diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,886 @@
1
+ # Copyright 2024 PixArt-Sigma Authors and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import html
16
+ import inspect
17
+ import re
18
+ import urllib.parse as ul
19
+ from typing import Callable, Dict, List, Optional, Tuple, Union
20
+
21
+ import torch
22
+ from transformers import AutoModelForCausalLM, AutoTokenizer
23
+
24
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
25
+ from ...image_processor import PixArtImageProcessor
26
+ from ...models import AutoencoderDC, SanaTransformer2DModel
27
+ from ...models.attention_processor import PAGCFGSanaLinearAttnProcessor2_0, PAGIdentitySanaLinearAttnProcessor2_0
28
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
29
+ from ...utils import (
30
+ BACKENDS_MAPPING,
31
+ is_bs4_available,
32
+ is_ftfy_available,
33
+ logging,
34
+ replace_example_docstring,
35
+ )
36
+ from ...utils.torch_utils import randn_tensor
37
+ from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
38
+ from ..pixart_alpha.pipeline_pixart_alpha import (
39
+ ASPECT_RATIO_512_BIN,
40
+ ASPECT_RATIO_1024_BIN,
41
+ )
42
+ from ..pixart_alpha.pipeline_pixart_sigma import ASPECT_RATIO_2048_BIN
43
+ from .pag_utils import PAGMixin
44
+
45
+
46
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
47
+
48
+ if is_bs4_available():
49
+ from bs4 import BeautifulSoup
50
+
51
+ if is_ftfy_available():
52
+ import ftfy
53
+
54
+
55
+ EXAMPLE_DOC_STRING = """
56
+ Examples:
57
+ ```py
58
+ >>> import torch
59
+ >>> from diffusers import SanaPAGPipeline
60
+
61
+ >>> pipe = SanaPAGPipeline.from_pretrained(
62
+ ... "Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers",
63
+ ... pag_applied_layers=["transformer_blocks.8"],
64
+ ... torch_dtype=torch.float32,
65
+ ... )
66
+ >>> pipe.to("cuda")
67
+ >>> pipe.text_encoder.to(torch.bfloat16)
68
+ >>> pipe.transformer = pipe.transformer.to(torch.bfloat16)
69
+
70
+ >>> image = pipe(prompt='a cyberpunk cat with a neon sign that says "Sana"')[0]
71
+ >>> image[0].save("output.png")
72
+ ```
73
+ """
74
+
75
+
76
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
77
+ def retrieve_timesteps(
78
+ scheduler,
79
+ num_inference_steps: Optional[int] = None,
80
+ device: Optional[Union[str, torch.device]] = None,
81
+ timesteps: Optional[List[int]] = None,
82
+ sigmas: Optional[List[float]] = None,
83
+ **kwargs,
84
+ ):
85
+ r"""
86
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
87
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
88
+
89
+ Args:
90
+ scheduler (`SchedulerMixin`):
91
+ The scheduler to get timesteps from.
92
+ num_inference_steps (`int`):
93
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
94
+ must be `None`.
95
+ device (`str` or `torch.device`, *optional*):
96
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
97
+ timesteps (`List[int]`, *optional*):
98
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
99
+ `num_inference_steps` and `sigmas` must be `None`.
100
+ sigmas (`List[float]`, *optional*):
101
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
102
+ `num_inference_steps` and `timesteps` must be `None`.
103
+
104
+ Returns:
105
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
106
+ second element is the number of inference steps.
107
+ """
108
+ if timesteps is not None and sigmas is not None:
109
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
110
+ if timesteps is not None:
111
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
112
+ if not accepts_timesteps:
113
+ raise ValueError(
114
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
115
+ f" timestep schedules. Please check whether you are using the correct scheduler."
116
+ )
117
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
118
+ timesteps = scheduler.timesteps
119
+ num_inference_steps = len(timesteps)
120
+ elif sigmas is not None:
121
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
122
+ if not accept_sigmas:
123
+ raise ValueError(
124
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
125
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
126
+ )
127
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
128
+ timesteps = scheduler.timesteps
129
+ num_inference_steps = len(timesteps)
130
+ else:
131
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
132
+ timesteps = scheduler.timesteps
133
+ return timesteps, num_inference_steps
134
+
135
+
136
+ class SanaPAGPipeline(DiffusionPipeline, PAGMixin):
137
+ r"""
138
+ Pipeline for text-to-image generation using [Sana](https://huggingface.co/papers/2410.10629). This pipeline
139
+ supports the use of [Perturbed Attention Guidance
140
+ (PAG)](https://huggingface.co/docs/diffusers/main/en/using-diffusers/pag).
141
+ """
142
+
143
+ # fmt: off
144
+ bad_punct_regex = re.compile(r"[" + "#®•©™&@·º½¾¿¡§~" + r"\)" + r"\(" + r"\]" + r"\[" + r"\}" + r"\{" + r"\|" + "\\" + r"\/" + r"\*" + r"]{1,}")
145
+ # fmt: on
146
+
147
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
148
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
149
+
150
+ def __init__(
151
+ self,
152
+ tokenizer: AutoTokenizer,
153
+ text_encoder: AutoModelForCausalLM,
154
+ vae: AutoencoderDC,
155
+ transformer: SanaTransformer2DModel,
156
+ scheduler: FlowMatchEulerDiscreteScheduler,
157
+ pag_applied_layers: Union[str, List[str]] = "transformer_blocks.0",
158
+ ):
159
+ super().__init__()
160
+
161
+ self.register_modules(
162
+ tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
163
+ )
164
+
165
+ self.vae_scale_factor = 2 ** (len(self.vae.config.encoder_block_out_channels) - 1)
166
+ self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor)
167
+
168
+ self.set_pag_applied_layers(
169
+ pag_applied_layers,
170
+ pag_attn_processors=(PAGCFGSanaLinearAttnProcessor2_0(), PAGIdentitySanaLinearAttnProcessor2_0()),
171
+ )
172
+
173
+ def encode_prompt(
174
+ self,
175
+ prompt: Union[str, List[str]],
176
+ do_classifier_free_guidance: bool = True,
177
+ negative_prompt: str = "",
178
+ num_images_per_prompt: int = 1,
179
+ device: Optional[torch.device] = None,
180
+ prompt_embeds: Optional[torch.Tensor] = None,
181
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
182
+ prompt_attention_mask: Optional[torch.Tensor] = None,
183
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
184
+ clean_caption: bool = False,
185
+ max_sequence_length: int = 300,
186
+ complex_human_instruction: Optional[List[str]] = None,
187
+ ):
188
+ r"""
189
+ Encodes the prompt into text encoder hidden states.
190
+
191
+ Args:
192
+ prompt (`str` or `List[str]`, *optional*):
193
+ prompt to be encoded
194
+ negative_prompt (`str` or `List[str]`, *optional*):
195
+ The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
196
+ instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
197
+ PixArt-Alpha, this should be "".
198
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
199
+ whether to use classifier free guidance or not
200
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
201
+ number of images that should be generated per prompt
202
+ device: (`torch.device`, *optional*):
203
+ torch device to place the resulting embeddings on
204
+ prompt_embeds (`torch.Tensor`, *optional*):
205
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
206
+ provided, text embeddings will be generated from `prompt` input argument.
207
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
208
+ Pre-generated negative text embeddings. For Sana, it's should be the embeddings of the "" string.
209
+ clean_caption (`bool`, defaults to `False`):
210
+ If `True`, the function will preprocess and clean the provided caption before encoding.
211
+ max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt.
212
+ complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`):
213
+ If `complex_human_instruction` is not empty, the function will use the complex Human instruction for
214
+ the prompt.
215
+ """
216
+
217
+ if device is None:
218
+ device = self._execution_device
219
+
220
+ if prompt is not None and isinstance(prompt, str):
221
+ batch_size = 1
222
+ elif prompt is not None and isinstance(prompt, list):
223
+ batch_size = len(prompt)
224
+ else:
225
+ batch_size = prompt_embeds.shape[0]
226
+
227
+ self.tokenizer.padding_side = "right"
228
+
229
+ # See Section 3.1. of the paper.
230
+ max_length = max_sequence_length
231
+ select_index = [0] + list(range(-max_length + 1, 0))
232
+
233
+ if prompt_embeds is None:
234
+ prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
235
+
236
+ # prepare complex human instruction
237
+ if not complex_human_instruction:
238
+ max_length_all = max_length
239
+ else:
240
+ chi_prompt = "\n".join(complex_human_instruction)
241
+ prompt = [chi_prompt + p for p in prompt]
242
+ num_chi_prompt_tokens = len(self.tokenizer.encode(chi_prompt))
243
+ max_length_all = num_chi_prompt_tokens + max_length - 2
244
+
245
+ text_inputs = self.tokenizer(
246
+ prompt,
247
+ padding="max_length",
248
+ max_length=max_length_all,
249
+ truncation=True,
250
+ add_special_tokens=True,
251
+ return_tensors="pt",
252
+ )
253
+ text_input_ids = text_inputs.input_ids
254
+
255
+ prompt_attention_mask = text_inputs.attention_mask
256
+ prompt_attention_mask = prompt_attention_mask.to(device)
257
+
258
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask)
259
+ prompt_embeds = prompt_embeds[0][:, select_index]
260
+ prompt_attention_mask = prompt_attention_mask[:, select_index]
261
+
262
+ if self.transformer is not None:
263
+ dtype = self.transformer.dtype
264
+ elif self.text_encoder is not None:
265
+ dtype = self.text_encoder.dtype
266
+ else:
267
+ dtype = None
268
+
269
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
270
+
271
+ bs_embed, seq_len, _ = prompt_embeds.shape
272
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
273
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
274
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
275
+ prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1)
276
+ prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
277
+
278
+ # get unconditional embeddings for classifier free guidance
279
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
280
+ uncond_tokens = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt
281
+ uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption)
282
+ max_length = prompt_embeds.shape[1]
283
+ uncond_input = self.tokenizer(
284
+ uncond_tokens,
285
+ padding="max_length",
286
+ max_length=max_length,
287
+ truncation=True,
288
+ return_attention_mask=True,
289
+ add_special_tokens=True,
290
+ return_tensors="pt",
291
+ )
292
+ negative_prompt_attention_mask = uncond_input.attention_mask
293
+ negative_prompt_attention_mask = negative_prompt_attention_mask.to(device)
294
+
295
+ negative_prompt_embeds = self.text_encoder(
296
+ uncond_input.input_ids.to(device), attention_mask=negative_prompt_attention_mask
297
+ )
298
+ negative_prompt_embeds = negative_prompt_embeds[0]
299
+
300
+ if do_classifier_free_guidance:
301
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
302
+ seq_len = negative_prompt_embeds.shape[1]
303
+
304
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
305
+
306
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
307
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
308
+
309
+ negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed, -1)
310
+ negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
311
+ else:
312
+ negative_prompt_embeds = None
313
+ negative_prompt_attention_mask = None
314
+
315
+ return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
316
+
317
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
318
+ def prepare_extra_step_kwargs(self, generator, eta):
319
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
320
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
321
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
322
+ # and should be between [0, 1]
323
+
324
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
325
+ extra_step_kwargs = {}
326
+ if accepts_eta:
327
+ extra_step_kwargs["eta"] = eta
328
+
329
+ # check if the scheduler accepts generator
330
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
331
+ if accepts_generator:
332
+ extra_step_kwargs["generator"] = generator
333
+ return extra_step_kwargs
334
+
335
+ # Copied from diffusers.pipelines.sana.pipeline_sana.SanaPipeline.check_inputs
336
+ def check_inputs(
337
+ self,
338
+ prompt,
339
+ height,
340
+ width,
341
+ callback_on_step_end_tensor_inputs=None,
342
+ negative_prompt=None,
343
+ prompt_embeds=None,
344
+ negative_prompt_embeds=None,
345
+ prompt_attention_mask=None,
346
+ negative_prompt_attention_mask=None,
347
+ ):
348
+ if height % 32 != 0 or width % 32 != 0:
349
+ raise ValueError(f"`height` and `width` have to be divisible by 32 but are {height} and {width}.")
350
+
351
+ if callback_on_step_end_tensor_inputs is not None and not all(
352
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
353
+ ):
354
+ raise ValueError(
355
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
356
+ )
357
+
358
+ if prompt is not None and prompt_embeds is not None:
359
+ raise ValueError(
360
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
361
+ " only forward one of the two."
362
+ )
363
+ elif prompt is None and prompt_embeds is None:
364
+ raise ValueError(
365
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
366
+ )
367
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
368
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
369
+
370
+ if prompt is not None and negative_prompt_embeds is not None:
371
+ raise ValueError(
372
+ f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
373
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
374
+ )
375
+
376
+ if negative_prompt is not None and negative_prompt_embeds is not None:
377
+ raise ValueError(
378
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
379
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
380
+ )
381
+
382
+ if prompt_embeds is not None and prompt_attention_mask is None:
383
+ raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
384
+
385
+ if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
386
+ raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
387
+
388
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
389
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
390
+ raise ValueError(
391
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
392
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
393
+ f" {negative_prompt_embeds.shape}."
394
+ )
395
+ if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
396
+ raise ValueError(
397
+ "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
398
+ f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
399
+ f" {negative_prompt_attention_mask.shape}."
400
+ )
401
+
402
+ # Copied from diffusers.pipelines.sana.pipeline_sana.SanaPipeline._text_preprocessing
403
+ def _text_preprocessing(self, text, clean_caption=False):
404
+ if clean_caption and not is_bs4_available():
405
+ logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
406
+ logger.warning("Setting `clean_caption` to False...")
407
+ clean_caption = False
408
+
409
+ if clean_caption and not is_ftfy_available():
410
+ logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
411
+ logger.warning("Setting `clean_caption` to False...")
412
+ clean_caption = False
413
+
414
+ if not isinstance(text, (tuple, list)):
415
+ text = [text]
416
+
417
+ def process(text: str):
418
+ if clean_caption:
419
+ text = self._clean_caption(text)
420
+ text = self._clean_caption(text)
421
+ else:
422
+ text = text.lower().strip()
423
+ return text
424
+
425
+ return [process(t) for t in text]
426
+
427
+ # Copied from diffusers.pipelines.sana.pipeline_sana.SanaPipeline._clean_caption
428
+ def _clean_caption(self, caption):
429
+ caption = str(caption)
430
+ caption = ul.unquote_plus(caption)
431
+ caption = caption.strip().lower()
432
+ caption = re.sub("<person>", "person", caption)
433
+ # urls:
434
+ caption = re.sub(
435
+ r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
436
+ "",
437
+ caption,
438
+ ) # regex for urls
439
+ caption = re.sub(
440
+ r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
441
+ "",
442
+ caption,
443
+ ) # regex for urls
444
+ # html:
445
+ caption = BeautifulSoup(caption, features="html.parser").text
446
+
447
+ # @<nickname>
448
+ caption = re.sub(r"@[\w\d]+\b", "", caption)
449
+
450
+ # 31C0—31EF CJK Strokes
451
+ # 31F0—31FF Katakana Phonetic Extensions
452
+ # 3200—32FF Enclosed CJK Letters and Months
453
+ # 3300—33FF CJK Compatibility
454
+ # 3400—4DBF CJK Unified Ideographs Extension A
455
+ # 4DC0—4DFF Yijing Hexagram Symbols
456
+ # 4E00—9FFF CJK Unified Ideographs
457
+ caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
458
+ caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
459
+ caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
460
+ caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
461
+ caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
462
+ caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
463
+ caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
464
+ #######################################################
465
+
466
+ # все виды тире / all types of dash --> "-"
467
+ caption = re.sub(
468
+ r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
469
+ "-",
470
+ caption,
471
+ )
472
+
473
+ # кавычки к одному стандарту
474
+ caption = re.sub(r"[`´«»“”¨]", '"', caption)
475
+ caption = re.sub(r"[‘’]", "'", caption)
476
+
477
+ # &quot;
478
+ caption = re.sub(r"&quot;?", "", caption)
479
+ # &amp
480
+ caption = re.sub(r"&amp", "", caption)
481
+
482
+ # ip adresses:
483
+ caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
484
+
485
+ # article ids:
486
+ caption = re.sub(r"\d:\d\d\s+$", "", caption)
487
+
488
+ # \n
489
+ caption = re.sub(r"\\n", " ", caption)
490
+
491
+ # "#123"
492
+ caption = re.sub(r"#\d{1,3}\b", "", caption)
493
+ # "#12345.."
494
+ caption = re.sub(r"#\d{5,}\b", "", caption)
495
+ # "123456.."
496
+ caption = re.sub(r"\b\d{6,}\b", "", caption)
497
+ # filenames:
498
+ caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
499
+
500
+ #
501
+ caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
502
+ caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
503
+
504
+ caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
505
+ caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
506
+
507
+ # this-is-my-cute-cat / this_is_my_cute_cat
508
+ regex2 = re.compile(r"(?:\-|\_)")
509
+ if len(re.findall(regex2, caption)) > 3:
510
+ caption = re.sub(regex2, " ", caption)
511
+
512
+ caption = ftfy.fix_text(caption)
513
+ caption = html.unescape(html.unescape(caption))
514
+
515
+ caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
516
+ caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
517
+ caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
518
+
519
+ caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
520
+ caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
521
+ caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
522
+ caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
523
+ caption = re.sub(r"\bpage\s+\d+\b", "", caption)
524
+
525
+ caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
526
+
527
+ caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
528
+
529
+ caption = re.sub(r"\b\s+\:\s+", r": ", caption)
530
+ caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
531
+ caption = re.sub(r"\s+", " ", caption)
532
+
533
+ caption.strip()
534
+
535
+ caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
536
+ caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
537
+ caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
538
+ caption = re.sub(r"^\.\S+$", "", caption)
539
+
540
+ return caption.strip()
541
+
542
+ # Copied from diffusers.pipelines.sana.pipeline_sana.SanaPipeline.prepare_latents
543
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
544
+ if latents is not None:
545
+ return latents.to(device=device, dtype=dtype)
546
+
547
+ shape = (
548
+ batch_size,
549
+ num_channels_latents,
550
+ int(height) // self.vae_scale_factor,
551
+ int(width) // self.vae_scale_factor,
552
+ )
553
+ if isinstance(generator, list) and len(generator) != batch_size:
554
+ raise ValueError(
555
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
556
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
557
+ )
558
+
559
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
560
+ return latents
561
+
562
+ @property
563
+ def guidance_scale(self):
564
+ return self._guidance_scale
565
+
566
+ @property
567
+ def do_classifier_free_guidance(self):
568
+ return self._guidance_scale > 1.0
569
+
570
+ @property
571
+ def num_timesteps(self):
572
+ return self._num_timesteps
573
+
574
+ @property
575
+ def interrupt(self):
576
+ return self._interrupt
577
+
578
+ @torch.no_grad()
579
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
580
+ def __call__(
581
+ self,
582
+ prompt: Union[str, List[str]] = None,
583
+ negative_prompt: str = "",
584
+ num_inference_steps: int = 20,
585
+ timesteps: List[int] = None,
586
+ sigmas: List[float] = None,
587
+ guidance_scale: float = 4.5,
588
+ num_images_per_prompt: Optional[int] = 1,
589
+ height: int = 1024,
590
+ width: int = 1024,
591
+ eta: float = 0.0,
592
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
593
+ latents: Optional[torch.Tensor] = None,
594
+ prompt_embeds: Optional[torch.Tensor] = None,
595
+ prompt_attention_mask: Optional[torch.Tensor] = None,
596
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
597
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
598
+ output_type: Optional[str] = "pil",
599
+ return_dict: bool = True,
600
+ clean_caption: bool = True,
601
+ use_resolution_binning: bool = True,
602
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
603
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
604
+ max_sequence_length: int = 300,
605
+ complex_human_instruction: List[str] = [
606
+ "Given a user prompt, generate an 'Enhanced prompt' that provides detailed visual descriptions suitable for image generation. Evaluate the level of detail in the user prompt:",
607
+ "- If the prompt is simple, focus on adding specifics about colors, shapes, sizes, textures, and spatial relationships to create vivid and concrete scenes.",
608
+ "- If the prompt is already detailed, refine and enhance the existing details slightly without overcomplicating.",
609
+ "Here are examples of how to transform or refine prompts:",
610
+ "- User Prompt: A cat sleeping -> Enhanced: A small, fluffy white cat curled up in a round shape, sleeping peacefully on a warm sunny windowsill, surrounded by pots of blooming red flowers.",
611
+ "- User Prompt: A busy city street -> Enhanced: A bustling city street scene at dusk, featuring glowing street lamps, a diverse crowd of people in colorful clothing, and a double-decker bus passing by towering glass skyscrapers.",
612
+ "Please generate only the enhanced description for the prompt below and avoid including any additional commentary or evaluations:",
613
+ "User Prompt: ",
614
+ ],
615
+ pag_scale: float = 3.0,
616
+ pag_adaptive_scale: float = 0.0,
617
+ ) -> Union[ImagePipelineOutput, Tuple]:
618
+ """
619
+ Function invoked when calling the pipeline for generation.
620
+
621
+ Args:
622
+ prompt (`str` or `List[str]`, *optional*):
623
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
624
+ instead.
625
+ negative_prompt (`str` or `List[str]`, *optional*):
626
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
627
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
628
+ less than `1`).
629
+ num_inference_steps (`int`, *optional*, defaults to 20):
630
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
631
+ expense of slower inference.
632
+ timesteps (`List[int]`, *optional*):
633
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
634
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
635
+ passed will be used. Must be in descending order.
636
+ sigmas (`List[float]`, *optional*):
637
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
638
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
639
+ will be used.
640
+ guidance_scale (`float`, *optional*, defaults to 4.5):
641
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
642
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
643
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
644
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
645
+ usually at the expense of lower image quality.
646
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
647
+ The number of images to generate per prompt.
648
+ height (`int`, *optional*, defaults to self.unet.config.sample_size):
649
+ The height in pixels of the generated image.
650
+ width (`int`, *optional*, defaults to self.unet.config.sample_size):
651
+ The width in pixels of the generated image.
652
+ eta (`float`, *optional*, defaults to 0.0):
653
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
654
+ [`schedulers.DDIMScheduler`], will be ignored for others.
655
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
656
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
657
+ to make generation deterministic.
658
+ latents (`torch.Tensor`, *optional*):
659
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
660
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
661
+ tensor will ge generated by sampling using the supplied random `generator`.
662
+ prompt_embeds (`torch.Tensor`, *optional*):
663
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
664
+ provided, text embeddings will be generated from `prompt` input argument.
665
+ prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings.
666
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
667
+ Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
668
+ provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
669
+ negative_prompt_attention_mask (`torch.Tensor`, *optional*):
670
+ Pre-generated attention mask for negative text embeddings.
671
+ output_type (`str`, *optional*, defaults to `"pil"`):
672
+ The output format of the generate image. Choose between
673
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
674
+ return_dict (`bool`, *optional*, defaults to `True`):
675
+ Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
676
+ clean_caption (`bool`, *optional*, defaults to `True`):
677
+ Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
678
+ be installed. If the dependencies are not installed, the embeddings will be created from the raw
679
+ prompt.
680
+ use_resolution_binning (`bool` defaults to `True`):
681
+ If set to `True`, the requested height and width are first mapped to the closest resolutions using
682
+ `ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to
683
+ the requested resolution. Useful for generating non-square images.
684
+ callback_on_step_end (`Callable`, *optional*):
685
+ A function that calls at the end of each denoising steps during the inference. The function is called
686
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
687
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
688
+ `callback_on_step_end_tensor_inputs`.
689
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
690
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
691
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
692
+ `._callback_tensor_inputs` attribute of your pipeline class.
693
+ max_sequence_length (`int` defaults to 300): Maximum sequence length to use with the `prompt`.
694
+ complex_human_instruction (`List[str]`, *optional*):
695
+ Instructions for complex human attention:
696
+ https://github.com/NVlabs/Sana/blob/main/configs/sana_app_config/Sana_1600M_app.yaml#L55.
697
+ pag_scale (`float`, *optional*, defaults to 3.0):
698
+ The scale factor for the perturbed attention guidance. If it is set to 0.0, the perturbed attention
699
+ guidance will not be used.
700
+ pag_adaptive_scale (`float`, *optional*, defaults to 0.0):
701
+ The adaptive scale factor for the perturbed attention guidance. If it is set to 0.0, `pag_scale` is
702
+ used.
703
+
704
+ Examples:
705
+
706
+ Returns:
707
+ [`~pipelines.ImagePipelineOutput`] or `tuple`:
708
+ If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
709
+ returned where the first element is a list with the generated images
710
+ """
711
+
712
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
713
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
714
+
715
+ if use_resolution_binning:
716
+ if self.transformer.config.sample_size == 64:
717
+ aspect_ratio_bin = ASPECT_RATIO_2048_BIN
718
+ elif self.transformer.config.sample_size == 32:
719
+ aspect_ratio_bin = ASPECT_RATIO_1024_BIN
720
+ elif self.transformer.config.sample_size == 16:
721
+ aspect_ratio_bin = ASPECT_RATIO_512_BIN
722
+ else:
723
+ raise ValueError("Invalid sample size")
724
+ orig_height, orig_width = height, width
725
+ height, width = self.image_processor.classify_height_width_bin(height, width, ratios=aspect_ratio_bin)
726
+
727
+ self.check_inputs(
728
+ prompt,
729
+ height,
730
+ width,
731
+ callback_on_step_end_tensor_inputs,
732
+ negative_prompt,
733
+ prompt_embeds,
734
+ negative_prompt_embeds,
735
+ prompt_attention_mask,
736
+ negative_prompt_attention_mask,
737
+ )
738
+
739
+ self._pag_scale = pag_scale
740
+ self._pag_adaptive_scale = pag_adaptive_scale
741
+ self._guidance_scale = guidance_scale
742
+ self._interrupt = False
743
+
744
+ # 2. Default height and width to transformer
745
+ if prompt is not None and isinstance(prompt, str):
746
+ batch_size = 1
747
+ elif prompt is not None and isinstance(prompt, list):
748
+ batch_size = len(prompt)
749
+ else:
750
+ batch_size = prompt_embeds.shape[0]
751
+
752
+ device = self._execution_device
753
+
754
+ # 3. Encode input prompt
755
+ (
756
+ prompt_embeds,
757
+ prompt_attention_mask,
758
+ negative_prompt_embeds,
759
+ negative_prompt_attention_mask,
760
+ ) = self.encode_prompt(
761
+ prompt,
762
+ self.do_classifier_free_guidance,
763
+ negative_prompt=negative_prompt,
764
+ num_images_per_prompt=num_images_per_prompt,
765
+ device=device,
766
+ prompt_embeds=prompt_embeds,
767
+ negative_prompt_embeds=negative_prompt_embeds,
768
+ prompt_attention_mask=prompt_attention_mask,
769
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
770
+ clean_caption=clean_caption,
771
+ max_sequence_length=max_sequence_length,
772
+ complex_human_instruction=complex_human_instruction,
773
+ )
774
+
775
+ if self.do_perturbed_attention_guidance:
776
+ prompt_embeds = self._prepare_perturbed_attention_guidance(
777
+ prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance
778
+ )
779
+ prompt_attention_mask = self._prepare_perturbed_attention_guidance(
780
+ prompt_attention_mask, negative_prompt_attention_mask, self.do_classifier_free_guidance
781
+ )
782
+ elif self.do_classifier_free_guidance:
783
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
784
+ prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
785
+
786
+ # 4. Prepare timesteps
787
+ timesteps, num_inference_steps = retrieve_timesteps(
788
+ self.scheduler, num_inference_steps, device, timesteps, sigmas
789
+ )
790
+
791
+ # 5. Prepare latents.
792
+ latent_channels = self.transformer.config.in_channels
793
+ latents = self.prepare_latents(
794
+ batch_size * num_images_per_prompt,
795
+ latent_channels,
796
+ height,
797
+ width,
798
+ torch.float32,
799
+ device,
800
+ generator,
801
+ latents,
802
+ )
803
+ if self.do_perturbed_attention_guidance:
804
+ original_attn_proc = self.transformer.attn_processors
805
+ self._set_pag_attn_processor(
806
+ pag_applied_layers=self.pag_applied_layers,
807
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
808
+ )
809
+
810
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
811
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
812
+
813
+ # 7. Denoising loop
814
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
815
+ self._num_timesteps = len(timesteps)
816
+
817
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
818
+ for i, t in enumerate(timesteps):
819
+ if self.interrupt:
820
+ continue
821
+
822
+ # expand the latents if we are doing classifier free guidance, perturbed-attention guidance, or both
823
+ latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0]))
824
+ latent_model_input = latent_model_input.to(prompt_embeds.dtype)
825
+
826
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
827
+ timestep = t.expand(latent_model_input.shape[0]).to(latents.dtype)
828
+
829
+ # predict noise model_output
830
+ noise_pred = self.transformer(
831
+ latent_model_input,
832
+ encoder_hidden_states=prompt_embeds,
833
+ encoder_attention_mask=prompt_attention_mask,
834
+ timestep=timestep,
835
+ return_dict=False,
836
+ )[0]
837
+ noise_pred = noise_pred.float()
838
+
839
+ # perform guidance
840
+ if self.do_perturbed_attention_guidance:
841
+ noise_pred = self._apply_perturbed_attention_guidance(
842
+ noise_pred, self.do_classifier_free_guidance, guidance_scale, t
843
+ )
844
+ elif self.do_classifier_free_guidance:
845
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
846
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
847
+
848
+ # compute previous image: x_t -> x_t-1
849
+ latents_dtype = latents.dtype
850
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
851
+
852
+ # call the callback, if provided
853
+ if callback_on_step_end is not None:
854
+ callback_kwargs = {}
855
+ for k in callback_on_step_end_tensor_inputs:
856
+ callback_kwargs[k] = locals()[k]
857
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
858
+
859
+ latents = callback_outputs.pop("latents", latents)
860
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
861
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
862
+
863
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
864
+ progress_bar.update()
865
+
866
+ if output_type == "latent":
867
+ image = latents
868
+ else:
869
+ latents = latents.to(self.vae.dtype)
870
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
871
+ if use_resolution_binning:
872
+ image = self.image_processor.resize_and_crop_tensor(image, orig_width, orig_height)
873
+
874
+ if not output_type == "latent":
875
+ image = self.image_processor.postprocess(image, output_type=output_type)
876
+
877
+ # Offload all models
878
+ self.maybe_free_model_hooks()
879
+
880
+ if self.do_perturbed_attention_guidance:
881
+ self.transformer.set_attn_processor(original_attn_proc)
882
+
883
+ if not return_dict:
884
+ return (image,)
885
+
886
+ return ImagePipelineOutput(images=image)