diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +50 -53
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.0.dist-info/RECORD +0 -399
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,889 @@
|
|
1
|
+
# Copyright 2024 ChatGLM3-6B Model Team, Kwai-Kolors Team and The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import math
|
16
|
+
from typing import List, Optional, Tuple
|
17
|
+
|
18
|
+
import torch
|
19
|
+
import torch.nn.functional as F
|
20
|
+
from torch import nn
|
21
|
+
from torch.nn import LayerNorm
|
22
|
+
from torch.nn.utils import skip_init
|
23
|
+
from transformers import PretrainedConfig, PreTrainedModel
|
24
|
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
25
|
+
|
26
|
+
from ...utils import logging
|
27
|
+
|
28
|
+
|
29
|
+
logger = logging.get_logger(__name__)
|
30
|
+
|
31
|
+
|
32
|
+
class ChatGLMConfig(PretrainedConfig):
|
33
|
+
model_type = "chatglm"
|
34
|
+
|
35
|
+
def __init__(
|
36
|
+
self,
|
37
|
+
num_layers=28,
|
38
|
+
padded_vocab_size=65024,
|
39
|
+
hidden_size=4096,
|
40
|
+
ffn_hidden_size=13696,
|
41
|
+
kv_channels=128,
|
42
|
+
num_attention_heads=32,
|
43
|
+
seq_length=2048,
|
44
|
+
hidden_dropout=0.0,
|
45
|
+
classifier_dropout=None,
|
46
|
+
attention_dropout=0.0,
|
47
|
+
layernorm_epsilon=1e-5,
|
48
|
+
rmsnorm=True,
|
49
|
+
apply_residual_connection_post_layernorm=False,
|
50
|
+
post_layer_norm=True,
|
51
|
+
add_bias_linear=False,
|
52
|
+
add_qkv_bias=False,
|
53
|
+
bias_dropout_fusion=True,
|
54
|
+
multi_query_attention=False,
|
55
|
+
multi_query_group_num=1,
|
56
|
+
apply_query_key_layer_scaling=True,
|
57
|
+
attention_softmax_in_fp32=True,
|
58
|
+
fp32_residual_connection=False,
|
59
|
+
quantization_bit=0,
|
60
|
+
pre_seq_len=None,
|
61
|
+
prefix_projection=False,
|
62
|
+
**kwargs,
|
63
|
+
):
|
64
|
+
self.num_layers = num_layers
|
65
|
+
self.vocab_size = padded_vocab_size
|
66
|
+
self.padded_vocab_size = padded_vocab_size
|
67
|
+
self.hidden_size = hidden_size
|
68
|
+
self.ffn_hidden_size = ffn_hidden_size
|
69
|
+
self.kv_channels = kv_channels
|
70
|
+
self.num_attention_heads = num_attention_heads
|
71
|
+
self.seq_length = seq_length
|
72
|
+
self.hidden_dropout = hidden_dropout
|
73
|
+
self.classifier_dropout = classifier_dropout
|
74
|
+
self.attention_dropout = attention_dropout
|
75
|
+
self.layernorm_epsilon = layernorm_epsilon
|
76
|
+
self.rmsnorm = rmsnorm
|
77
|
+
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
|
78
|
+
self.post_layer_norm = post_layer_norm
|
79
|
+
self.add_bias_linear = add_bias_linear
|
80
|
+
self.add_qkv_bias = add_qkv_bias
|
81
|
+
self.bias_dropout_fusion = bias_dropout_fusion
|
82
|
+
self.multi_query_attention = multi_query_attention
|
83
|
+
self.multi_query_group_num = multi_query_group_num
|
84
|
+
self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
|
85
|
+
self.attention_softmax_in_fp32 = attention_softmax_in_fp32
|
86
|
+
self.fp32_residual_connection = fp32_residual_connection
|
87
|
+
self.quantization_bit = quantization_bit
|
88
|
+
self.pre_seq_len = pre_seq_len
|
89
|
+
self.prefix_projection = prefix_projection
|
90
|
+
super().__init__(**kwargs)
|
91
|
+
|
92
|
+
|
93
|
+
class RMSNorm(torch.nn.Module):
|
94
|
+
def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs):
|
95
|
+
super().__init__()
|
96
|
+
self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype))
|
97
|
+
self.eps = eps
|
98
|
+
|
99
|
+
def forward(self, hidden_states: torch.Tensor):
|
100
|
+
input_dtype = hidden_states.dtype
|
101
|
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
102
|
+
hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
|
103
|
+
|
104
|
+
return (self.weight * hidden_states).to(input_dtype)
|
105
|
+
|
106
|
+
|
107
|
+
def _config_to_kwargs(args):
|
108
|
+
common_kwargs = {
|
109
|
+
"dtype": args.torch_dtype,
|
110
|
+
}
|
111
|
+
return common_kwargs
|
112
|
+
|
113
|
+
|
114
|
+
class CoreAttention(torch.nn.Module):
|
115
|
+
def __init__(self, config: ChatGLMConfig, layer_number):
|
116
|
+
super(CoreAttention, self).__init__()
|
117
|
+
|
118
|
+
self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
|
119
|
+
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
|
120
|
+
if self.apply_query_key_layer_scaling:
|
121
|
+
self.attention_softmax_in_fp32 = True
|
122
|
+
self.layer_number = max(1, layer_number)
|
123
|
+
|
124
|
+
projection_size = config.kv_channels * config.num_attention_heads
|
125
|
+
|
126
|
+
# Per attention head and per partition values.
|
127
|
+
self.hidden_size_per_partition = projection_size
|
128
|
+
self.hidden_size_per_attention_head = projection_size // config.num_attention_heads
|
129
|
+
self.num_attention_heads_per_partition = config.num_attention_heads
|
130
|
+
|
131
|
+
coeff = None
|
132
|
+
self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
|
133
|
+
if self.apply_query_key_layer_scaling:
|
134
|
+
coeff = self.layer_number
|
135
|
+
self.norm_factor *= coeff
|
136
|
+
self.coeff = coeff
|
137
|
+
|
138
|
+
self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
|
139
|
+
|
140
|
+
def forward(self, query_layer, key_layer, value_layer, attention_mask):
|
141
|
+
pytorch_major_version = int(torch.__version__.split(".")[0])
|
142
|
+
if pytorch_major_version >= 2:
|
143
|
+
query_layer, key_layer, value_layer = [
|
144
|
+
k.permute(1, 2, 0, 3) for k in [query_layer, key_layer, value_layer]
|
145
|
+
]
|
146
|
+
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
|
147
|
+
context_layer = torch.nn.functional.scaled_dot_product_attention(
|
148
|
+
query_layer, key_layer, value_layer, is_causal=True
|
149
|
+
)
|
150
|
+
else:
|
151
|
+
if attention_mask is not None:
|
152
|
+
attention_mask = ~attention_mask
|
153
|
+
context_layer = torch.nn.functional.scaled_dot_product_attention(
|
154
|
+
query_layer, key_layer, value_layer, attention_mask
|
155
|
+
)
|
156
|
+
context_layer = context_layer.permute(2, 0, 1, 3)
|
157
|
+
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
158
|
+
context_layer = context_layer.reshape(*new_context_layer_shape)
|
159
|
+
else:
|
160
|
+
# Raw attention scores
|
161
|
+
|
162
|
+
# [b, np, sq, sk]
|
163
|
+
output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))
|
164
|
+
|
165
|
+
# [sq, b, np, hn] -> [sq, b * np, hn]
|
166
|
+
query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
|
167
|
+
# [sk, b, np, hn] -> [sk, b * np, hn]
|
168
|
+
key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)
|
169
|
+
|
170
|
+
# preallocting input tensor: [b * np, sq, sk]
|
171
|
+
matmul_input_buffer = torch.empty(
|
172
|
+
output_size[0] * output_size[1],
|
173
|
+
output_size[2],
|
174
|
+
output_size[3],
|
175
|
+
dtype=query_layer.dtype,
|
176
|
+
device=query_layer.device,
|
177
|
+
)
|
178
|
+
|
179
|
+
# Raw attention scores. [b * np, sq, sk]
|
180
|
+
matmul_result = torch.baddbmm(
|
181
|
+
matmul_input_buffer,
|
182
|
+
query_layer.transpose(0, 1), # [b * np, sq, hn]
|
183
|
+
key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk]
|
184
|
+
beta=0.0,
|
185
|
+
alpha=(1.0 / self.norm_factor),
|
186
|
+
)
|
187
|
+
|
188
|
+
# change view to [b, np, sq, sk]
|
189
|
+
attention_scores = matmul_result.view(*output_size)
|
190
|
+
|
191
|
+
# ===========================
|
192
|
+
# Attention probs and dropout
|
193
|
+
# ===========================
|
194
|
+
|
195
|
+
# attention scores and attention mask [b, np, sq, sk]
|
196
|
+
if self.attention_softmax_in_fp32:
|
197
|
+
attention_scores = attention_scores.float()
|
198
|
+
if self.coeff is not None:
|
199
|
+
attention_scores = attention_scores * self.coeff
|
200
|
+
if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
|
201
|
+
attention_mask = torch.ones(
|
202
|
+
output_size[0], 1, output_size[2], output_size[3], device=attention_scores.device, dtype=torch.bool
|
203
|
+
)
|
204
|
+
attention_mask.tril_()
|
205
|
+
attention_mask = ~attention_mask
|
206
|
+
if attention_mask is not None:
|
207
|
+
attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
|
208
|
+
attention_probs = F.softmax(attention_scores, dim=-1)
|
209
|
+
attention_probs = attention_probs.type_as(value_layer)
|
210
|
+
|
211
|
+
# This is actually dropping out entire tokens to attend to, which might
|
212
|
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
213
|
+
attention_probs = self.attention_dropout(attention_probs)
|
214
|
+
# =========================
|
215
|
+
# Context layer. [sq, b, hp]
|
216
|
+
# =========================
|
217
|
+
|
218
|
+
# value_layer -> context layer.
|
219
|
+
# [sk, b, np, hn] --> [b, np, sq, hn]
|
220
|
+
|
221
|
+
# context layer shape: [b, np, sq, hn]
|
222
|
+
output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))
|
223
|
+
# change view [sk, b * np, hn]
|
224
|
+
value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)
|
225
|
+
# change view [b * np, sq, sk]
|
226
|
+
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
|
227
|
+
# matmul: [b * np, sq, hn]
|
228
|
+
context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
|
229
|
+
# change view [b, np, sq, hn]
|
230
|
+
context_layer = context_layer.view(*output_size)
|
231
|
+
# [b, np, sq, hn] --> [sq, b, np, hn]
|
232
|
+
context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
|
233
|
+
# [sq, b, np, hn] --> [sq, b, hp]
|
234
|
+
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
235
|
+
context_layer = context_layer.view(*new_context_layer_shape)
|
236
|
+
|
237
|
+
return context_layer
|
238
|
+
|
239
|
+
|
240
|
+
def split_tensor_along_last_dim(
|
241
|
+
tensor: torch.Tensor,
|
242
|
+
num_partitions: int,
|
243
|
+
contiguous_split_chunks: bool = False,
|
244
|
+
) -> List[torch.Tensor]:
|
245
|
+
"""Split a tensor along its last dimension.
|
246
|
+
|
247
|
+
Arguments:
|
248
|
+
tensor: input tensor.
|
249
|
+
num_partitions: number of partitions to split the tensor
|
250
|
+
contiguous_split_chunks: If True, make each chunk contiguous
|
251
|
+
in memory.
|
252
|
+
|
253
|
+
Returns:
|
254
|
+
A list of Tensors
|
255
|
+
"""
|
256
|
+
# Get the size and dimension.
|
257
|
+
last_dim = tensor.dim() - 1
|
258
|
+
last_dim_size = tensor.size()[last_dim] // num_partitions
|
259
|
+
# Split.
|
260
|
+
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
|
261
|
+
# Note: torch.split does not create contiguous tensors by default.
|
262
|
+
if contiguous_split_chunks:
|
263
|
+
return tuple(chunk.contiguous() for chunk in tensor_list)
|
264
|
+
|
265
|
+
return tensor_list
|
266
|
+
|
267
|
+
|
268
|
+
@torch.jit.script
|
269
|
+
def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
|
270
|
+
# x: [sq, b, np, hn]
|
271
|
+
sq, _b, np, _hn = x.size(0), x.size(1), x.size(2), x.size(3)
|
272
|
+
rot_dim = rope_cache.shape[-2] * 2
|
273
|
+
x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
|
274
|
+
# truncate to support variable sizes
|
275
|
+
rope_cache = rope_cache[:sq]
|
276
|
+
xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2)
|
277
|
+
rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2)
|
278
|
+
x_out2 = torch.stack(
|
279
|
+
[
|
280
|
+
xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
|
281
|
+
xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
|
282
|
+
],
|
283
|
+
-1,
|
284
|
+
)
|
285
|
+
x_out2 = x_out2.flatten(3)
|
286
|
+
return torch.cat((x_out2, x_pass), dim=-1)
|
287
|
+
|
288
|
+
|
289
|
+
class SelfAttention(torch.nn.Module):
|
290
|
+
"""Parallel self-attention layer abstract class.
|
291
|
+
|
292
|
+
Self-attention layer takes input with size [s, b, h] and returns output of the same size.
|
293
|
+
"""
|
294
|
+
|
295
|
+
def __init__(self, config: ChatGLMConfig, layer_number, device=None):
|
296
|
+
super(SelfAttention, self).__init__()
|
297
|
+
self.layer_number = max(1, layer_number)
|
298
|
+
|
299
|
+
self.projection_size = config.kv_channels * config.num_attention_heads
|
300
|
+
|
301
|
+
# Per attention head and per partition values.
|
302
|
+
self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads
|
303
|
+
self.num_attention_heads_per_partition = config.num_attention_heads
|
304
|
+
|
305
|
+
self.multi_query_attention = config.multi_query_attention
|
306
|
+
self.qkv_hidden_size = 3 * self.projection_size
|
307
|
+
if self.multi_query_attention:
|
308
|
+
self.num_multi_query_groups_per_partition = config.multi_query_group_num
|
309
|
+
self.qkv_hidden_size = (
|
310
|
+
self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num
|
311
|
+
)
|
312
|
+
self.query_key_value = nn.Linear(
|
313
|
+
config.hidden_size,
|
314
|
+
self.qkv_hidden_size,
|
315
|
+
bias=config.add_bias_linear or config.add_qkv_bias,
|
316
|
+
device=device,
|
317
|
+
**_config_to_kwargs(config),
|
318
|
+
)
|
319
|
+
|
320
|
+
self.core_attention = CoreAttention(config, self.layer_number)
|
321
|
+
|
322
|
+
# Output.
|
323
|
+
self.dense = nn.Linear(
|
324
|
+
self.projection_size,
|
325
|
+
config.hidden_size,
|
326
|
+
bias=config.add_bias_linear,
|
327
|
+
device=device,
|
328
|
+
**_config_to_kwargs(config),
|
329
|
+
)
|
330
|
+
|
331
|
+
def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None):
|
332
|
+
if self.multi_query_attention:
|
333
|
+
num_attention_heads = self.num_multi_query_groups_per_partition
|
334
|
+
else:
|
335
|
+
num_attention_heads = self.num_attention_heads_per_partition
|
336
|
+
return torch.empty(
|
337
|
+
inference_max_sequence_len,
|
338
|
+
batch_size,
|
339
|
+
num_attention_heads,
|
340
|
+
self.hidden_size_per_attention_head,
|
341
|
+
dtype=dtype,
|
342
|
+
device=device,
|
343
|
+
)
|
344
|
+
|
345
|
+
def forward(self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True):
|
346
|
+
# hidden_states: [sq, b, h]
|
347
|
+
|
348
|
+
# =================================================
|
349
|
+
# Pre-allocate memory for key-values for inference.
|
350
|
+
# =================================================
|
351
|
+
# =====================
|
352
|
+
# Query, Key, and Value
|
353
|
+
# =====================
|
354
|
+
|
355
|
+
# Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
|
356
|
+
mixed_x_layer = self.query_key_value(hidden_states)
|
357
|
+
|
358
|
+
if self.multi_query_attention:
|
359
|
+
(query_layer, key_layer, value_layer) = mixed_x_layer.split(
|
360
|
+
[
|
361
|
+
self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
|
362
|
+
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
|
363
|
+
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
|
364
|
+
],
|
365
|
+
dim=-1,
|
366
|
+
)
|
367
|
+
query_layer = query_layer.view(
|
368
|
+
query_layer.size()[:-1] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
|
369
|
+
)
|
370
|
+
key_layer = key_layer.view(
|
371
|
+
key_layer.size()[:-1]
|
372
|
+
+ (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
|
373
|
+
)
|
374
|
+
value_layer = value_layer.view(
|
375
|
+
value_layer.size()[:-1]
|
376
|
+
+ (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
|
377
|
+
)
|
378
|
+
else:
|
379
|
+
new_tensor_shape = mixed_x_layer.size()[:-1] + (
|
380
|
+
self.num_attention_heads_per_partition,
|
381
|
+
3 * self.hidden_size_per_attention_head,
|
382
|
+
)
|
383
|
+
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
|
384
|
+
|
385
|
+
# [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
|
386
|
+
(query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
|
387
|
+
|
388
|
+
# apply relative positional encoding (rotary embedding)
|
389
|
+
if rotary_pos_emb is not None:
|
390
|
+
query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
|
391
|
+
key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
|
392
|
+
|
393
|
+
# adjust key and value for inference
|
394
|
+
if kv_cache is not None:
|
395
|
+
cache_k, cache_v = kv_cache
|
396
|
+
key_layer = torch.cat((cache_k, key_layer), dim=0)
|
397
|
+
value_layer = torch.cat((cache_v, value_layer), dim=0)
|
398
|
+
if use_cache:
|
399
|
+
kv_cache = (key_layer, value_layer)
|
400
|
+
else:
|
401
|
+
kv_cache = None
|
402
|
+
|
403
|
+
if self.multi_query_attention:
|
404
|
+
key_layer = key_layer.unsqueeze(-2)
|
405
|
+
key_layer = key_layer.expand(
|
406
|
+
-1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1
|
407
|
+
)
|
408
|
+
key_layer = key_layer.contiguous().view(
|
409
|
+
key_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
|
410
|
+
)
|
411
|
+
value_layer = value_layer.unsqueeze(-2)
|
412
|
+
value_layer = value_layer.expand(
|
413
|
+
-1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1
|
414
|
+
)
|
415
|
+
value_layer = value_layer.contiguous().view(
|
416
|
+
value_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
|
417
|
+
)
|
418
|
+
|
419
|
+
# ==================================
|
420
|
+
# core attention computation
|
421
|
+
# ==================================
|
422
|
+
|
423
|
+
context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)
|
424
|
+
|
425
|
+
# =================
|
426
|
+
# Output. [sq, b, h]
|
427
|
+
# =================
|
428
|
+
|
429
|
+
output = self.dense(context_layer)
|
430
|
+
|
431
|
+
return output, kv_cache
|
432
|
+
|
433
|
+
|
434
|
+
class MLP(torch.nn.Module):
|
435
|
+
"""MLP.
|
436
|
+
|
437
|
+
MLP will take the input with h hidden state, project it to 4*h hidden dimension, perform nonlinear transformation,
|
438
|
+
and project the state back into h hidden dimension.
|
439
|
+
"""
|
440
|
+
|
441
|
+
def __init__(self, config: ChatGLMConfig, device=None):
|
442
|
+
super(MLP, self).__init__()
|
443
|
+
|
444
|
+
self.add_bias = config.add_bias_linear
|
445
|
+
|
446
|
+
# Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
|
447
|
+
self.dense_h_to_4h = nn.Linear(
|
448
|
+
config.hidden_size,
|
449
|
+
config.ffn_hidden_size * 2,
|
450
|
+
bias=self.add_bias,
|
451
|
+
device=device,
|
452
|
+
**_config_to_kwargs(config),
|
453
|
+
)
|
454
|
+
|
455
|
+
def swiglu(x):
|
456
|
+
x = torch.chunk(x, 2, dim=-1)
|
457
|
+
return F.silu(x[0]) * x[1]
|
458
|
+
|
459
|
+
self.activation_func = swiglu
|
460
|
+
|
461
|
+
# Project back to h.
|
462
|
+
self.dense_4h_to_h = nn.Linear(
|
463
|
+
config.ffn_hidden_size, config.hidden_size, bias=self.add_bias, device=device, **_config_to_kwargs(config)
|
464
|
+
)
|
465
|
+
|
466
|
+
def forward(self, hidden_states):
|
467
|
+
# [s, b, 4hp]
|
468
|
+
intermediate_parallel = self.dense_h_to_4h(hidden_states)
|
469
|
+
intermediate_parallel = self.activation_func(intermediate_parallel)
|
470
|
+
# [s, b, h]
|
471
|
+
output = self.dense_4h_to_h(intermediate_parallel)
|
472
|
+
return output
|
473
|
+
|
474
|
+
|
475
|
+
class GLMBlock(torch.nn.Module):
|
476
|
+
"""A single transformer layer.
|
477
|
+
|
478
|
+
Transformer layer takes input with size [s, b, h] and returns an output of the same size.
|
479
|
+
"""
|
480
|
+
|
481
|
+
def __init__(self, config: ChatGLMConfig, layer_number, device=None):
|
482
|
+
super(GLMBlock, self).__init__()
|
483
|
+
self.layer_number = layer_number
|
484
|
+
|
485
|
+
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
|
486
|
+
|
487
|
+
self.fp32_residual_connection = config.fp32_residual_connection
|
488
|
+
|
489
|
+
LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
|
490
|
+
# Layernorm on the input data.
|
491
|
+
self.input_layernorm = LayerNormFunc(
|
492
|
+
config.hidden_size, eps=config.layernorm_epsilon, device=device, dtype=config.torch_dtype
|
493
|
+
)
|
494
|
+
|
495
|
+
# Self attention.
|
496
|
+
self.self_attention = SelfAttention(config, layer_number, device=device)
|
497
|
+
self.hidden_dropout = config.hidden_dropout
|
498
|
+
|
499
|
+
# Layernorm on the attention output
|
500
|
+
self.post_attention_layernorm = LayerNormFunc(
|
501
|
+
config.hidden_size, eps=config.layernorm_epsilon, device=device, dtype=config.torch_dtype
|
502
|
+
)
|
503
|
+
|
504
|
+
# MLP
|
505
|
+
self.mlp = MLP(config, device=device)
|
506
|
+
|
507
|
+
def forward(
|
508
|
+
self,
|
509
|
+
hidden_states,
|
510
|
+
attention_mask,
|
511
|
+
rotary_pos_emb,
|
512
|
+
kv_cache=None,
|
513
|
+
use_cache=True,
|
514
|
+
):
|
515
|
+
# hidden_states: [s, b, h]
|
516
|
+
|
517
|
+
# Layer norm at the beginning of the transformer layer.
|
518
|
+
layernorm_output = self.input_layernorm(hidden_states)
|
519
|
+
# Self attention.
|
520
|
+
attention_output, kv_cache = self.self_attention(
|
521
|
+
layernorm_output, attention_mask, rotary_pos_emb, kv_cache=kv_cache, use_cache=use_cache
|
522
|
+
)
|
523
|
+
|
524
|
+
# Residual connection.
|
525
|
+
if self.apply_residual_connection_post_layernorm:
|
526
|
+
residual = layernorm_output
|
527
|
+
else:
|
528
|
+
residual = hidden_states
|
529
|
+
|
530
|
+
layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
|
531
|
+
layernorm_input = residual + layernorm_input
|
532
|
+
|
533
|
+
# Layer norm post the self attention.
|
534
|
+
layernorm_output = self.post_attention_layernorm(layernorm_input)
|
535
|
+
|
536
|
+
# MLP.
|
537
|
+
mlp_output = self.mlp(layernorm_output)
|
538
|
+
|
539
|
+
# Second residual connection.
|
540
|
+
if self.apply_residual_connection_post_layernorm:
|
541
|
+
residual = layernorm_output
|
542
|
+
else:
|
543
|
+
residual = layernorm_input
|
544
|
+
|
545
|
+
output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
|
546
|
+
output = residual + output
|
547
|
+
|
548
|
+
return output, kv_cache
|
549
|
+
|
550
|
+
|
551
|
+
class GLMTransformer(torch.nn.Module):
|
552
|
+
"""Transformer class."""
|
553
|
+
|
554
|
+
def __init__(self, config: ChatGLMConfig, device=None):
|
555
|
+
super(GLMTransformer, self).__init__()
|
556
|
+
|
557
|
+
self.fp32_residual_connection = config.fp32_residual_connection
|
558
|
+
self.post_layer_norm = config.post_layer_norm
|
559
|
+
|
560
|
+
# Number of layers.
|
561
|
+
self.num_layers = config.num_layers
|
562
|
+
|
563
|
+
# Transformer layers.
|
564
|
+
def build_layer(layer_number):
|
565
|
+
return GLMBlock(config, layer_number, device=device)
|
566
|
+
|
567
|
+
self.layers = torch.nn.ModuleList([build_layer(i + 1) for i in range(self.num_layers)])
|
568
|
+
|
569
|
+
if self.post_layer_norm:
|
570
|
+
LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
|
571
|
+
# Final layer norm before output.
|
572
|
+
self.final_layernorm = LayerNormFunc(
|
573
|
+
config.hidden_size, eps=config.layernorm_epsilon, device=device, dtype=config.torch_dtype
|
574
|
+
)
|
575
|
+
|
576
|
+
self.gradient_checkpointing = False
|
577
|
+
|
578
|
+
def _get_layer(self, layer_number):
|
579
|
+
return self.layers[layer_number]
|
580
|
+
|
581
|
+
def forward(
|
582
|
+
self,
|
583
|
+
hidden_states,
|
584
|
+
attention_mask,
|
585
|
+
rotary_pos_emb,
|
586
|
+
kv_caches=None,
|
587
|
+
use_cache: Optional[bool] = True,
|
588
|
+
output_hidden_states: Optional[bool] = False,
|
589
|
+
):
|
590
|
+
if not kv_caches:
|
591
|
+
kv_caches = [None for _ in range(self.num_layers)]
|
592
|
+
presents = () if use_cache else None
|
593
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
594
|
+
if use_cache:
|
595
|
+
logger.warning_once(
|
596
|
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
597
|
+
)
|
598
|
+
use_cache = False
|
599
|
+
|
600
|
+
all_self_attentions = None
|
601
|
+
all_hidden_states = () if output_hidden_states else None
|
602
|
+
for index in range(self.num_layers):
|
603
|
+
if output_hidden_states:
|
604
|
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
605
|
+
|
606
|
+
layer = self._get_layer(index)
|
607
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
608
|
+
layer_ret = torch.utils.checkpoint.checkpoint(
|
609
|
+
layer, hidden_states, attention_mask, rotary_pos_emb, kv_caches[index], use_cache
|
610
|
+
)
|
611
|
+
else:
|
612
|
+
layer_ret = layer(
|
613
|
+
hidden_states, attention_mask, rotary_pos_emb, kv_cache=kv_caches[index], use_cache=use_cache
|
614
|
+
)
|
615
|
+
hidden_states, kv_cache = layer_ret
|
616
|
+
if use_cache:
|
617
|
+
presents = presents + (kv_cache,)
|
618
|
+
|
619
|
+
if output_hidden_states:
|
620
|
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
621
|
+
|
622
|
+
# Final layer norm.
|
623
|
+
if self.post_layer_norm:
|
624
|
+
hidden_states = self.final_layernorm(hidden_states)
|
625
|
+
|
626
|
+
return hidden_states, presents, all_hidden_states, all_self_attentions
|
627
|
+
|
628
|
+
|
629
|
+
class ChatGLMPreTrainedModel(PreTrainedModel):
|
630
|
+
"""
|
631
|
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
632
|
+
models.
|
633
|
+
"""
|
634
|
+
|
635
|
+
is_parallelizable = False
|
636
|
+
supports_gradient_checkpointing = True
|
637
|
+
config_class = ChatGLMConfig
|
638
|
+
base_model_prefix = "transformer"
|
639
|
+
_no_split_modules = ["GLMBlock"]
|
640
|
+
|
641
|
+
def _init_weights(self, module: nn.Module):
|
642
|
+
"""Initialize the weights."""
|
643
|
+
return
|
644
|
+
|
645
|
+
def get_masks(self, input_ids, past_key_values, padding_mask=None):
|
646
|
+
batch_size, seq_length = input_ids.shape
|
647
|
+
full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
|
648
|
+
full_attention_mask.tril_()
|
649
|
+
past_length = 0
|
650
|
+
if past_key_values:
|
651
|
+
past_length = past_key_values[0][0].shape[0]
|
652
|
+
if past_length:
|
653
|
+
full_attention_mask = torch.cat(
|
654
|
+
(torch.ones(batch_size, seq_length, past_length, device=input_ids.device), full_attention_mask), dim=-1
|
655
|
+
)
|
656
|
+
if padding_mask is not None:
|
657
|
+
full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1)
|
658
|
+
if not past_length and padding_mask is not None:
|
659
|
+
full_attention_mask -= padding_mask.unsqueeze(-1) - 1
|
660
|
+
full_attention_mask = (full_attention_mask < 0.5).bool()
|
661
|
+
full_attention_mask.unsqueeze_(1)
|
662
|
+
return full_attention_mask
|
663
|
+
|
664
|
+
def get_position_ids(self, input_ids, device):
|
665
|
+
batch_size, seq_length = input_ids.shape
|
666
|
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
|
667
|
+
return position_ids
|
668
|
+
|
669
|
+
def _set_gradient_checkpointing(self, module, value=False):
|
670
|
+
if isinstance(module, GLMTransformer):
|
671
|
+
module.gradient_checkpointing = value
|
672
|
+
|
673
|
+
|
674
|
+
def default_init(cls, *args, **kwargs):
|
675
|
+
return cls(*args, **kwargs)
|
676
|
+
|
677
|
+
|
678
|
+
class Embedding(torch.nn.Module):
|
679
|
+
"""Language model embeddings."""
|
680
|
+
|
681
|
+
def __init__(self, config: ChatGLMConfig, device=None):
|
682
|
+
super(Embedding, self).__init__()
|
683
|
+
|
684
|
+
self.hidden_size = config.hidden_size
|
685
|
+
# Word embeddings (parallel).
|
686
|
+
self.word_embeddings = nn.Embedding(
|
687
|
+
config.padded_vocab_size, self.hidden_size, dtype=config.torch_dtype, device=device
|
688
|
+
)
|
689
|
+
self.fp32_residual_connection = config.fp32_residual_connection
|
690
|
+
|
691
|
+
def forward(self, input_ids):
|
692
|
+
# Embeddings.
|
693
|
+
words_embeddings = self.word_embeddings(input_ids)
|
694
|
+
embeddings = words_embeddings
|
695
|
+
# Data format change to avoid explicit tranposes : [b s h] --> [s b h].
|
696
|
+
embeddings = embeddings.transpose(0, 1).contiguous()
|
697
|
+
# If the input flag for fp32 residual connection is set, convert for float.
|
698
|
+
if self.fp32_residual_connection:
|
699
|
+
embeddings = embeddings.float()
|
700
|
+
return embeddings
|
701
|
+
|
702
|
+
|
703
|
+
class RotaryEmbedding(nn.Module):
|
704
|
+
def __init__(self, dim, original_impl=False, device=None, dtype=None):
|
705
|
+
super().__init__()
|
706
|
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim))
|
707
|
+
self.register_buffer("inv_freq", inv_freq)
|
708
|
+
self.dim = dim
|
709
|
+
self.original_impl = original_impl
|
710
|
+
|
711
|
+
def forward_impl(self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000):
|
712
|
+
"""Enhanced Transformer with Rotary Position Embedding.
|
713
|
+
|
714
|
+
Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
|
715
|
+
transformers/rope/__init__.py. MIT License:
|
716
|
+
https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
|
717
|
+
"""
|
718
|
+
# $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
|
719
|
+
theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=torch.float, device=device) / n_elem))
|
720
|
+
|
721
|
+
# Create position indexes `[0, 1, ..., seq_len - 1]`
|
722
|
+
seq_idx = torch.arange(seq_len, dtype=torch.float, device=device)
|
723
|
+
|
724
|
+
# Calculate the product of position index and $\theta_i$
|
725
|
+
idx_theta = torch.outer(seq_idx, theta).float()
|
726
|
+
|
727
|
+
cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1)
|
728
|
+
|
729
|
+
# this is to mimic the behaviour of complex32, else we will get different results
|
730
|
+
if dtype in (torch.float16, torch.bfloat16, torch.int8):
|
731
|
+
cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half()
|
732
|
+
return cache
|
733
|
+
|
734
|
+
def forward(self, max_seq_len, offset=0):
|
735
|
+
return self.forward_impl(max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device)
|
736
|
+
|
737
|
+
|
738
|
+
class PrefixEncoder(torch.nn.Module):
|
739
|
+
"""
|
740
|
+
The torch.nn model to encode the prefix Input shape: (batch-size, prefix-length) Output shape: (batch-size,
|
741
|
+
prefix-length, 2*layers*hidden)
|
742
|
+
"""
|
743
|
+
|
744
|
+
def __init__(self, config: ChatGLMConfig):
|
745
|
+
super().__init__()
|
746
|
+
self.prefix_projection = config.prefix_projection
|
747
|
+
if self.prefix_projection:
|
748
|
+
# Use a two-layer MLP to encode the prefix
|
749
|
+
kv_size = config.num_layers * config.kv_channels * config.multi_query_group_num * 2
|
750
|
+
self.embedding = torch.nn.Embedding(config.pre_seq_len, kv_size)
|
751
|
+
self.trans = torch.nn.Sequential(
|
752
|
+
torch.nn.Linear(kv_size, config.hidden_size),
|
753
|
+
torch.nn.Tanh(),
|
754
|
+
torch.nn.Linear(config.hidden_size, kv_size),
|
755
|
+
)
|
756
|
+
else:
|
757
|
+
self.embedding = torch.nn.Embedding(
|
758
|
+
config.pre_seq_len, config.num_layers * config.kv_channels * config.multi_query_group_num * 2
|
759
|
+
)
|
760
|
+
|
761
|
+
def forward(self, prefix: torch.Tensor):
|
762
|
+
if self.prefix_projection:
|
763
|
+
prefix_tokens = self.embedding(prefix)
|
764
|
+
past_key_values = self.trans(prefix_tokens)
|
765
|
+
else:
|
766
|
+
past_key_values = self.embedding(prefix)
|
767
|
+
return past_key_values
|
768
|
+
|
769
|
+
|
770
|
+
class ChatGLMModel(ChatGLMPreTrainedModel):
|
771
|
+
def __init__(self, config: ChatGLMConfig, device=None, empty_init=True):
|
772
|
+
super().__init__(config)
|
773
|
+
if empty_init:
|
774
|
+
init_method = skip_init
|
775
|
+
else:
|
776
|
+
init_method = default_init
|
777
|
+
init_kwargs = {}
|
778
|
+
if device is not None:
|
779
|
+
init_kwargs["device"] = device
|
780
|
+
self.embedding = init_method(Embedding, config, **init_kwargs)
|
781
|
+
self.num_layers = config.num_layers
|
782
|
+
self.multi_query_group_num = config.multi_query_group_num
|
783
|
+
self.kv_channels = config.kv_channels
|
784
|
+
|
785
|
+
# Rotary positional embeddings
|
786
|
+
self.seq_length = config.seq_length
|
787
|
+
rotary_dim = (
|
788
|
+
config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
|
789
|
+
)
|
790
|
+
|
791
|
+
self.rotary_pos_emb = RotaryEmbedding(
|
792
|
+
rotary_dim // 2, original_impl=config.original_rope, device=device, dtype=config.torch_dtype
|
793
|
+
)
|
794
|
+
self.encoder = init_method(GLMTransformer, config, **init_kwargs)
|
795
|
+
self.output_layer = init_method(
|
796
|
+
nn.Linear,
|
797
|
+
config.hidden_size,
|
798
|
+
config.padded_vocab_size,
|
799
|
+
bias=False,
|
800
|
+
dtype=config.torch_dtype,
|
801
|
+
**init_kwargs,
|
802
|
+
)
|
803
|
+
self.pre_seq_len = config.pre_seq_len
|
804
|
+
self.prefix_projection = config.prefix_projection
|
805
|
+
if self.pre_seq_len is not None:
|
806
|
+
for param in self.parameters():
|
807
|
+
param.requires_grad = False
|
808
|
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
809
|
+
self.prefix_encoder = PrefixEncoder(config)
|
810
|
+
self.dropout = torch.nn.Dropout(0.1)
|
811
|
+
|
812
|
+
def get_input_embeddings(self):
|
813
|
+
return self.embedding.word_embeddings
|
814
|
+
|
815
|
+
def get_prompt(self, batch_size, device, dtype=torch.half):
|
816
|
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
|
817
|
+
past_key_values = self.prefix_encoder(prefix_tokens).type(dtype)
|
818
|
+
past_key_values = past_key_values.view(
|
819
|
+
batch_size, self.pre_seq_len, self.num_layers * 2, self.multi_query_group_num, self.kv_channels
|
820
|
+
)
|
821
|
+
# seq_len, b, nh, hidden_size
|
822
|
+
past_key_values = self.dropout(past_key_values)
|
823
|
+
past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2)
|
824
|
+
return past_key_values
|
825
|
+
|
826
|
+
def forward(
|
827
|
+
self,
|
828
|
+
input_ids,
|
829
|
+
position_ids: Optional[torch.Tensor] = None,
|
830
|
+
attention_mask: Optional[torch.BoolTensor] = None,
|
831
|
+
full_attention_mask: Optional[torch.BoolTensor] = None,
|
832
|
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
833
|
+
inputs_embeds: Optional[torch.Tensor] = None,
|
834
|
+
use_cache: Optional[bool] = None,
|
835
|
+
output_hidden_states: Optional[bool] = None,
|
836
|
+
return_dict: Optional[bool] = None,
|
837
|
+
):
|
838
|
+
output_hidden_states = (
|
839
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
840
|
+
)
|
841
|
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
842
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
843
|
+
|
844
|
+
batch_size, seq_length = input_ids.shape
|
845
|
+
|
846
|
+
if inputs_embeds is None:
|
847
|
+
inputs_embeds = self.embedding(input_ids)
|
848
|
+
|
849
|
+
if self.pre_seq_len is not None:
|
850
|
+
if past_key_values is None:
|
851
|
+
past_key_values = self.get_prompt(
|
852
|
+
batch_size=batch_size, device=input_ids.device, dtype=inputs_embeds.dtype
|
853
|
+
)
|
854
|
+
if attention_mask is not None:
|
855
|
+
attention_mask = torch.cat(
|
856
|
+
[attention_mask.new_ones((batch_size, self.pre_seq_len)), attention_mask], dim=-1
|
857
|
+
)
|
858
|
+
|
859
|
+
if full_attention_mask is None:
|
860
|
+
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
|
861
|
+
full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)
|
862
|
+
|
863
|
+
# Rotary positional embeddings
|
864
|
+
rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
|
865
|
+
if position_ids is not None:
|
866
|
+
rotary_pos_emb = rotary_pos_emb[position_ids]
|
867
|
+
else:
|
868
|
+
rotary_pos_emb = rotary_pos_emb[None, :seq_length]
|
869
|
+
rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous()
|
870
|
+
|
871
|
+
# Run encoder.
|
872
|
+
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
|
873
|
+
inputs_embeds,
|
874
|
+
full_attention_mask,
|
875
|
+
rotary_pos_emb=rotary_pos_emb,
|
876
|
+
kv_caches=past_key_values,
|
877
|
+
use_cache=use_cache,
|
878
|
+
output_hidden_states=output_hidden_states,
|
879
|
+
)
|
880
|
+
|
881
|
+
if not return_dict:
|
882
|
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
883
|
+
|
884
|
+
return BaseModelOutputWithPast(
|
885
|
+
last_hidden_state=hidden_states,
|
886
|
+
past_key_values=presents,
|
887
|
+
hidden_states=all_hidden_states,
|
888
|
+
attentions=all_self_attentions,
|
889
|
+
)
|