hidden_states = up_block(hidden_states, temb)
859
+
860
+ hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
861
+
862
+ if self.time_embedder is not None:
863
+ temb = self.time_embedder(
864
+ timestep=temb.flatten(),
865
+ resolution=None,
866
+ aspect_ratio=None,
867
+ batch_size=hidden_states.size(0),
868
+ hidden_dtype=hidden_states.dtype,
869
+ )
870
+ temb = temb.view(hidden_states.size(0), -1, 1, 1, 1).unflatten(1, (2, -1))
871
+ temb = temb + self.scale_shift_table[None, ..., None, None, None]
872
+ shift, scale = temb.unbind(dim=1)
873
+ hidden_states = hidden_states * (1 + scale) + shift
874
+
875
+ hidden_states = self.conv_act(hidden_states)
876
+ hidden_states = self.conv_out(hidden_states)
877
+
878
+ p = self.patch_size
879
+ p_t = self.patch_size_t
880
+
881
+ batch_size, num_channels, num_frames, height, width = hidden_states.shape
882
+ hidden_states = hidden_states.reshape(batch_size, -1, p_t, p, p, num_frames, height, width)
883
+ hidden_states = hidden_states.permute(0, 1, 5, 2, 6, 4, 7, 3).flatten(6, 7).flatten(4, 5).flatten(2, 3)
884
+
885
+ return hidden_states
886
+
887
+
888
+ class AutoencoderKLLTXVideo(ModelMixin, ConfigMixin, FromOriginalModelMixin):
889
+ r"""
890
+ A VAE model with KL loss for encoding images into latents and decoding latent representations into images. Used in
891
+ [LTX](https://huggingface.co/Lightricks/LTX-Video).
892
+
893
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
894
+ for all models (such as downloading or saving).
895
+
896
+ Args:
897
+ in_channels (`int`, defaults to `3`):
898
+ Number of input channels.
899
+ out_channels (`int`, defaults to `3`):
900
+ Number of output channels.
901
+ latent_channels (`int`, defaults to `128`):
902
+ Number of latent channels.
903
+ block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`):
904
+ The number of output channels for each block.
905
+ spatio_temporal_scaling (`Tuple[bool, ...], defaults to `(True, True, True, False)`:
906
+ Whether a block should contain spatio-temporal downscaling or not.
907
+ layers_per_block (`Tuple[int, ...]`, defaults to `(4, 3, 3, 3, 4)`):
908
+ The number of layers per block.
909
+ patch_size (`int`, defaults to `4`):
910
+ The size of spatial patches.
911
+ patch_size_t (`int`, defaults to `1`):
912
+ The size of temporal patches.
913
+ resnet_norm_eps (`float`, defaults to `1e-6`):
914
+ Epsilon value for ResNet normalization layers.
915
+ scaling_factor (`float`, *optional*, defaults to `1.0`):
916
+ The component-wise standard deviation of the trained latent space computed using the first batch of the
917
+ training set. This is used to scale the latent space to have unit variance when training the diffusion
918
+ model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
919
+ diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
920
+ / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
921
+ Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
922
+ encoder_causal (`bool`, defaults to `True`):
923
+ Whether the encoder should behave causally (future frames depend only on past frames) or not.
924
+ decoder_causal (`bool`, defaults to `False`):
925
+ Whether the decoder should behave causally (future frames depend only on past frames) or not.
926
+ """
927
+
928
+ _supports_gradient_checkpointing = True
929
+
930
+ @register_to_config
931
+ def __init__(
932
+ self,
933
+ in_channels: int = 3,
934
+ out_channels: int = 3,
935
+ latent_channels: int = 128,
936
+ block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
937
+ decoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
938
+ layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4),
939
+ decoder_layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4),
940
+ spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False),
941
+ decoder_spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False),
942
+ decoder_inject_noise: Tuple[bool, ...] = (False, False, False, False, False),
943
+ upsample_residual: Tuple[bool, ...] = (False, False, False, False),
944
+ upsample_factor: Tuple[int, ...] = (1, 1, 1, 1),
945
+ timestep_conditioning: bool = False,
946
+ patch_size: int = 4,
947
+ patch_size_t: int = 1,
948
+ resnet_norm_eps: float = 1e-6,
949
+ scaling_factor: float = 1.0,
950
+ encoder_causal: bool = True,
951
+ decoder_causal: bool = False,
952
+ ) -> None:
953
+ super().__init__()
954
+
955
+ self.encoder = LTXVideoEncoder3d(
956
+ in_channels=in_channels,
957
+ out_channels=latent_channels,
958
+ block_out_channels=block_out_channels,
959
+ spatio_temporal_scaling=spatio_temporal_scaling,
960
+ layers_per_block=layers_per_block,
961
+ patch_size=patch_size,
962
+ patch_size_t=patch_size_t,
963
+ resnet_norm_eps=resnet_norm_eps,
964
+ is_causal=encoder_causal,
965
+ )
966
+ self.decoder = LTXVideoDecoder3d(
967
+ in_channels=latent_channels,
968
+ out_channels=out_channels,
969
+ block_out_channels=decoder_block_out_channels,
970
+ spatio_temporal_scaling=decoder_spatio_temporal_scaling,
971
+ layers_per_block=decoder_layers_per_block,
972
+ patch_size=patch_size,
973
+ patch_size_t=patch_size_t,
974
+ resnet_norm_eps=resnet_norm_eps,
975
+ is_causal=decoder_causal,
976
+ timestep_conditioning=timestep_conditioning,
977
+ inject_noise=decoder_inject_noise,
978
+ upsample_residual=upsample_residual,
979
+ upsample_factor=upsample_factor,
980
+ )
981
+
982
+ latents_mean = torch.zeros((latent_channels,), requires_grad=False)
983
+ latents_std = torch.ones((latent_channels,), requires_grad=False)
984
+ self.register_buffer("latents_mean", latents_mean, persistent=True)
985
+ self.register_buffer("latents_std", latents_std, persistent=True)
986
+
987
+ self.spatial_compression_ratio = patch_size * 2 ** sum(spatio_temporal_scaling)
988
+ self.temporal_compression_ratio = patch_size_t * 2 ** sum(spatio_temporal_scaling)
989
+
990
+ # When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension
991
+ # to perform decoding of a single video latent at a time.
992
+ self.use_slicing = False
993
+
994
+ # When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent
995
+ # frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the
996
+ # intermediate tiles together, the memory requirement can be lowered.
997
+ self.use_tiling = False
998
+
999
+ # When decoding temporally long video latents, the memory requirement is very high. By decoding latent frames
1000
+ # at a fixed frame batch size (based on `self.num_latent_frames_batch_sizes`), the memory requirement can be lowered.
1001
+ self.use_framewise_encoding = False
1002
+ self.use_framewise_decoding = False
1003
+
1004
+ # This can be configured based on the amount of GPU memory available.
1005
+ # `16` for sample frames and `2` for latent frames are sensible defaults for consumer GPUs.
1006
+ # Setting it to higher values results in higher memory usage.
1007
+ self.num_sample_frames_batch_size = 16
1008
+ self.num_latent_frames_batch_size = 2
1009
+
1010
+ # The minimal tile height and width for spatial tiling to be used
1011
+ self.tile_sample_min_height = 512
1012
+ self.tile_sample_min_width = 512
1013
+
1014
+ # The minimal distance between two spatial tiles
1015
+ self.tile_sample_stride_height = 448
1016
+ self.tile_sample_stride_width = 448
1017
+
1018
+ def _set_gradient_checkpointing(self, module, value=False):
1019
+ if isinstance(module, (LTXVideoEncoder3d, LTXVideoDecoder3d)):
1020
+ module.gradient_checkpointing = value
1021
+
1022
+ def enable_tiling(
1023
+ self,
1024
+ tile_sample_min_height: Optional[int] = None,
1025
+ tile_sample_min_width: Optional[int] = None,
1026
+ tile_sample_stride_height: Optional[float] = None,
1027
+ tile_sample_stride_width: Optional[float] = None,
1028
+ ) -> None:
1029
+ r"""
1030
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
1031
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
1032
+ processing larger images.
1033
+
1034
+ Args:
1035
+ tile_sample_min_height (`int`, *optional*):
1036
+ The minimum height required for a sample to be separated into tiles across the height dimension.
1037
+ tile_sample_min_width (`int`, *optional*):
1038
+ The minimum width required for a sample to be separated into tiles across the width dimension.
1039
+ tile_sample_stride_height (`int`, *optional*):
1040
+ The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
1041
+ no tiling artifacts produced across the height dimension.
1042
+ tile_sample_stride_width (`int`, *optional*):
1043
+ The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling
1044
+ artifacts produced across the width dimension.
1045
+ """
1046
+ self.use_tiling = True
1047
+ self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
1048
+ self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
1049
+ self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height
1050
+ self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width
1051
+
1052
+ def disable_tiling(self) -> None:
1053
+ r"""
1054
+ Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
1055
+ decoding in one step.
1056
+ """
1057
+ self.use_tiling = False
1058
+
1059
+ def enable_slicing(self) -> None:
1060
+ r"""
1061
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
1062
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
1063
+ """
1064
+ self.use_slicing = True
1065
+
1066
+ def disable_slicing(self) -> None:
1067
+ r"""
1068
+ Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
1069
+ decoding in one step.
1070
+ """
1071
+ self.use_slicing = False
1072
+
1073
+ def _encode(self, x: torch.Tensor) -> torch.Tensor:
1074
+ batch_size, num_channels, num_frames, height, width = x.shape
1075
+
1076
+ if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
1077
+ return self.tiled_encode(x)
1078
+
1079
+ if self.use_framewise_encoding:
1080
+ # TODO(aryan): requires investigation
1081
+ raise NotImplementedError(
1082
+ "Frame-wise encoding has not been implemented for AutoencoderKLLTXVideo, at the moment, due to "
1083
+ "quality issues caused by splitting inference across frame dimension. If you believe this "
1084
+ "should be possible, please submit a PR to https://github.com/huggingface/diffusers/pulls."
1085
+ )
1086
+ else:
1087
+ enc = self.encoder(x)
1088
+
1089
+ return enc
1090
+
1091
+ @apply_forward_hook
1092
+ def encode(
1093
+ self, x: torch.Tensor, return_dict: bool = True
1094
+ ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
1095
+ """
1096
+ Encode a batch of images into latents.
1097
+
1098
+ Args:
1099
+ x (`torch.Tensor`): Input batch of images.
1100
+ return_dict (`bool`, *optional*, defaults to `True`):
1101
+ Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
1102
+
1103
+ Returns:
1104
+ The latent representations of the encoded videos. If `return_dict` is True, a
1105
+ [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
1106
+ """
1107
+ if self.use_slicing and x.shape[0] > 1:
1108
+ encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
1109
+ h = torch.cat(encoded_slices)
1110
+ else:
1111
+ h = self._encode(x)
1112
+ posterior = DiagonalGaussianDistribution(h)
1113
+
1114
+ if not return_dict:
1115
+ return (posterior,)
1116
+ return AutoencoderKLOutput(latent_dist=posterior)
1117
+
1118
+ def _decode(
1119
+ self, z: torch.Tensor, temb: Optional[torch.Tensor] = None, return_dict: bool = True
1120
+ ) -> Union[DecoderOutput, torch.Tensor]:
1121
+ batch_size, num_channels, num_frames, height, width = z.shape
1122
+ tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
1123
+ tile_latent_min_width = self.tile_sample_stride_width // self.spatial_compression_ratio
1124
+
1125
+ if self.use_tiling and (width > tile_latent_min_width or height > tile_latent_min_height):
1126
+ return self.tiled_decode(z, temb, return_dict=return_dict)
1127
+
1128
+ if self.use_framewise_decoding:
1129
+ # TODO(aryan): requires investigation
1130
+ raise NotImplementedError(
1131
+ "Frame-wise decoding has not been implemented for AutoencoderKLLTXVideo, at the moment, due to "
1132
+ "quality issues caused by splitting inference across frame dimension. If you believe this "
1133
+ "should be possible, please submit a PR to https://github.com/huggingface/diffusers/pulls."
1134
+ )
1135
+ else:
1136
+ dec = self.decoder(z, temb)
1137
+
1138
+ if not return_dict:
1139
+ return (dec,)
1140
+
1141
+ return DecoderOutput(sample=dec)
1142
+
1143
+ @apply_forward_hook
1144
+ def decode(
1145
+ self, z: torch.Tensor, temb: Optional[torch.Tensor] = None, return_dict: bool = True
1146
+ ) -> Union[DecoderOutput, torch.Tensor]:
1147
+ """
1148
+ Decode a batch of images.
1149
+
1150
+ Args:
1151
+ z (`torch.Tensor`): Input batch of latent vectors.
1152
+ return_dict (`bool`, *optional*, defaults to `True`):
1153
+ Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
1154
+
1155
+ Returns:
1156
+ [`~models.vae.DecoderOutput`] or `tuple`:
1157
+ If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
1158
+ returned.
1159
+ """
1160
+ if self.use_slicing and z.shape[0] > 1:
1161
+ if temb is not None:
1162
+ decoded_slices = [
1163
+ self._decode(z_slice, t_slice).sample for z_slice, t_slice in (z.split(1), temb.split(1))
1164
+ ]
1165
+ else:
1166
+ decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
1167
+ decoded = torch.cat(decoded_slices)
1168
+ else:
1169
+ decoded = self._decode(z, temb).sample
1170
+
1171
+ if not return_dict:
1172
+ return (decoded,)
1173
+
1174
+ return DecoderOutput(sample=decoded)
1175
+
1176
+ def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
1177
+ blend_extent = min(a.shape[3], b.shape[3], blend_extent)
1178
+ for y in range(blend_extent):
1179
+ b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
1180
+ y / blend_extent
1181
+ )
1182
+ return b
1183
+
1184
+ def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
1185
+ blend_extent = min(a.shape[4], b.shape[4], blend_extent)
1186
+ for x in range(blend_extent):
1187
+ b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
1188
+ x / blend_extent
1189
+ )
1190
+ return b
1191
+
1192
+ def tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
1193
+ r"""Encode a batch of images using a tiled encoder.
1194
+
1195
+ Args:
1196
+ x (`torch.Tensor`): Input batch of videos.
1197
+
1198
+ Returns:
1199
+ `torch.Tensor`:
1200
+ The latent representation of the encoded videos.
1201
+ """
1202
+ batch_size, num_channels, num_frames, height, width = x.shape
1203
+ latent_height = height // self.spatial_compression_ratio
1204
+ latent_width = width // self.spatial_compression_ratio
1205
+
1206
+ tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
1207
+ tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
1208
+ tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
1209
+ tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
1210
+
1211
+ blend_height = tile_latent_min_height - tile_latent_stride_height
1212
+ blend_width = tile_latent_min_width - tile_latent_stride_width
1213
+
1214
+ # Split x into overlapping tiles and encode them separately.
1215
+ # The tiles have an overlap to avoid seams between tiles.
1216
+ rows = []
1217
+ for i in range(0, height, self.tile_sample_stride_height):
1218
+ row = []
1219
+ for j in range(0, width, self.tile_sample_stride_width):
1220
+ if self.use_framewise_encoding:
1221
+ # TODO(aryan): requires investigation
1222
+ raise NotImplementedError(
1223
+ "Frame-wise encoding has not been implemented for AutoencoderKLLTXVideo, at the moment, due to "
1224
+ "quality issues caused by splitting inference across frame dimension. If you believe this "
1225
+ "should be possible, please submit a PR to https://github.com/huggingface/diffusers/pulls."
1226
+ )
1227
+ else:
1228
+ time = self.encoder(
1229
+ x[:, :, :, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width]
1230
+ )
1231
+
1232
+ row.append(time)
1233
+ rows.append(row)
1234
+
1235
+ result_rows = []
1236
+ for i, row in enumerate(rows):
1237
+ result_row = []
1238
+ for j, tile in enumerate(row):
1239
+ # blend the above tile and the left tile
1240
+ # to the current tile and add the current tile to the result row
1241
+ if i > 0:
1242
+ tile = self.blend_v(rows[i - 1][j], tile, blend_height)
1243
+ if j > 0:
1244
+ tile = self.blend_h(row[j - 1], tile, blend_width)
1245
+ result_row.append(tile[:, :, :, :tile_latent_stride_height, :tile_latent_stride_width])
1246
+ result_rows.append(torch.cat(result_row, dim=4))
1247
+
1248
+ enc = torch.cat(result_rows, dim=3)[:, :, :, :latent_height, :latent_width]
1249
+ return enc
1250
+
1251
+ def tiled_decode(
1252
+ self, z: torch.Tensor, temb: Optional[torch.Tensor], return_dict: bool = True
1253
+ ) -> Union[DecoderOutput, torch.Tensor]:
1254
+ r"""
1255
+ Decode a batch of images using a tiled decoder.
1256
+
1257
+ Args:
1258
+ z (`torch.Tensor`): Input batch of latent vectors.
1259
+ return_dict (`bool`, *optional*, defaults to `True`):
1260
+ Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
1261
+
1262
+ Returns:
1263
+ [`~models.vae.DecoderOutput`] or `tuple`:
1264
+ If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
1265
+ returned.
1266
+ """
1267
+
1268
+ batch_size, num_channels, num_frames, height, width = z.shape
1269
+ sample_height = height * self.spatial_compression_ratio
1270
+ sample_width = width * self.spatial_compression_ratio
1271
+
1272
+ tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
1273
+ tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
1274
+ tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
1275
+ tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
1276
+
1277
+ blend_height = self.tile_sample_min_height - self.tile_sample_stride_height
1278
+ blend_width = self.tile_sample_min_width - self.tile_sample_stride_width
1279
+
1280
+ # Split z into overlapping tiles and decode them separately.
1281
+ # The tiles have an overlap to avoid seams between tiles.
1282
+ rows = []
1283
+ for i in range(0, height, tile_latent_stride_height):
1284
+ row = []
1285
+ for j in range(0, width, tile_latent_stride_width):
1286
+ if self.use_framewise_decoding:
1287
+ # TODO(aryan): requires investigation
1288
+ raise NotImplementedError(
1289
+ "Frame-wise decoding has not been implemented for AutoencoderKLLTXVideo, at the moment, due to "
1290
+ "quality issues caused by splitting inference across frame dimension. If you believe this "
1291
+ "should be possible, please submit a PR to https://github.com/huggingface/diffusers/pulls."
1292
+ )
1293
+ else:
1294
+ time = self.decoder(
1295
+ z[:, :, :, i : i + tile_latent_min_height, j : j + tile_latent_min_width], temb
1296
+ )
1297
+
1298
+ row.append(time)
1299
+ rows.append(row)
1300
+
1301
+ result_rows = []
1302
+ for i, row in enumerate(rows):
1303
+ result_row = []
1304
+ for j, tile in enumerate(row):
1305
+ # blend the above tile and the left tile
1306
+ # to the current tile and add the current tile to the result row
1307
+ if i > 0:
1308
+ tile = self.blend_v(rows[i - 1][j], tile, blend_height)
1309
+ if j > 0:
1310
+ tile = self.blend_h(row[j - 1], tile, blend_width)
1311
+ result_row.append(tile[:, :, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width])
1312
+ result_rows.append(torch.cat(result_row, dim=4))
1313
+
1314
+ dec = torch.cat(result_rows, dim=3)[:, :, :, :sample_height, :sample_width]
1315
+
1316
+ if not return_dict:
1317
+ return (dec,)
1318
+
1319
+ return DecoderOutput(sample=dec)
1320
+
1321
+ def forward(
1322
+ self,
1323
+ sample: torch.Tensor,
1324
+ temb: Optional[torch.Tensor] = None,
1325
+ sample_posterior: bool = False,
1326
+ return_dict: bool = True,
1327
+ generator: Optional[torch.Generator] = None,
1328
+ ) -> Union[torch.Tensor, torch.Tensor]:
1329
+ x = sample
1330
+ posterior = self.encode(x).latent_dist
1331
+ if sample_posterior:
1332
+ z = posterior.sample(generator=generator)
1333
+ else:
1334
+ z = posterior.mode()
1335
+ dec = self.decode(z, temb)
1336
+ if not return_dict:
1337
+ return (dec,)
1338
+ return dec