diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1627 @@
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ import inspect
17
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
18
+
19
+ import numpy as np
20
+ import PIL.Image
21
+ import torch
22
+ import torch.nn.functional as F
23
+ from transformers import (
24
+ CLIPImageProcessor,
25
+ CLIPTextModel,
26
+ CLIPTextModelWithProjection,
27
+ CLIPTokenizer,
28
+ CLIPVisionModelWithProjection,
29
+ )
30
+
31
+ from diffusers.utils.import_utils import is_invisible_watermark_available
32
+
33
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
34
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
35
+ from ...loaders import (
36
+ FromSingleFileMixin,
37
+ IPAdapterMixin,
38
+ StableDiffusionXLLoraLoaderMixin,
39
+ TextualInversionLoaderMixin,
40
+ )
41
+ from ...models import AutoencoderKL, ControlNetModel, ControlNetUnionModel, ImageProjection, UNet2DConditionModel
42
+ from ...models.attention_processor import (
43
+ AttnProcessor2_0,
44
+ XFormersAttnProcessor,
45
+ )
46
+ from ...models.lora import adjust_lora_scale_text_encoder
47
+ from ...schedulers import KarrasDiffusionSchedulers
48
+ from ...utils import (
49
+ USE_PEFT_BACKEND,
50
+ deprecate,
51
+ logging,
52
+ replace_example_docstring,
53
+ scale_lora_layers,
54
+ unscale_lora_layers,
55
+ )
56
+ from ...utils.torch_utils import is_compiled_module, randn_tensor
57
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
58
+ from ..stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
59
+
60
+
61
+ if is_invisible_watermark_available():
62
+ from ..stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
63
+
64
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
65
+
66
+
67
+ EXAMPLE_DOC_STRING = """
68
+ Examples:
69
+ ```py
70
+ # !pip install controlnet_aux
71
+ from diffusers import (
72
+ StableDiffusionXLControlNetUnionImg2ImgPipeline,
73
+ ControlNetUnionModel,
74
+ AutoencoderKL,
75
+ )
76
+ from diffusers.utils import load_image
77
+ import torch
78
+ from PIL import Image
79
+ import numpy as np
80
+
81
+ prompt = "A cat"
82
+ # download an image
83
+ image = load_image(
84
+ "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/cat.png"
85
+ )
86
+ # initialize the models and pipeline
87
+ controlnet = ControlNetUnionModel.from_pretrained(
88
+ "brad-twinkl/controlnet-union-sdxl-1.0-promax", torch_dtype=torch.float16
89
+ )
90
+ vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
91
+ pipe = StableDiffusionXLControlNetUnionImg2ImgPipeline.from_pretrained(
92
+ "stabilityai/stable-diffusion-xl-base-1.0",
93
+ controlnet=controlnet,
94
+ vae=vae,
95
+ torch_dtype=torch.float16,
96
+ variant="fp16",
97
+ ).to("cuda")
98
+ # `enable_model_cpu_offload` is not recommended due to multiple generations
99
+ height = image.height
100
+ width = image.width
101
+ ratio = np.sqrt(1024.0 * 1024.0 / (width * height))
102
+ # 3 * 3 upscale correspond to 16 * 3 multiply, 2 * 2 correspond to 16 * 2 multiply and so on.
103
+ scale_image_factor = 3
104
+ base_factor = 16
105
+ factor = scale_image_factor * base_factor
106
+ W, H = int(width * ratio) // factor * factor, int(height * ratio) // factor * factor
107
+ image = image.resize((W, H))
108
+ target_width = W // scale_image_factor
109
+ target_height = H // scale_image_factor
110
+ images = []
111
+ crops_coords_list = [
112
+ (0, 0),
113
+ (0, width // 2),
114
+ (height // 2, 0),
115
+ (width // 2, height // 2),
116
+ 0,
117
+ 0,
118
+ 0,
119
+ 0,
120
+ 0,
121
+ ]
122
+ for i in range(scale_image_factor):
123
+ for j in range(scale_image_factor):
124
+ left = j * target_width
125
+ top = i * target_height
126
+ right = left + target_width
127
+ bottom = top + target_height
128
+ cropped_image = image.crop((left, top, right, bottom))
129
+ cropped_image = cropped_image.resize((W, H))
130
+ images.append(cropped_image)
131
+ # set ControlNetUnion input
132
+ result_images = []
133
+ for sub_img, crops_coords in zip(images, crops_coords_list):
134
+ new_width, new_height = W, H
135
+ out = pipe(
136
+ prompt=[prompt] * 1,
137
+ image=sub_img,
138
+ control_image=[sub_img],
139
+ control_mode=[6],
140
+ width=new_width,
141
+ height=new_height,
142
+ num_inference_steps=30,
143
+ crops_coords_top_left=(W, H),
144
+ target_size=(W, H),
145
+ original_size=(W * 2, H * 2),
146
+ )
147
+ result_images.append(out.images[0])
148
+ new_im = Image.new("RGB", (new_width * scale_image_factor, new_height * scale_image_factor))
149
+ new_im.paste(result_images[0], (0, 0))
150
+ new_im.paste(result_images[1], (new_width, 0))
151
+ new_im.paste(result_images[2], (new_width * 2, 0))
152
+ new_im.paste(result_images[3], (0, new_height))
153
+ new_im.paste(result_images[4], (new_width, new_height))
154
+ new_im.paste(result_images[5], (new_width * 2, new_height))
155
+ new_im.paste(result_images[6], (0, new_height * 2))
156
+ new_im.paste(result_images[7], (new_width, new_height * 2))
157
+ new_im.paste(result_images[8], (new_width * 2, new_height * 2))
158
+ ```
159
+ """
160
+
161
+
162
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
163
+ def retrieve_latents(
164
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
165
+ ):
166
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
167
+ return encoder_output.latent_dist.sample(generator)
168
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
169
+ return encoder_output.latent_dist.mode()
170
+ elif hasattr(encoder_output, "latents"):
171
+ return encoder_output.latents
172
+ else:
173
+ raise AttributeError("Could not access latents of provided encoder_output")
174
+
175
+
176
+ class StableDiffusionXLControlNetUnionImg2ImgPipeline(
177
+ DiffusionPipeline,
178
+ StableDiffusionMixin,
179
+ TextualInversionLoaderMixin,
180
+ StableDiffusionXLLoraLoaderMixin,
181
+ FromSingleFileMixin,
182
+ IPAdapterMixin,
183
+ ):
184
+ r"""
185
+ Pipeline for image-to-image generation using Stable Diffusion XL with ControlNet guidance.
186
+
187
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
188
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
189
+
190
+ The pipeline also inherits the following loading methods:
191
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
192
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
193
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
194
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
195
+
196
+ Args:
197
+ vae ([`AutoencoderKL`]):
198
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
199
+ text_encoder ([`CLIPTextModel`]):
200
+ Frozen text-encoder. Stable Diffusion uses the text portion of
201
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
202
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
203
+ text_encoder_2 ([` CLIPTextModelWithProjection`]):
204
+ Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
205
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
206
+ specifically the
207
+ [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
208
+ variant.
209
+ tokenizer (`CLIPTokenizer`):
210
+ Tokenizer of class
211
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
212
+ tokenizer_2 (`CLIPTokenizer`):
213
+ Second Tokenizer of class
214
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
215
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
216
+ controlnet ([`ControlNetUnionModel`]):
217
+ Provides additional conditioning to the unet during the denoising process.
218
+ scheduler ([`SchedulerMixin`]):
219
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
220
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
221
+ requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):
222
+ Whether the `unet` requires an `aesthetic_score` condition to be passed during inference. Also see the
223
+ config of `stabilityai/stable-diffusion-xl-refiner-1-0`.
224
+ force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
225
+ Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
226
+ `stabilityai/stable-diffusion-xl-base-1-0`.
227
+ add_watermarker (`bool`, *optional*):
228
+ Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
229
+ watermark output images. If not defined, it will default to True if the package is installed, otherwise no
230
+ watermarker will be used.
231
+ feature_extractor ([`~transformers.CLIPImageProcessor`]):
232
+ A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
233
+ """
234
+
235
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
236
+ _optional_components = [
237
+ "tokenizer",
238
+ "tokenizer_2",
239
+ "text_encoder",
240
+ "text_encoder_2",
241
+ "feature_extractor",
242
+ "image_encoder",
243
+ ]
244
+ _callback_tensor_inputs = [
245
+ "latents",
246
+ "prompt_embeds",
247
+ "add_text_embeds",
248
+ "add_time_ids",
249
+ ]
250
+
251
+ def __init__(
252
+ self,
253
+ vae: AutoencoderKL,
254
+ text_encoder: CLIPTextModel,
255
+ text_encoder_2: CLIPTextModelWithProjection,
256
+ tokenizer: CLIPTokenizer,
257
+ tokenizer_2: CLIPTokenizer,
258
+ unet: UNet2DConditionModel,
259
+ controlnet: ControlNetUnionModel,
260
+ scheduler: KarrasDiffusionSchedulers,
261
+ requires_aesthetics_score: bool = False,
262
+ force_zeros_for_empty_prompt: bool = True,
263
+ add_watermarker: Optional[bool] = None,
264
+ feature_extractor: CLIPImageProcessor = None,
265
+ image_encoder: CLIPVisionModelWithProjection = None,
266
+ ):
267
+ super().__init__()
268
+
269
+ if not isinstance(controlnet, ControlNetUnionModel):
270
+ raise ValueError("Expected `controlnet` to be of type `ControlNetUnionModel`.")
271
+
272
+ self.register_modules(
273
+ vae=vae,
274
+ text_encoder=text_encoder,
275
+ text_encoder_2=text_encoder_2,
276
+ tokenizer=tokenizer,
277
+ tokenizer_2=tokenizer_2,
278
+ unet=unet,
279
+ controlnet=controlnet,
280
+ scheduler=scheduler,
281
+ feature_extractor=feature_extractor,
282
+ image_encoder=image_encoder,
283
+ )
284
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
285
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
286
+ self.control_image_processor = VaeImageProcessor(
287
+ vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
288
+ )
289
+ add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
290
+
291
+ if add_watermarker:
292
+ self.watermark = StableDiffusionXLWatermarker()
293
+ else:
294
+ self.watermark = None
295
+
296
+ self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
297
+ self.register_to_config(requires_aesthetics_score=requires_aesthetics_score)
298
+
299
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
300
+ def encode_prompt(
301
+ self,
302
+ prompt: str,
303
+ prompt_2: Optional[str] = None,
304
+ device: Optional[torch.device] = None,
305
+ num_images_per_prompt: int = 1,
306
+ do_classifier_free_guidance: bool = True,
307
+ negative_prompt: Optional[str] = None,
308
+ negative_prompt_2: Optional[str] = None,
309
+ prompt_embeds: Optional[torch.Tensor] = None,
310
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
311
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
312
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
313
+ lora_scale: Optional[float] = None,
314
+ clip_skip: Optional[int] = None,
315
+ ):
316
+ r"""
317
+ Encodes the prompt into text encoder hidden states.
318
+
319
+ Args:
320
+ prompt (`str` or `List[str]`, *optional*):
321
+ prompt to be encoded
322
+ prompt_2 (`str` or `List[str]`, *optional*):
323
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
324
+ used in both text-encoders
325
+ device: (`torch.device`):
326
+ torch device
327
+ num_images_per_prompt (`int`):
328
+ number of images that should be generated per prompt
329
+ do_classifier_free_guidance (`bool`):
330
+ whether to use classifier free guidance or not
331
+ negative_prompt (`str` or `List[str]`, *optional*):
332
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
333
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
334
+ less than `1`).
335
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
336
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
337
+ `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
338
+ prompt_embeds (`torch.Tensor`, *optional*):
339
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
340
+ provided, text embeddings will be generated from `prompt` input argument.
341
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
342
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
343
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
344
+ argument.
345
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
346
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
347
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
348
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
349
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
350
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
351
+ input argument.
352
+ lora_scale (`float`, *optional*):
353
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
354
+ clip_skip (`int`, *optional*):
355
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
356
+ the output of the pre-final layer will be used for computing the prompt embeddings.
357
+ """
358
+ device = device or self._execution_device
359
+
360
+ # set lora scale so that monkey patched LoRA
361
+ # function of text encoder can correctly access it
362
+ if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
363
+ self._lora_scale = lora_scale
364
+
365
+ # dynamically adjust the LoRA scale
366
+ if self.text_encoder is not None:
367
+ if not USE_PEFT_BACKEND:
368
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
369
+ else:
370
+ scale_lora_layers(self.text_encoder, lora_scale)
371
+
372
+ if self.text_encoder_2 is not None:
373
+ if not USE_PEFT_BACKEND:
374
+ adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
375
+ else:
376
+ scale_lora_layers(self.text_encoder_2, lora_scale)
377
+
378
+ prompt = [prompt] if isinstance(prompt, str) else prompt
379
+
380
+ if prompt is not None:
381
+ batch_size = len(prompt)
382
+ else:
383
+ batch_size = prompt_embeds.shape[0]
384
+
385
+ # Define tokenizers and text encoders
386
+ tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
387
+ text_encoders = (
388
+ [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
389
+ )
390
+
391
+ if prompt_embeds is None:
392
+ prompt_2 = prompt_2 or prompt
393
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
394
+
395
+ # textual inversion: process multi-vector tokens if necessary
396
+ prompt_embeds_list = []
397
+ prompts = [prompt, prompt_2]
398
+ for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
399
+ if isinstance(self, TextualInversionLoaderMixin):
400
+ prompt = self.maybe_convert_prompt(prompt, tokenizer)
401
+
402
+ text_inputs = tokenizer(
403
+ prompt,
404
+ padding="max_length",
405
+ max_length=tokenizer.model_max_length,
406
+ truncation=True,
407
+ return_tensors="pt",
408
+ )
409
+
410
+ text_input_ids = text_inputs.input_ids
411
+ untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
412
+
413
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
414
+ text_input_ids, untruncated_ids
415
+ ):
416
+ removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
417
+ logger.warning(
418
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
419
+ f" {tokenizer.model_max_length} tokens: {removed_text}"
420
+ )
421
+
422
+ prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
423
+
424
+ # We are only ALWAYS interested in the pooled output of the final text encoder
425
+ pooled_prompt_embeds = prompt_embeds[0]
426
+ if clip_skip is None:
427
+ prompt_embeds = prompt_embeds.hidden_states[-2]
428
+ else:
429
+ # "2" because SDXL always indexes from the penultimate layer.
430
+ prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
431
+
432
+ prompt_embeds_list.append(prompt_embeds)
433
+
434
+ prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
435
+
436
+ # get unconditional embeddings for classifier free guidance
437
+ zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
438
+ if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
439
+ negative_prompt_embeds = torch.zeros_like(prompt_embeds)
440
+ negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
441
+ elif do_classifier_free_guidance and negative_prompt_embeds is None:
442
+ negative_prompt = negative_prompt or ""
443
+ negative_prompt_2 = negative_prompt_2 or negative_prompt
444
+
445
+ # normalize str to list
446
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
447
+ negative_prompt_2 = (
448
+ batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
449
+ )
450
+
451
+ uncond_tokens: List[str]
452
+ if prompt is not None and type(prompt) is not type(negative_prompt):
453
+ raise TypeError(
454
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
455
+ f" {type(prompt)}."
456
+ )
457
+ elif batch_size != len(negative_prompt):
458
+ raise ValueError(
459
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
460
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
461
+ " the batch size of `prompt`."
462
+ )
463
+ else:
464
+ uncond_tokens = [negative_prompt, negative_prompt_2]
465
+
466
+ negative_prompt_embeds_list = []
467
+ for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
468
+ if isinstance(self, TextualInversionLoaderMixin):
469
+ negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
470
+
471
+ max_length = prompt_embeds.shape[1]
472
+ uncond_input = tokenizer(
473
+ negative_prompt,
474
+ padding="max_length",
475
+ max_length=max_length,
476
+ truncation=True,
477
+ return_tensors="pt",
478
+ )
479
+
480
+ negative_prompt_embeds = text_encoder(
481
+ uncond_input.input_ids.to(device),
482
+ output_hidden_states=True,
483
+ )
484
+ # We are only ALWAYS interested in the pooled output of the final text encoder
485
+ negative_pooled_prompt_embeds = negative_prompt_embeds[0]
486
+ negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
487
+
488
+ negative_prompt_embeds_list.append(negative_prompt_embeds)
489
+
490
+ negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
491
+
492
+ if self.text_encoder_2 is not None:
493
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
494
+ else:
495
+ prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
496
+
497
+ bs_embed, seq_len, _ = prompt_embeds.shape
498
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
499
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
500
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
501
+
502
+ if do_classifier_free_guidance:
503
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
504
+ seq_len = negative_prompt_embeds.shape[1]
505
+
506
+ if self.text_encoder_2 is not None:
507
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
508
+ else:
509
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
510
+
511
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
512
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
513
+
514
+ pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
515
+ bs_embed * num_images_per_prompt, -1
516
+ )
517
+ if do_classifier_free_guidance:
518
+ negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
519
+ bs_embed * num_images_per_prompt, -1
520
+ )
521
+
522
+ if self.text_encoder is not None:
523
+ if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
524
+ # Retrieve the original scale by scaling back the LoRA layers
525
+ unscale_lora_layers(self.text_encoder, lora_scale)
526
+
527
+ if self.text_encoder_2 is not None:
528
+ if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
529
+ # Retrieve the original scale by scaling back the LoRA layers
530
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
531
+
532
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
533
+
534
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
535
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
536
+ dtype = next(self.image_encoder.parameters()).dtype
537
+
538
+ if not isinstance(image, torch.Tensor):
539
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
540
+
541
+ image = image.to(device=device, dtype=dtype)
542
+ if output_hidden_states:
543
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
544
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
545
+ uncond_image_enc_hidden_states = self.image_encoder(
546
+ torch.zeros_like(image), output_hidden_states=True
547
+ ).hidden_states[-2]
548
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
549
+ num_images_per_prompt, dim=0
550
+ )
551
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
552
+ else:
553
+ image_embeds = self.image_encoder(image).image_embeds
554
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
555
+ uncond_image_embeds = torch.zeros_like(image_embeds)
556
+
557
+ return image_embeds, uncond_image_embeds
558
+
559
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
560
+ def prepare_ip_adapter_image_embeds(
561
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
562
+ ):
563
+ image_embeds = []
564
+ if do_classifier_free_guidance:
565
+ negative_image_embeds = []
566
+ if ip_adapter_image_embeds is None:
567
+ if not isinstance(ip_adapter_image, list):
568
+ ip_adapter_image = [ip_adapter_image]
569
+
570
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
571
+ raise ValueError(
572
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
573
+ )
574
+
575
+ for single_ip_adapter_image, image_proj_layer in zip(
576
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
577
+ ):
578
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
579
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
580
+ single_ip_adapter_image, device, 1, output_hidden_state
581
+ )
582
+
583
+ image_embeds.append(single_image_embeds[None, :])
584
+ if do_classifier_free_guidance:
585
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
586
+ else:
587
+ for single_image_embeds in ip_adapter_image_embeds:
588
+ if do_classifier_free_guidance:
589
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
590
+ negative_image_embeds.append(single_negative_image_embeds)
591
+ image_embeds.append(single_image_embeds)
592
+
593
+ ip_adapter_image_embeds = []
594
+ for i, single_image_embeds in enumerate(image_embeds):
595
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
596
+ if do_classifier_free_guidance:
597
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
598
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
599
+
600
+ single_image_embeds = single_image_embeds.to(device=device)
601
+ ip_adapter_image_embeds.append(single_image_embeds)
602
+
603
+ return ip_adapter_image_embeds
604
+
605
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
606
+ def prepare_extra_step_kwargs(self, generator, eta):
607
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
608
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
609
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
610
+ # and should be between [0, 1]
611
+
612
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
613
+ extra_step_kwargs = {}
614
+ if accepts_eta:
615
+ extra_step_kwargs["eta"] = eta
616
+
617
+ # check if the scheduler accepts generator
618
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
619
+ if accepts_generator:
620
+ extra_step_kwargs["generator"] = generator
621
+ return extra_step_kwargs
622
+
623
+ def check_inputs(
624
+ self,
625
+ prompt,
626
+ prompt_2,
627
+ image,
628
+ strength,
629
+ num_inference_steps,
630
+ callback_steps,
631
+ negative_prompt=None,
632
+ negative_prompt_2=None,
633
+ prompt_embeds=None,
634
+ negative_prompt_embeds=None,
635
+ pooled_prompt_embeds=None,
636
+ negative_pooled_prompt_embeds=None,
637
+ ip_adapter_image=None,
638
+ ip_adapter_image_embeds=None,
639
+ controlnet_conditioning_scale=1.0,
640
+ control_guidance_start=0.0,
641
+ control_guidance_end=1.0,
642
+ callback_on_step_end_tensor_inputs=None,
643
+ ):
644
+ if strength < 0 or strength > 1:
645
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
646
+ if num_inference_steps is None:
647
+ raise ValueError("`num_inference_steps` cannot be None.")
648
+ elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0:
649
+ raise ValueError(
650
+ f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type"
651
+ f" {type(num_inference_steps)}."
652
+ )
653
+
654
+ if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
655
+ raise ValueError(
656
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
657
+ f" {type(callback_steps)}."
658
+ )
659
+
660
+ if callback_on_step_end_tensor_inputs is not None and not all(
661
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
662
+ ):
663
+ raise ValueError(
664
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
665
+ )
666
+
667
+ if prompt is not None and prompt_embeds is not None:
668
+ raise ValueError(
669
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
670
+ " only forward one of the two."
671
+ )
672
+ elif prompt_2 is not None and prompt_embeds is not None:
673
+ raise ValueError(
674
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
675
+ " only forward one of the two."
676
+ )
677
+ elif prompt is None and prompt_embeds is None:
678
+ raise ValueError(
679
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
680
+ )
681
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
682
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
683
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
684
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
685
+
686
+ if negative_prompt is not None and negative_prompt_embeds is not None:
687
+ raise ValueError(
688
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
689
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
690
+ )
691
+ elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
692
+ raise ValueError(
693
+ f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
694
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
695
+ )
696
+
697
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
698
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
699
+ raise ValueError(
700
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
701
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
702
+ f" {negative_prompt_embeds.shape}."
703
+ )
704
+
705
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
706
+ raise ValueError(
707
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
708
+ )
709
+
710
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
711
+ raise ValueError(
712
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
713
+ )
714
+
715
+ # Check `image`
716
+ is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
717
+ self.controlnet, torch._dynamo.eval_frame.OptimizedModule
718
+ )
719
+ if (
720
+ isinstance(self.controlnet, ControlNetModel)
721
+ or is_compiled
722
+ and isinstance(self.controlnet._orig_mod, ControlNetModel)
723
+ ):
724
+ self.check_image(image, prompt, prompt_embeds)
725
+ elif (
726
+ isinstance(self.controlnet, ControlNetUnionModel)
727
+ or is_compiled
728
+ and isinstance(self.controlnet._orig_mod, ControlNetUnionModel)
729
+ ):
730
+ self.check_image(image, prompt, prompt_embeds)
731
+ else:
732
+ assert False
733
+
734
+ # Check `controlnet_conditioning_scale`
735
+ if (
736
+ isinstance(self.controlnet, ControlNetModel)
737
+ or is_compiled
738
+ and isinstance(self.controlnet._orig_mod, ControlNetModel)
739
+ ):
740
+ if not isinstance(controlnet_conditioning_scale, float):
741
+ raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
742
+
743
+ elif (
744
+ isinstance(self.controlnet, ControlNetUnionModel)
745
+ or is_compiled
746
+ and isinstance(self.controlnet._orig_mod, ControlNetUnionModel)
747
+ ):
748
+ if not isinstance(controlnet_conditioning_scale, float):
749
+ raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
750
+
751
+ else:
752
+ assert False
753
+
754
+ if not isinstance(control_guidance_start, (tuple, list)):
755
+ control_guidance_start = [control_guidance_start]
756
+
757
+ if not isinstance(control_guidance_end, (tuple, list)):
758
+ control_guidance_end = [control_guidance_end]
759
+
760
+ if len(control_guidance_start) != len(control_guidance_end):
761
+ raise ValueError(
762
+ f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
763
+ )
764
+
765
+ for start, end in zip(control_guidance_start, control_guidance_end):
766
+ if start >= end:
767
+ raise ValueError(
768
+ f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
769
+ )
770
+ if start < 0.0:
771
+ raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
772
+ if end > 1.0:
773
+ raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
774
+
775
+ if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
776
+ raise ValueError(
777
+ "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
778
+ )
779
+
780
+ if ip_adapter_image_embeds is not None:
781
+ if not isinstance(ip_adapter_image_embeds, list):
782
+ raise ValueError(
783
+ f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
784
+ )
785
+ elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
786
+ raise ValueError(
787
+ f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
788
+ )
789
+
790
+ # Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.check_image
791
+ def check_image(self, image, prompt, prompt_embeds):
792
+ image_is_pil = isinstance(image, PIL.Image.Image)
793
+ image_is_tensor = isinstance(image, torch.Tensor)
794
+ image_is_np = isinstance(image, np.ndarray)
795
+ image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
796
+ image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
797
+ image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
798
+
799
+ if (
800
+ not image_is_pil
801
+ and not image_is_tensor
802
+ and not image_is_np
803
+ and not image_is_pil_list
804
+ and not image_is_tensor_list
805
+ and not image_is_np_list
806
+ ):
807
+ raise TypeError(
808
+ f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
809
+ )
810
+
811
+ if image_is_pil:
812
+ image_batch_size = 1
813
+ else:
814
+ image_batch_size = len(image)
815
+
816
+ if prompt is not None and isinstance(prompt, str):
817
+ prompt_batch_size = 1
818
+ elif prompt is not None and isinstance(prompt, list):
819
+ prompt_batch_size = len(prompt)
820
+ elif prompt_embeds is not None:
821
+ prompt_batch_size = prompt_embeds.shape[0]
822
+
823
+ if image_batch_size != 1 and image_batch_size != prompt_batch_size:
824
+ raise ValueError(
825
+ f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
826
+ )
827
+
828
+ # Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.prepare_image
829
+ def prepare_control_image(
830
+ self,
831
+ image,
832
+ width,
833
+ height,
834
+ batch_size,
835
+ num_images_per_prompt,
836
+ device,
837
+ dtype,
838
+ do_classifier_free_guidance=False,
839
+ guess_mode=False,
840
+ ):
841
+ image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
842
+ image_batch_size = image.shape[0]
843
+
844
+ if image_batch_size == 1:
845
+ repeat_by = batch_size
846
+ else:
847
+ # image batch size is the same as prompt batch size
848
+ repeat_by = num_images_per_prompt
849
+
850
+ image = image.repeat_interleave(repeat_by, dim=0)
851
+
852
+ image = image.to(device=device, dtype=dtype)
853
+
854
+ if do_classifier_free_guidance and not guess_mode:
855
+ image = torch.cat([image] * 2)
856
+
857
+ return image
858
+
859
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
860
+ def get_timesteps(self, num_inference_steps, strength, device):
861
+ # get the original timestep using init_timestep
862
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
863
+
864
+ t_start = max(num_inference_steps - init_timestep, 0)
865
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
866
+ if hasattr(self.scheduler, "set_begin_index"):
867
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
868
+
869
+ return timesteps, num_inference_steps - t_start
870
+
871
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.prepare_latents
872
+ def prepare_latents(
873
+ self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None, add_noise=True
874
+ ):
875
+ if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
876
+ raise ValueError(
877
+ f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
878
+ )
879
+
880
+ latents_mean = latents_std = None
881
+ if hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None:
882
+ latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1)
883
+ if hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None:
884
+ latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1)
885
+
886
+ # Offload text encoder if `enable_model_cpu_offload` was enabled
887
+ if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
888
+ self.text_encoder_2.to("cpu")
889
+ torch.cuda.empty_cache()
890
+
891
+ image = image.to(device=device, dtype=dtype)
892
+
893
+ batch_size = batch_size * num_images_per_prompt
894
+
895
+ if image.shape[1] == 4:
896
+ init_latents = image
897
+
898
+ else:
899
+ # make sure the VAE is in float32 mode, as it overflows in float16
900
+ if self.vae.config.force_upcast:
901
+ image = image.float()
902
+ self.vae.to(dtype=torch.float32)
903
+
904
+ if isinstance(generator, list) and len(generator) != batch_size:
905
+ raise ValueError(
906
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
907
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
908
+ )
909
+
910
+ elif isinstance(generator, list):
911
+ if image.shape[0] < batch_size and batch_size % image.shape[0] == 0:
912
+ image = torch.cat([image] * (batch_size // image.shape[0]), dim=0)
913
+ elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0:
914
+ raise ValueError(
915
+ f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} "
916
+ )
917
+
918
+ init_latents = [
919
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
920
+ for i in range(batch_size)
921
+ ]
922
+ init_latents = torch.cat(init_latents, dim=0)
923
+ else:
924
+ init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
925
+
926
+ if self.vae.config.force_upcast:
927
+ self.vae.to(dtype)
928
+
929
+ init_latents = init_latents.to(dtype)
930
+ if latents_mean is not None and latents_std is not None:
931
+ latents_mean = latents_mean.to(device=device, dtype=dtype)
932
+ latents_std = latents_std.to(device=device, dtype=dtype)
933
+ init_latents = (init_latents - latents_mean) * self.vae.config.scaling_factor / latents_std
934
+ else:
935
+ init_latents = self.vae.config.scaling_factor * init_latents
936
+
937
+ if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
938
+ # expand init_latents for batch_size
939
+ additional_image_per_prompt = batch_size // init_latents.shape[0]
940
+ init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
941
+ elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
942
+ raise ValueError(
943
+ f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
944
+ )
945
+ else:
946
+ init_latents = torch.cat([init_latents], dim=0)
947
+
948
+ if add_noise:
949
+ shape = init_latents.shape
950
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
951
+ # get latents
952
+ init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
953
+
954
+ latents = init_latents
955
+
956
+ return latents
957
+
958
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline._get_add_time_ids
959
+ def _get_add_time_ids(
960
+ self,
961
+ original_size,
962
+ crops_coords_top_left,
963
+ target_size,
964
+ aesthetic_score,
965
+ negative_aesthetic_score,
966
+ negative_original_size,
967
+ negative_crops_coords_top_left,
968
+ negative_target_size,
969
+ dtype,
970
+ text_encoder_projection_dim=None,
971
+ ):
972
+ if self.config.requires_aesthetics_score:
973
+ add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,))
974
+ add_neg_time_ids = list(
975
+ negative_original_size + negative_crops_coords_top_left + (negative_aesthetic_score,)
976
+ )
977
+ else:
978
+ add_time_ids = list(original_size + crops_coords_top_left + target_size)
979
+ add_neg_time_ids = list(negative_original_size + crops_coords_top_left + negative_target_size)
980
+
981
+ passed_add_embed_dim = (
982
+ self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
983
+ )
984
+ expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
985
+
986
+ if (
987
+ expected_add_embed_dim > passed_add_embed_dim
988
+ and (expected_add_embed_dim - passed_add_embed_dim) == self.unet.config.addition_time_embed_dim
989
+ ):
990
+ raise ValueError(
991
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model."
992
+ )
993
+ elif (
994
+ expected_add_embed_dim < passed_add_embed_dim
995
+ and (passed_add_embed_dim - expected_add_embed_dim) == self.unet.config.addition_time_embed_dim
996
+ ):
997
+ raise ValueError(
998
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model."
999
+ )
1000
+ elif expected_add_embed_dim != passed_add_embed_dim:
1001
+ raise ValueError(
1002
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
1003
+ )
1004
+
1005
+ add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
1006
+ add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype)
1007
+
1008
+ return add_time_ids, add_neg_time_ids
1009
+
1010
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
1011
+ def upcast_vae(self):
1012
+ dtype = self.vae.dtype
1013
+ self.vae.to(dtype=torch.float32)
1014
+ use_torch_2_0_or_xformers = isinstance(
1015
+ self.vae.decoder.mid_block.attentions[0].processor,
1016
+ (
1017
+ AttnProcessor2_0,
1018
+ XFormersAttnProcessor,
1019
+ ),
1020
+ )
1021
+ # if xformers or torch_2_0 is used attention block does not need
1022
+ # to be in float32 which can save lots of memory
1023
+ if use_torch_2_0_or_xformers:
1024
+ self.vae.post_quant_conv.to(dtype)
1025
+ self.vae.decoder.conv_in.to(dtype)
1026
+ self.vae.decoder.mid_block.to(dtype)
1027
+
1028
+ @property
1029
+ def guidance_scale(self):
1030
+ return self._guidance_scale
1031
+
1032
+ @property
1033
+ def clip_skip(self):
1034
+ return self._clip_skip
1035
+
1036
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
1037
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
1038
+ # corresponds to doing no classifier free guidance.
1039
+ @property
1040
+ def do_classifier_free_guidance(self):
1041
+ return self._guidance_scale > 1
1042
+
1043
+ @property
1044
+ def cross_attention_kwargs(self):
1045
+ return self._cross_attention_kwargs
1046
+
1047
+ @property
1048
+ def num_timesteps(self):
1049
+ return self._num_timesteps
1050
+
1051
+ @property
1052
+ def interrupt(self):
1053
+ return self._interrupt
1054
+
1055
+ @torch.no_grad()
1056
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
1057
+ def __call__(
1058
+ self,
1059
+ prompt: Union[str, List[str]] = None,
1060
+ prompt_2: Optional[Union[str, List[str]]] = None,
1061
+ image: PipelineImageInput = None,
1062
+ control_image: PipelineImageInput = None,
1063
+ height: Optional[int] = None,
1064
+ width: Optional[int] = None,
1065
+ strength: float = 0.8,
1066
+ num_inference_steps: int = 50,
1067
+ guidance_scale: float = 5.0,
1068
+ negative_prompt: Optional[Union[str, List[str]]] = None,
1069
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
1070
+ num_images_per_prompt: Optional[int] = 1,
1071
+ eta: float = 0.0,
1072
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
1073
+ latents: Optional[torch.Tensor] = None,
1074
+ prompt_embeds: Optional[torch.Tensor] = None,
1075
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
1076
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
1077
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
1078
+ ip_adapter_image: Optional[PipelineImageInput] = None,
1079
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
1080
+ output_type: Optional[str] = "pil",
1081
+ return_dict: bool = True,
1082
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
1083
+ controlnet_conditioning_scale: Union[float, List[float]] = 0.8,
1084
+ guess_mode: bool = False,
1085
+ control_guidance_start: Union[float, List[float]] = 0.0,
1086
+ control_guidance_end: Union[float, List[float]] = 1.0,
1087
+ control_mode: Optional[Union[int, List[int]]] = None,
1088
+ original_size: Tuple[int, int] = None,
1089
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
1090
+ target_size: Tuple[int, int] = None,
1091
+ negative_original_size: Optional[Tuple[int, int]] = None,
1092
+ negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
1093
+ negative_target_size: Optional[Tuple[int, int]] = None,
1094
+ aesthetic_score: float = 6.0,
1095
+ negative_aesthetic_score: float = 2.5,
1096
+ clip_skip: Optional[int] = None,
1097
+ callback_on_step_end: Optional[
1098
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
1099
+ ] = None,
1100
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
1101
+ **kwargs,
1102
+ ):
1103
+ r"""
1104
+ Function invoked when calling the pipeline for generation.
1105
+
1106
+ Args:
1107
+ prompt (`str` or `List[str]`, *optional*):
1108
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
1109
+ instead.
1110
+ prompt_2 (`str` or `List[str]`, *optional*):
1111
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
1112
+ used in both text-encoders
1113
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
1114
+ `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
1115
+ The initial image will be used as the starting point for the image generation process. Can also accept
1116
+ image latents as `image`, if passing latents directly, it will not be encoded again.
1117
+ control_image (`PipelineImageInput`):
1118
+ The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
1119
+ the type is specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also
1120
+ be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
1121
+ and/or width are passed, `image` is resized according to them. If multiple ControlNets are specified in
1122
+ init, images must be passed as a list such that each element of the list can be correctly batched for
1123
+ input to a single controlnet.
1124
+ height (`int`, *optional*, defaults to the size of control_image):
1125
+ The height in pixels of the generated image. Anything below 512 pixels won't work well for
1126
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
1127
+ and checkpoints that are not specifically fine-tuned on low resolutions.
1128
+ width (`int`, *optional*, defaults to the size of control_image):
1129
+ The width in pixels of the generated image. Anything below 512 pixels won't work well for
1130
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
1131
+ and checkpoints that are not specifically fine-tuned on low resolutions.
1132
+ strength (`float`, *optional*, defaults to 0.8):
1133
+ Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
1134
+ starting point and more noise is added the higher the `strength`. The number of denoising steps depends
1135
+ on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
1136
+ process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
1137
+ essentially ignores `image`.
1138
+ num_inference_steps (`int`, *optional*, defaults to 50):
1139
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
1140
+ expense of slower inference.
1141
+ guidance_scale (`float`, *optional*, defaults to 7.5):
1142
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
1143
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
1144
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1145
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
1146
+ usually at the expense of lower image quality.
1147
+ negative_prompt (`str` or `List[str]`, *optional*):
1148
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
1149
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
1150
+ less than `1`).
1151
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
1152
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
1153
+ `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
1154
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
1155
+ The number of images to generate per prompt.
1156
+ eta (`float`, *optional*, defaults to 0.0):
1157
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
1158
+ [`schedulers.DDIMScheduler`], will be ignored for others.
1159
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
1160
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
1161
+ to make generation deterministic.
1162
+ latents (`torch.Tensor`, *optional*):
1163
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
1164
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
1165
+ tensor will ge generated by sampling using the supplied random `generator`.
1166
+ prompt_embeds (`torch.Tensor`, *optional*):
1167
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
1168
+ provided, text embeddings will be generated from `prompt` input argument.
1169
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
1170
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
1171
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
1172
+ argument.
1173
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
1174
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
1175
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
1176
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
1177
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
1178
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
1179
+ input argument.
1180
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
1181
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
1182
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
1183
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
1184
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
1185
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
1186
+ output_type (`str`, *optional*, defaults to `"pil"`):
1187
+ The output format of the generate image. Choose between
1188
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
1189
+ return_dict (`bool`, *optional*, defaults to `True`):
1190
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
1191
+ plain tuple.
1192
+ cross_attention_kwargs (`dict`, *optional*):
1193
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
1194
+ `self.processor` in
1195
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
1196
+ controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
1197
+ The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
1198
+ to the residual in the original unet. If multiple ControlNets are specified in init, you can set the
1199
+ corresponding scale as a list.
1200
+ guess_mode (`bool`, *optional*, defaults to `False`):
1201
+ In this mode, the ControlNet encoder will try best to recognize the content of the input image even if
1202
+ you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
1203
+ control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
1204
+ The percentage of total steps at which the controlnet starts applying.
1205
+ control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
1206
+ The percentage of total steps at which the controlnet stops applying.
1207
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1208
+ If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
1209
+ `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
1210
+ explained in section 2.2 of
1211
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1212
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
1213
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
1214
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
1215
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
1216
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1217
+ target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1218
+ For most cases, `target_size` should be set to the desired height and width of the generated image. If
1219
+ not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
1220
+ section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1221
+ negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1222
+ To negatively condition the generation process based on a specific image resolution. Part of SDXL's
1223
+ micro-conditioning as explained in section 2.2 of
1224
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
1225
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
1226
+ negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
1227
+ To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
1228
+ micro-conditioning as explained in section 2.2 of
1229
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
1230
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
1231
+ negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1232
+ To negatively condition the generation process based on a target image resolution. It should be as same
1233
+ as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
1234
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
1235
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
1236
+ aesthetic_score (`float`, *optional*, defaults to 6.0):
1237
+ Used to simulate an aesthetic score of the generated image by influencing the positive text condition.
1238
+ Part of SDXL's micro-conditioning as explained in section 2.2 of
1239
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1240
+ negative_aesthetic_score (`float`, *optional*, defaults to 2.5):
1241
+ Part of SDXL's micro-conditioning as explained in section 2.2 of
1242
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to
1243
+ simulate an aesthetic score of the generated image by influencing the negative text condition.
1244
+ clip_skip (`int`, *optional*):
1245
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
1246
+ the output of the pre-final layer will be used for computing the prompt embeddings.
1247
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
1248
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
1249
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
1250
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
1251
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
1252
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
1253
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
1254
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
1255
+ `._callback_tensor_inputs` attribute of your pipeline class.
1256
+
1257
+ Examples:
1258
+
1259
+ Returns:
1260
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
1261
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple`
1262
+ containing the output images.
1263
+ """
1264
+
1265
+ callback = kwargs.pop("callback", None)
1266
+ callback_steps = kwargs.pop("callback_steps", None)
1267
+
1268
+ if callback is not None:
1269
+ deprecate(
1270
+ "callback",
1271
+ "1.0.0",
1272
+ "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
1273
+ )
1274
+ if callback_steps is not None:
1275
+ deprecate(
1276
+ "callback_steps",
1277
+ "1.0.0",
1278
+ "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
1279
+ )
1280
+
1281
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
1282
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
1283
+
1284
+ controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
1285
+
1286
+ # align format for control guidance
1287
+ if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
1288
+ control_guidance_start = len(control_guidance_end) * [control_guidance_start]
1289
+ elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
1290
+ control_guidance_end = len(control_guidance_start) * [control_guidance_end]
1291
+
1292
+ if not isinstance(control_image, list):
1293
+ control_image = [control_image]
1294
+
1295
+ if not isinstance(control_mode, list):
1296
+ control_mode = [control_mode]
1297
+
1298
+ if len(control_image) != len(control_mode):
1299
+ raise ValueError("Expected len(control_image) == len(control_type)")
1300
+
1301
+ num_control_type = controlnet.config.num_control_type
1302
+
1303
+ # 1. Check inputs
1304
+ control_type = [0 for _ in range(num_control_type)]
1305
+ for _image, control_idx in zip(control_image, control_mode):
1306
+ control_type[control_idx] = 1
1307
+ self.check_inputs(
1308
+ prompt,
1309
+ prompt_2,
1310
+ _image,
1311
+ strength,
1312
+ num_inference_steps,
1313
+ callback_steps,
1314
+ negative_prompt,
1315
+ negative_prompt_2,
1316
+ prompt_embeds,
1317
+ negative_prompt_embeds,
1318
+ pooled_prompt_embeds,
1319
+ negative_pooled_prompt_embeds,
1320
+ ip_adapter_image,
1321
+ ip_adapter_image_embeds,
1322
+ controlnet_conditioning_scale,
1323
+ control_guidance_start,
1324
+ control_guidance_end,
1325
+ callback_on_step_end_tensor_inputs,
1326
+ )
1327
+
1328
+ control_type = torch.Tensor(control_type)
1329
+
1330
+ self._guidance_scale = guidance_scale
1331
+ self._clip_skip = clip_skip
1332
+ self._cross_attention_kwargs = cross_attention_kwargs
1333
+ self._interrupt = False
1334
+
1335
+ # 2. Define call parameters
1336
+ if prompt is not None and isinstance(prompt, str):
1337
+ batch_size = 1
1338
+ elif prompt is not None and isinstance(prompt, list):
1339
+ batch_size = len(prompt)
1340
+ else:
1341
+ batch_size = prompt_embeds.shape[0]
1342
+
1343
+ device = self._execution_device
1344
+
1345
+ global_pool_conditions = controlnet.config.global_pool_conditions
1346
+ guess_mode = guess_mode or global_pool_conditions
1347
+
1348
+ # 3.1. Encode input prompt
1349
+ text_encoder_lora_scale = (
1350
+ self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
1351
+ )
1352
+ (
1353
+ prompt_embeds,
1354
+ negative_prompt_embeds,
1355
+ pooled_prompt_embeds,
1356
+ negative_pooled_prompt_embeds,
1357
+ ) = self.encode_prompt(
1358
+ prompt,
1359
+ prompt_2,
1360
+ device,
1361
+ num_images_per_prompt,
1362
+ self.do_classifier_free_guidance,
1363
+ negative_prompt,
1364
+ negative_prompt_2,
1365
+ prompt_embeds=prompt_embeds,
1366
+ negative_prompt_embeds=negative_prompt_embeds,
1367
+ pooled_prompt_embeds=pooled_prompt_embeds,
1368
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
1369
+ lora_scale=text_encoder_lora_scale,
1370
+ clip_skip=self.clip_skip,
1371
+ )
1372
+
1373
+ # 3.2 Encode ip_adapter_image
1374
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1375
+ image_embeds = self.prepare_ip_adapter_image_embeds(
1376
+ ip_adapter_image,
1377
+ ip_adapter_image_embeds,
1378
+ device,
1379
+ batch_size * num_images_per_prompt,
1380
+ self.do_classifier_free_guidance,
1381
+ )
1382
+
1383
+ # 4. Prepare image and controlnet_conditioning_image
1384
+ image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
1385
+
1386
+ for idx, _ in enumerate(control_image):
1387
+ control_image[idx] = self.prepare_control_image(
1388
+ image=control_image[idx],
1389
+ width=width,
1390
+ height=height,
1391
+ batch_size=batch_size * num_images_per_prompt,
1392
+ num_images_per_prompt=num_images_per_prompt,
1393
+ device=device,
1394
+ dtype=controlnet.dtype,
1395
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1396
+ guess_mode=guess_mode,
1397
+ )
1398
+ height, width = control_image[idx].shape[-2:]
1399
+
1400
+ # 5. Prepare timesteps
1401
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
1402
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
1403
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
1404
+ self._num_timesteps = len(timesteps)
1405
+
1406
+ # 6. Prepare latent variables
1407
+ if latents is None:
1408
+ latents = self.prepare_latents(
1409
+ image,
1410
+ latent_timestep,
1411
+ batch_size,
1412
+ num_images_per_prompt,
1413
+ prompt_embeds.dtype,
1414
+ device,
1415
+ generator,
1416
+ True,
1417
+ )
1418
+
1419
+ # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
1420
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1421
+
1422
+ # 7.1 Create tensor stating which controlnets to keep
1423
+ controlnet_keep = []
1424
+ for i in range(len(timesteps)):
1425
+ controlnet_keep.append(
1426
+ 1.0
1427
+ - float(i / len(timesteps) < control_guidance_start or (i + 1) / len(timesteps) > control_guidance_end)
1428
+ )
1429
+
1430
+ # 7.2 Prepare added time ids & embeddings
1431
+ original_size = original_size or (height, width)
1432
+ target_size = target_size or (height, width)
1433
+ for _image in control_image:
1434
+ if isinstance(_image, torch.Tensor):
1435
+ original_size = original_size or _image.shape[-2:]
1436
+
1437
+ if negative_original_size is None:
1438
+ negative_original_size = original_size
1439
+ if negative_target_size is None:
1440
+ negative_target_size = target_size
1441
+ add_text_embeds = pooled_prompt_embeds
1442
+
1443
+ if self.text_encoder_2 is None:
1444
+ text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
1445
+ else:
1446
+ text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
1447
+
1448
+ add_time_ids, add_neg_time_ids = self._get_add_time_ids(
1449
+ original_size,
1450
+ crops_coords_top_left,
1451
+ target_size,
1452
+ aesthetic_score,
1453
+ negative_aesthetic_score,
1454
+ negative_original_size,
1455
+ negative_crops_coords_top_left,
1456
+ negative_target_size,
1457
+ dtype=prompt_embeds.dtype,
1458
+ text_encoder_projection_dim=text_encoder_projection_dim,
1459
+ )
1460
+ add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
1461
+
1462
+ if self.do_classifier_free_guidance:
1463
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
1464
+ add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
1465
+ add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
1466
+ add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
1467
+
1468
+ prompt_embeds = prompt_embeds.to(device)
1469
+ add_text_embeds = add_text_embeds.to(device)
1470
+ add_time_ids = add_time_ids.to(device)
1471
+ control_type = (
1472
+ control_type.reshape(1, -1)
1473
+ .to(device, dtype=prompt_embeds.dtype)
1474
+ .repeat(batch_size * num_images_per_prompt * 2, 1)
1475
+ )
1476
+
1477
+ # 8. Denoising loop
1478
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
1479
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1480
+ for i, t in enumerate(timesteps):
1481
+ if self.interrupt:
1482
+ continue
1483
+
1484
+ # expand the latents if we are doing classifier free guidance
1485
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1486
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1487
+
1488
+ added_cond_kwargs = {
1489
+ "text_embeds": add_text_embeds,
1490
+ "time_ids": add_time_ids,
1491
+ }
1492
+
1493
+ # controlnet(s) inference
1494
+ if guess_mode and self.do_classifier_free_guidance:
1495
+ # Infer ControlNet only for the conditional batch.
1496
+ control_model_input = latents
1497
+ control_model_input = self.scheduler.scale_model_input(control_model_input, t)
1498
+ controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
1499
+ controlnet_added_cond_kwargs = {
1500
+ "text_embeds": add_text_embeds.chunk(2)[1],
1501
+ "time_ids": add_time_ids.chunk(2)[1],
1502
+ }
1503
+ else:
1504
+ control_model_input = latent_model_input
1505
+ controlnet_prompt_embeds = prompt_embeds
1506
+ controlnet_added_cond_kwargs = added_cond_kwargs
1507
+
1508
+ if isinstance(controlnet_keep[i], list):
1509
+ cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
1510
+ else:
1511
+ controlnet_cond_scale = controlnet_conditioning_scale
1512
+ if isinstance(controlnet_cond_scale, list):
1513
+ controlnet_cond_scale = controlnet_cond_scale[0]
1514
+ cond_scale = controlnet_cond_scale * controlnet_keep[i]
1515
+ down_block_res_samples, mid_block_res_sample = self.controlnet(
1516
+ control_model_input,
1517
+ t,
1518
+ encoder_hidden_states=controlnet_prompt_embeds,
1519
+ controlnet_cond=control_image,
1520
+ control_type=control_type,
1521
+ control_type_idx=control_mode,
1522
+ conditioning_scale=cond_scale,
1523
+ guess_mode=guess_mode,
1524
+ added_cond_kwargs=controlnet_added_cond_kwargs,
1525
+ return_dict=False,
1526
+ )
1527
+
1528
+ if guess_mode and self.do_classifier_free_guidance:
1529
+ # Inferred ControlNet only for the conditional batch.
1530
+ # To apply the output of ControlNet to both the unconditional and conditional batches,
1531
+ # add 0 to the unconditional batch to keep it unchanged.
1532
+ down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
1533
+ mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
1534
+
1535
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1536
+ added_cond_kwargs["image_embeds"] = image_embeds
1537
+
1538
+ # predict the noise residual
1539
+ noise_pred = self.unet(
1540
+ latent_model_input,
1541
+ t,
1542
+ encoder_hidden_states=prompt_embeds,
1543
+ cross_attention_kwargs=self.cross_attention_kwargs,
1544
+ down_block_additional_residuals=down_block_res_samples,
1545
+ mid_block_additional_residual=mid_block_res_sample,
1546
+ added_cond_kwargs=added_cond_kwargs,
1547
+ return_dict=False,
1548
+ )[0]
1549
+
1550
+ # perform guidance
1551
+ if self.do_classifier_free_guidance:
1552
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1553
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
1554
+
1555
+ # compute the previous noisy sample x_t -> x_t-1
1556
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1557
+
1558
+ if callback_on_step_end is not None:
1559
+ callback_kwargs = {}
1560
+ for k in callback_on_step_end_tensor_inputs:
1561
+ callback_kwargs[k] = locals()[k]
1562
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1563
+
1564
+ latents = callback_outputs.pop("latents", latents)
1565
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1566
+ add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
1567
+ add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
1568
+
1569
+ # call the callback, if provided
1570
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1571
+ progress_bar.update()
1572
+ if callback is not None and i % callback_steps == 0:
1573
+ step_idx = i // getattr(self.scheduler, "order", 1)
1574
+ callback(step_idx, t, latents)
1575
+
1576
+ # If we do sequential model offloading, let's offload unet and controlnet
1577
+ # manually for max memory savings
1578
+ if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
1579
+ self.unet.to("cpu")
1580
+ self.controlnet.to("cpu")
1581
+ torch.cuda.empty_cache()
1582
+
1583
+ if not output_type == "latent":
1584
+ # make sure the VAE is in float32 mode, as it overflows in float16
1585
+ needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
1586
+
1587
+ if needs_upcasting:
1588
+ self.upcast_vae()
1589
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
1590
+
1591
+ # unscale/denormalize the latents
1592
+ # denormalize with the mean and std if available and not None
1593
+ has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
1594
+ has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
1595
+ if has_latents_mean and has_latents_std:
1596
+ latents_mean = (
1597
+ torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
1598
+ )
1599
+ latents_std = (
1600
+ torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
1601
+ )
1602
+ latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
1603
+ else:
1604
+ latents = latents / self.vae.config.scaling_factor
1605
+
1606
+ image = self.vae.decode(latents, return_dict=False)[0]
1607
+
1608
+ # cast back to fp16 if needed
1609
+ if needs_upcasting:
1610
+ self.vae.to(dtype=torch.float16)
1611
+ else:
1612
+ image = latents
1613
+ return StableDiffusionXLPipelineOutput(images=image)
1614
+
1615
+ # apply watermark if available
1616
+ if self.watermark is not None:
1617
+ image = self.watermark.apply_watermark(image)
1618
+
1619
+ image = self.image_processor.postprocess(image, output_type=output_type)
1620
+
1621
+ # Offload all models
1622
+ self.maybe_free_model_hooks()
1623
+
1624
+ if not return_dict:
1625
+ return (image,)
1626
+
1627
+ return StableDiffusionXLPipelineOutput(images=image)