diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -115,14 +115,14 @@ class KandinskyPriorPipelineOutput(BaseOutput):
115
115
  Output class for KandinskyPriorPipeline.
116
116
 
117
117
  Args:
118
- image_embeds (`torch.FloatTensor`)
118
+ image_embeds (`torch.Tensor`)
119
119
  clip image embeddings for text prompt
120
120
  negative_image_embeds (`List[PIL.Image.Image]` or `np.ndarray`)
121
121
  clip image embeddings for unconditional tokens
122
122
  """
123
123
 
124
- image_embeds: Union[torch.FloatTensor, np.ndarray]
125
- negative_image_embeds: Union[torch.FloatTensor, np.ndarray]
124
+ image_embeds: Union[torch.Tensor, np.ndarray]
125
+ negative_image_embeds: Union[torch.Tensor, np.ndarray]
126
126
 
127
127
 
128
128
  class KandinskyPriorPipeline(DiffusionPipeline):
@@ -134,7 +134,7 @@ class KandinskyPriorPipeline(DiffusionPipeline):
134
134
 
135
135
  Args:
136
136
  prior ([`PriorTransformer`]):
137
- The canonincal unCLIP prior to approximate the image embedding from the text embedding.
137
+ The canonical unCLIP prior to approximate the image embedding from the text embedding.
138
138
  image_encoder ([`CLIPVisionModelWithProjection`]):
139
139
  Frozen image-encoder.
140
140
  text_encoder ([`CLIPTextModelWithProjection`]):
@@ -173,12 +173,12 @@ class KandinskyPriorPipeline(DiffusionPipeline):
173
173
  @replace_example_docstring(EXAMPLE_INTERPOLATE_DOC_STRING)
174
174
  def interpolate(
175
175
  self,
176
- images_and_prompts: List[Union[str, PIL.Image.Image, torch.FloatTensor]],
176
+ images_and_prompts: List[Union[str, PIL.Image.Image, torch.Tensor]],
177
177
  weights: List[float],
178
178
  num_images_per_prompt: int = 1,
179
179
  num_inference_steps: int = 25,
180
180
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
181
- latents: Optional[torch.FloatTensor] = None,
181
+ latents: Optional[torch.Tensor] = None,
182
182
  negative_prior_prompt: Optional[str] = None,
183
183
  negative_prompt: str = "",
184
184
  guidance_scale: float = 4.0,
@@ -188,7 +188,7 @@ class KandinskyPriorPipeline(DiffusionPipeline):
188
188
  Function invoked when using the prior pipeline for interpolation.
189
189
 
190
190
  Args:
191
- images_and_prompts (`List[Union[str, PIL.Image.Image, torch.FloatTensor]]`):
191
+ images_and_prompts (`List[Union[str, PIL.Image.Image, torch.Tensor]]`):
192
192
  list of prompts and images to guide the image generation.
193
193
  weights: (`List[float]`):
194
194
  list of weights for each condition in `images_and_prompts`
@@ -200,7 +200,7 @@ class KandinskyPriorPipeline(DiffusionPipeline):
200
200
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
201
201
  One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
202
202
  to make generation deterministic.
203
- latents (`torch.FloatTensor`, *optional*):
203
+ latents (`torch.Tensor`, *optional*):
204
204
  Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
205
205
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
206
206
  tensor will ge generated by sampling using the supplied random `generator`.
@@ -403,7 +403,7 @@ class KandinskyPriorPipeline(DiffusionPipeline):
403
403
  num_images_per_prompt: int = 1,
404
404
  num_inference_steps: int = 25,
405
405
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
406
- latents: Optional[torch.FloatTensor] = None,
406
+ latents: Optional[torch.Tensor] = None,
407
407
  guidance_scale: float = 4.0,
408
408
  output_type: Optional[str] = "pt",
409
409
  return_dict: bool = True,
@@ -425,7 +425,7 @@ class KandinskyPriorPipeline(DiffusionPipeline):
425
425
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
426
426
  One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
427
427
  to make generation deterministic.
428
- latents (`torch.FloatTensor`, *optional*):
428
+ latents (`torch.Tensor`, *optional*):
429
429
  Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
430
430
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
431
431
  tensor will ge generated by sampling using the supplied random `generator`.
@@ -123,15 +123,15 @@ class KandinskyV22Pipeline(DiffusionPipeline):
123
123
  @replace_example_docstring(EXAMPLE_DOC_STRING)
124
124
  def __call__(
125
125
  self,
126
- image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]],
127
- negative_image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]],
126
+ image_embeds: Union[torch.Tensor, List[torch.Tensor]],
127
+ negative_image_embeds: Union[torch.Tensor, List[torch.Tensor]],
128
128
  height: int = 512,
129
129
  width: int = 512,
130
130
  num_inference_steps: int = 100,
131
131
  guidance_scale: float = 4.0,
132
132
  num_images_per_prompt: int = 1,
133
133
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
134
- latents: Optional[torch.FloatTensor] = None,
134
+ latents: Optional[torch.Tensor] = None,
135
135
  output_type: Optional[str] = "pil",
136
136
  return_dict: bool = True,
137
137
  callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
@@ -142,9 +142,9 @@ class KandinskyV22Pipeline(DiffusionPipeline):
142
142
  Function invoked when calling the pipeline for generation.
143
143
 
144
144
  Args:
145
- image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`):
145
+ image_embeds (`torch.Tensor` or `List[torch.Tensor]`):
146
146
  The clip image embeddings for text prompt, that will be used to condition the image generation.
147
- negative_image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`):
147
+ negative_image_embeds (`torch.Tensor` or `List[torch.Tensor]`):
148
148
  The clip image embeddings for negative text prompt, will be used to condition the image generation.
149
149
  height (`int`, *optional*, defaults to 512):
150
150
  The height in pixels of the generated image.
@@ -164,7 +164,7 @@ class KandinskyV22Pipeline(DiffusionPipeline):
164
164
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
165
165
  One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
166
166
  to make generation deterministic.
167
- latents (`torch.FloatTensor`, *optional*):
167
+ latents (`torch.Tensor`, *optional*):
168
168
  Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
169
169
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
170
170
  tensor will ge generated by sampling using the supplied random `generator`.
@@ -119,7 +119,7 @@ class KandinskyV22CombinedPipeline(DiffusionPipeline):
119
119
  movq ([`VQModel`]):
120
120
  MoVQ Decoder to generate the image from the latents.
121
121
  prior_prior ([`PriorTransformer`]):
122
- The canonincal unCLIP prior to approximate the image embedding from the text embedding.
122
+ The canonical unCLIP prior to approximate the image embedding from the text embedding.
123
123
  prior_image_encoder ([`CLIPVisionModelWithProjection`]):
124
124
  Frozen image-encoder.
125
125
  prior_text_encoder ([`CLIPTextModelWithProjection`]):
@@ -135,6 +135,7 @@ class KandinskyV22CombinedPipeline(DiffusionPipeline):
135
135
 
136
136
  model_cpu_offload_seq = "prior_text_encoder->prior_image_encoder->unet->movq"
137
137
  _load_connected_pipes = True
138
+ _exclude_from_cpu_offload = ["prior_prior"]
138
139
 
139
140
  def __init__(
140
141
  self,
@@ -178,7 +179,7 @@ class KandinskyV22CombinedPipeline(DiffusionPipeline):
178
179
  def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
179
180
  self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op)
180
181
 
181
- def enable_sequential_cpu_offload(self, gpu_id=0):
182
+ def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"):
182
183
  r"""
183
184
  Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
184
185
  text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
@@ -186,8 +187,8 @@ class KandinskyV22CombinedPipeline(DiffusionPipeline):
186
187
  Note that offloading happens on a submodule basis. Memory savings are higher than with
187
188
  `enable_model_cpu_offload`, but performance is lower.
188
189
  """
189
- self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
190
- self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
190
+ self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device)
191
+ self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device)
191
192
 
192
193
  def progress_bar(self, iterable=None, total=None):
193
194
  self.prior_pipe.progress_bar(iterable=iterable, total=total)
@@ -212,9 +213,9 @@ class KandinskyV22CombinedPipeline(DiffusionPipeline):
212
213
  prior_guidance_scale: float = 4.0,
213
214
  prior_num_inference_steps: int = 25,
214
215
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
215
- latents: Optional[torch.FloatTensor] = None,
216
+ latents: Optional[torch.Tensor] = None,
216
217
  output_type: Optional[str] = "pil",
217
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
218
+ callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
218
219
  callback_steps: int = 1,
219
220
  return_dict: bool = True,
220
221
  prior_callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
@@ -258,7 +259,7 @@ class KandinskyV22CombinedPipeline(DiffusionPipeline):
258
259
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
259
260
  One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
260
261
  to make generation deterministic.
261
- latents (`torch.FloatTensor`, *optional*):
262
+ latents (`torch.Tensor`, *optional*):
262
263
  Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
263
264
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
264
265
  tensor will ge generated by sampling using the supplied random `generator`.
@@ -346,7 +347,7 @@ class KandinskyV22Img2ImgCombinedPipeline(DiffusionPipeline):
346
347
  movq ([`VQModel`]):
347
348
  MoVQ Decoder to generate the image from the latents.
348
349
  prior_prior ([`PriorTransformer`]):
349
- The canonincal unCLIP prior to approximate the image embedding from the text embedding.
350
+ The canonical unCLIP prior to approximate the image embedding from the text embedding.
350
351
  prior_image_encoder ([`CLIPVisionModelWithProjection`]):
351
352
  Frozen image-encoder.
352
353
  prior_text_encoder ([`CLIPTextModelWithProjection`]):
@@ -362,6 +363,7 @@ class KandinskyV22Img2ImgCombinedPipeline(DiffusionPipeline):
362
363
 
363
364
  model_cpu_offload_seq = "prior_text_encoder->prior_image_encoder->unet->movq"
364
365
  _load_connected_pipes = True
366
+ _exclude_from_cpu_offload = ["prior_prior"]
365
367
 
366
368
  def __init__(
367
369
  self,
@@ -405,17 +407,17 @@ class KandinskyV22Img2ImgCombinedPipeline(DiffusionPipeline):
405
407
  def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
406
408
  self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op)
407
409
 
408
- def enable_model_cpu_offload(self, gpu_id=0):
410
+ def enable_model_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"):
409
411
  r"""
410
412
  Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
411
413
  to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
412
414
  method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
413
415
  `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
414
416
  """
415
- self.prior_pipe.enable_model_cpu_offload()
416
- self.decoder_pipe.enable_model_cpu_offload()
417
+ self.prior_pipe.enable_model_cpu_offload(gpu_id=gpu_id, device=device)
418
+ self.decoder_pipe.enable_model_cpu_offload(gpu_id=gpu_id, device=device)
417
419
 
418
- def enable_sequential_cpu_offload(self, gpu_id=0):
420
+ def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"):
419
421
  r"""
420
422
  Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
421
423
  text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
@@ -423,8 +425,8 @@ class KandinskyV22Img2ImgCombinedPipeline(DiffusionPipeline):
423
425
  Note that offloading happens on a submodule basis. Memory savings are higher than with
424
426
  `enable_model_cpu_offload`, but performance is lower.
425
427
  """
426
- self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
427
- self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
428
+ self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device)
429
+ self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device)
428
430
 
429
431
  def progress_bar(self, iterable=None, total=None):
430
432
  self.prior_pipe.progress_bar(iterable=iterable, total=total)
@@ -440,7 +442,7 @@ class KandinskyV22Img2ImgCombinedPipeline(DiffusionPipeline):
440
442
  def __call__(
441
443
  self,
442
444
  prompt: Union[str, List[str]],
443
- image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]],
445
+ image: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]],
444
446
  negative_prompt: Optional[Union[str, List[str]]] = None,
445
447
  num_inference_steps: int = 100,
446
448
  guidance_scale: float = 4.0,
@@ -451,9 +453,9 @@ class KandinskyV22Img2ImgCombinedPipeline(DiffusionPipeline):
451
453
  prior_guidance_scale: float = 4.0,
452
454
  prior_num_inference_steps: int = 25,
453
455
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
454
- latents: Optional[torch.FloatTensor] = None,
456
+ latents: Optional[torch.Tensor] = None,
455
457
  output_type: Optional[str] = "pil",
456
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
458
+ callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
457
459
  callback_steps: int = 1,
458
460
  return_dict: bool = True,
459
461
  prior_callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
@@ -467,7 +469,7 @@ class KandinskyV22Img2ImgCombinedPipeline(DiffusionPipeline):
467
469
  Args:
468
470
  prompt (`str` or `List[str]`):
469
471
  The prompt or prompts to guide the image generation.
470
- image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
472
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
471
473
  `Image`, or tensor representing an image batch, that will be used as the starting point for the
472
474
  process. Can also accept image latents as `image`, if passing latents directly, it will not be encoded
473
475
  again.
@@ -507,7 +509,7 @@ class KandinskyV22Img2ImgCombinedPipeline(DiffusionPipeline):
507
509
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
508
510
  One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
509
511
  to make generation deterministic.
510
- latents (`torch.FloatTensor`, *optional*):
512
+ latents (`torch.Tensor`, *optional*):
511
513
  Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
512
514
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
513
515
  tensor will ge generated by sampling using the supplied random `generator`.
@@ -516,7 +518,7 @@ class KandinskyV22Img2ImgCombinedPipeline(DiffusionPipeline):
516
518
  (`np.array`) or `"pt"` (`torch.Tensor`).
517
519
  callback (`Callable`, *optional*):
518
520
  A function that calls every `callback_steps` steps during inference. The function is called with the
519
- following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
521
+ following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
520
522
  callback_steps (`int`, *optional*, defaults to 1):
521
523
  The frequency at which the `callback` function is called. If not specified, the callback is called at
522
524
  every step.
@@ -545,7 +547,7 @@ class KandinskyV22Img2ImgCombinedPipeline(DiffusionPipeline):
545
547
  negative_image_embeds = prior_outputs[1]
546
548
 
547
549
  prompt = [prompt] if not isinstance(prompt, (list, tuple)) else prompt
548
- image = [image] if isinstance(prompt, PIL.Image.Image) else image
550
+ image = [image] if isinstance(image, PIL.Image.Image) else image
549
551
 
550
552
  if len(prompt) < image_embeds.shape[0] and image_embeds.shape[0] % len(prompt) == 0:
551
553
  prompt = (image_embeds.shape[0] // len(prompt)) * prompt
@@ -594,7 +596,7 @@ class KandinskyV22InpaintCombinedPipeline(DiffusionPipeline):
594
596
  movq ([`VQModel`]):
595
597
  MoVQ Decoder to generate the image from the latents.
596
598
  prior_prior ([`PriorTransformer`]):
597
- The canonincal unCLIP prior to approximate the image embedding from the text embedding.
599
+ The canonical unCLIP prior to approximate the image embedding from the text embedding.
598
600
  prior_image_encoder ([`CLIPVisionModelWithProjection`]):
599
601
  Frozen image-encoder.
600
602
  prior_text_encoder ([`CLIPTextModelWithProjection`]):
@@ -610,6 +612,7 @@ class KandinskyV22InpaintCombinedPipeline(DiffusionPipeline):
610
612
 
611
613
  model_cpu_offload_seq = "prior_text_encoder->prior_image_encoder->unet->movq"
612
614
  _load_connected_pipes = True
615
+ _exclude_from_cpu_offload = ["prior_prior"]
613
616
 
614
617
  def __init__(
615
618
  self,
@@ -653,7 +656,7 @@ class KandinskyV22InpaintCombinedPipeline(DiffusionPipeline):
653
656
  def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
654
657
  self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op)
655
658
 
656
- def enable_sequential_cpu_offload(self, gpu_id=0):
659
+ def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"):
657
660
  r"""
658
661
  Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
659
662
  text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
@@ -661,8 +664,8 @@ class KandinskyV22InpaintCombinedPipeline(DiffusionPipeline):
661
664
  Note that offloading happens on a submodule basis. Memory savings are higher than with
662
665
  `enable_model_cpu_offload`, but performance is lower.
663
666
  """
664
- self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
665
- self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
667
+ self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device)
668
+ self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device)
666
669
 
667
670
  def progress_bar(self, iterable=None, total=None):
668
671
  self.prior_pipe.progress_bar(iterable=iterable, total=total)
@@ -678,8 +681,8 @@ class KandinskyV22InpaintCombinedPipeline(DiffusionPipeline):
678
681
  def __call__(
679
682
  self,
680
683
  prompt: Union[str, List[str]],
681
- image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]],
682
- mask_image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]],
684
+ image: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]],
685
+ mask_image: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]],
683
686
  negative_prompt: Optional[Union[str, List[str]]] = None,
684
687
  num_inference_steps: int = 100,
685
688
  guidance_scale: float = 4.0,
@@ -689,7 +692,7 @@ class KandinskyV22InpaintCombinedPipeline(DiffusionPipeline):
689
692
  prior_guidance_scale: float = 4.0,
690
693
  prior_num_inference_steps: int = 25,
691
694
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
692
- latents: Optional[torch.FloatTensor] = None,
695
+ latents: Optional[torch.Tensor] = None,
693
696
  output_type: Optional[str] = "pil",
694
697
  return_dict: bool = True,
695
698
  prior_callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
@@ -704,7 +707,7 @@ class KandinskyV22InpaintCombinedPipeline(DiffusionPipeline):
704
707
  Args:
705
708
  prompt (`str` or `List[str]`):
706
709
  The prompt or prompts to guide the image generation.
707
- image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
710
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
708
711
  `Image`, or tensor representing an image batch, that will be used as the starting point for the
709
712
  process. Can also accept image latents as `image`, if passing latents directly, it will not be encoded
710
713
  again.
@@ -743,7 +746,7 @@ class KandinskyV22InpaintCombinedPipeline(DiffusionPipeline):
743
746
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
744
747
  One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
745
748
  to make generation deterministic.
746
- latents (`torch.FloatTensor`, *optional*):
749
+ latents (`torch.Tensor`, *optional*):
747
750
  Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
748
751
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
749
752
  tensor will ge generated by sampling using the supplied random `generator`.
@@ -810,7 +813,7 @@ class KandinskyV22InpaintCombinedPipeline(DiffusionPipeline):
810
813
  negative_image_embeds = prior_outputs[1]
811
814
 
812
815
  prompt = [prompt] if not isinstance(prompt, (list, tuple)) else prompt
813
- image = [image] if isinstance(prompt, PIL.Image.Image) else image
816
+ image = [image] if isinstance(image, PIL.Image.Image) else image
814
817
  mask_image = [mask_image] if isinstance(mask_image, PIL.Image.Image) else mask_image
815
818
 
816
819
  if len(prompt) < image_embeds.shape[0] and image_embeds.shape[0] % len(prompt) == 0:
@@ -151,18 +151,18 @@ class KandinskyV22ControlnetPipeline(DiffusionPipeline):
151
151
  @torch.no_grad()
152
152
  def __call__(
153
153
  self,
154
- image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]],
155
- negative_image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]],
156
- hint: torch.FloatTensor,
154
+ image_embeds: Union[torch.Tensor, List[torch.Tensor]],
155
+ negative_image_embeds: Union[torch.Tensor, List[torch.Tensor]],
156
+ hint: torch.Tensor,
157
157
  height: int = 512,
158
158
  width: int = 512,
159
159
  num_inference_steps: int = 100,
160
160
  guidance_scale: float = 4.0,
161
161
  num_images_per_prompt: int = 1,
162
162
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
163
- latents: Optional[torch.FloatTensor] = None,
163
+ latents: Optional[torch.Tensor] = None,
164
164
  output_type: Optional[str] = "pil",
165
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
165
+ callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
166
166
  callback_steps: int = 1,
167
167
  return_dict: bool = True,
168
168
  ):
@@ -172,11 +172,11 @@ class KandinskyV22ControlnetPipeline(DiffusionPipeline):
172
172
  Args:
173
173
  prompt (`str` or `List[str]`):
174
174
  The prompt or prompts to guide the image generation.
175
- hint (`torch.FloatTensor`):
175
+ hint (`torch.Tensor`):
176
176
  The controlnet condition.
177
- image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`):
177
+ image_embeds (`torch.Tensor` or `List[torch.Tensor]`):
178
178
  The clip image embeddings for text prompt, that will be used to condition the image generation.
179
- negative_image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`):
179
+ negative_image_embeds (`torch.Tensor` or `List[torch.Tensor]`):
180
180
  The clip image embeddings for negative text prompt, will be used to condition the image generation.
181
181
  negative_prompt (`str` or `List[str]`, *optional*):
182
182
  The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
@@ -199,7 +199,7 @@ class KandinskyV22ControlnetPipeline(DiffusionPipeline):
199
199
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
200
200
  One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
201
201
  to make generation deterministic.
202
- latents (`torch.FloatTensor`, *optional*):
202
+ latents (`torch.Tensor`, *optional*):
203
203
  Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
204
204
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
205
205
  tensor will ge generated by sampling using the supplied random `generator`.
@@ -208,7 +208,7 @@ class KandinskyV22ControlnetPipeline(DiffusionPipeline):
208
208
  (`np.array`) or `"pt"` (`torch.Tensor`).
209
209
  callback (`Callable`, *optional*):
210
210
  A function that calls every `callback_steps` steps during inference. The function is called with the
211
- following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
211
+ following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
212
212
  callback_steps (`int`, *optional*, defaults to 1):
213
213
  The frequency at which the `callback` function is called. If not specified, the callback is called at
214
214
  every step.
@@ -206,10 +206,10 @@ class KandinskyV22ControlnetImg2ImgPipeline(DiffusionPipeline):
206
206
  @torch.no_grad()
207
207
  def __call__(
208
208
  self,
209
- image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]],
210
- image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]],
211
- negative_image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]],
212
- hint: torch.FloatTensor,
209
+ image_embeds: Union[torch.Tensor, List[torch.Tensor]],
210
+ image: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]],
211
+ negative_image_embeds: Union[torch.Tensor, List[torch.Tensor]],
212
+ hint: torch.Tensor,
213
213
  height: int = 512,
214
214
  width: int = 512,
215
215
  num_inference_steps: int = 100,
@@ -218,7 +218,7 @@ class KandinskyV22ControlnetImg2ImgPipeline(DiffusionPipeline):
218
218
  num_images_per_prompt: int = 1,
219
219
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
220
220
  output_type: Optional[str] = "pil",
221
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
221
+ callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
222
222
  callback_steps: int = 1,
223
223
  return_dict: bool = True,
224
224
  ):
@@ -226,9 +226,9 @@ class KandinskyV22ControlnetImg2ImgPipeline(DiffusionPipeline):
226
226
  Function invoked when calling the pipeline for generation.
227
227
 
228
228
  Args:
229
- image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`):
229
+ image_embeds (`torch.Tensor` or `List[torch.Tensor]`):
230
230
  The clip image embeddings for text prompt, that will be used to condition the image generation.
231
- image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
231
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
232
232
  `Image`, or tensor representing an image batch, that will be used as the starting point for the
233
233
  process. Can also accept image latents as `image`, if passing latents directly, it will not be encoded
234
234
  again.
@@ -238,9 +238,9 @@ class KandinskyV22ControlnetImg2ImgPipeline(DiffusionPipeline):
238
238
  denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
239
239
  be maximum and the denoising process will run for the full number of iterations specified in
240
240
  `num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
241
- hint (`torch.FloatTensor`):
241
+ hint (`torch.Tensor`):
242
242
  The controlnet condition.
243
- negative_image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`):
243
+ negative_image_embeds (`torch.Tensor` or `List[torch.Tensor]`):
244
244
  The clip image embeddings for negative text prompt, will be used to condition the image generation.
245
245
  height (`int`, *optional*, defaults to 512):
246
246
  The height in pixels of the generated image.
@@ -265,7 +265,7 @@ class KandinskyV22ControlnetImg2ImgPipeline(DiffusionPipeline):
265
265
  (`np.array`) or `"pt"` (`torch.Tensor`).
266
266
  callback (`Callable`, *optional*):
267
267
  A function that calls every `callback_steps` steps during inference. The function is called with the
268
- following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
268
+ following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
269
269
  callback_steps (`int`, *optional*, defaults to 1):
270
270
  The frequency at which the `callback` function is called. If not specified, the callback is called at
271
271
  every step.
@@ -190,9 +190,9 @@ class KandinskyV22Img2ImgPipeline(DiffusionPipeline):
190
190
  @torch.no_grad()
191
191
  def __call__(
192
192
  self,
193
- image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]],
194
- image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]],
195
- negative_image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]],
193
+ image_embeds: Union[torch.Tensor, List[torch.Tensor]],
194
+ image: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]],
195
+ negative_image_embeds: Union[torch.Tensor, List[torch.Tensor]],
196
196
  height: int = 512,
197
197
  width: int = 512,
198
198
  num_inference_steps: int = 100,
@@ -210,9 +210,9 @@ class KandinskyV22Img2ImgPipeline(DiffusionPipeline):
210
210
  Function invoked when calling the pipeline for generation.
211
211
 
212
212
  Args:
213
- image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`):
213
+ image_embeds (`torch.Tensor` or `List[torch.Tensor]`):
214
214
  The clip image embeddings for text prompt, that will be used to condition the image generation.
215
- image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
215
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
216
216
  `Image`, or tensor representing an image batch, that will be used as the starting point for the
217
217
  process. Can also accept image latents as `image`, if passing latents directly, it will not be encoded
218
218
  again.
@@ -222,7 +222,7 @@ class KandinskyV22Img2ImgPipeline(DiffusionPipeline):
222
222
  denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
223
223
  be maximum and the denoising process will run for the full number of iterations specified in
224
224
  `num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
225
- negative_image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`):
225
+ negative_image_embeds (`torch.Tensor` or `List[torch.Tensor]`):
226
226
  The clip image embeddings for negative text prompt, will be used to condition the image generation.
227
227
  height (`int`, *optional*, defaults to 512):
228
228
  The height in pixels of the generated image.
@@ -294,17 +294,17 @@ class KandinskyV22InpaintPipeline(DiffusionPipeline):
294
294
  @torch.no_grad()
295
295
  def __call__(
296
296
  self,
297
- image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]],
298
- image: Union[torch.FloatTensor, PIL.Image.Image],
299
- mask_image: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray],
300
- negative_image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]],
297
+ image_embeds: Union[torch.Tensor, List[torch.Tensor]],
298
+ image: Union[torch.Tensor, PIL.Image.Image],
299
+ mask_image: Union[torch.Tensor, PIL.Image.Image, np.ndarray],
300
+ negative_image_embeds: Union[torch.Tensor, List[torch.Tensor]],
301
301
  height: int = 512,
302
302
  width: int = 512,
303
303
  num_inference_steps: int = 100,
304
304
  guidance_scale: float = 4.0,
305
305
  num_images_per_prompt: int = 1,
306
306
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
307
- latents: Optional[torch.FloatTensor] = None,
307
+ latents: Optional[torch.Tensor] = None,
308
308
  output_type: Optional[str] = "pil",
309
309
  return_dict: bool = True,
310
310
  callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
@@ -315,7 +315,7 @@ class KandinskyV22InpaintPipeline(DiffusionPipeline):
315
315
  Function invoked when calling the pipeline for generation.
316
316
 
317
317
  Args:
318
- image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`):
318
+ image_embeds (`torch.Tensor` or `List[torch.Tensor]`):
319
319
  The clip image embeddings for text prompt, that will be used to condition the image generation.
320
320
  image (`PIL.Image.Image`):
321
321
  `Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
@@ -325,7 +325,7 @@ class KandinskyV22InpaintPipeline(DiffusionPipeline):
325
325
  black pixels will be preserved. If `mask_image` is a PIL image, it will be converted to a single
326
326
  channel (luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3,
327
327
  so the expected shape would be `(B, H, W, 1)`.
328
- negative_image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`):
328
+ negative_image_embeds (`torch.Tensor` or `List[torch.Tensor]`):
329
329
  The clip image embeddings for negative text prompt, will be used to condition the image generation.
330
330
  height (`int`, *optional*, defaults to 512):
331
331
  The height in pixels of the generated image.
@@ -345,7 +345,7 @@ class KandinskyV22InpaintPipeline(DiffusionPipeline):
345
345
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
346
346
  One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
347
347
  to make generation deterministic.
348
- latents (`torch.FloatTensor`, *optional*):
348
+ latents (`torch.Tensor`, *optional*):
349
349
  Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
350
350
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
351
351
  tensor will ge generated by sampling using the supplied random `generator`.
@@ -90,7 +90,7 @@ class KandinskyV22PriorPipeline(DiffusionPipeline):
90
90
 
91
91
  Args:
92
92
  prior ([`PriorTransformer`]):
93
- The canonincal unCLIP prior to approximate the image embedding from the text embedding.
93
+ The canonical unCLIP prior to approximate the image embedding from the text embedding.
94
94
  image_encoder ([`CLIPVisionModelWithProjection`]):
95
95
  Frozen image-encoder.
96
96
  text_encoder ([`CLIPTextModelWithProjection`]):
@@ -132,12 +132,12 @@ class KandinskyV22PriorPipeline(DiffusionPipeline):
132
132
  @replace_example_docstring(EXAMPLE_INTERPOLATE_DOC_STRING)
133
133
  def interpolate(
134
134
  self,
135
- images_and_prompts: List[Union[str, PIL.Image.Image, torch.FloatTensor]],
135
+ images_and_prompts: List[Union[str, PIL.Image.Image, torch.Tensor]],
136
136
  weights: List[float],
137
137
  num_images_per_prompt: int = 1,
138
138
  num_inference_steps: int = 25,
139
139
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
140
- latents: Optional[torch.FloatTensor] = None,
140
+ latents: Optional[torch.Tensor] = None,
141
141
  negative_prior_prompt: Optional[str] = None,
142
142
  negative_prompt: str = "",
143
143
  guidance_scale: float = 4.0,
@@ -147,7 +147,7 @@ class KandinskyV22PriorPipeline(DiffusionPipeline):
147
147
  Function invoked when using the prior pipeline for interpolation.
148
148
 
149
149
  Args:
150
- images_and_prompts (`List[Union[str, PIL.Image.Image, torch.FloatTensor]]`):
150
+ images_and_prompts (`List[Union[str, PIL.Image.Image, torch.Tensor]]`):
151
151
  list of prompts and images to guide the image generation.
152
152
  weights: (`List[float]`):
153
153
  list of weights for each condition in `images_and_prompts`
@@ -159,7 +159,7 @@ class KandinskyV22PriorPipeline(DiffusionPipeline):
159
159
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
160
160
  One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
161
161
  to make generation deterministic.
162
- latents (`torch.FloatTensor`, *optional*):
162
+ latents (`torch.Tensor`, *optional*):
163
163
  Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
164
164
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
165
165
  tensor will ge generated by sampling using the supplied random `generator`.
@@ -376,7 +376,7 @@ class KandinskyV22PriorPipeline(DiffusionPipeline):
376
376
  num_images_per_prompt: int = 1,
377
377
  num_inference_steps: int = 25,
378
378
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
379
- latents: Optional[torch.FloatTensor] = None,
379
+ latents: Optional[torch.Tensor] = None,
380
380
  guidance_scale: float = 4.0,
381
381
  output_type: Optional[str] = "pt", # pt only
382
382
  return_dict: bool = True,
@@ -400,7 +400,7 @@ class KandinskyV22PriorPipeline(DiffusionPipeline):
400
400
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
401
401
  One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
402
402
  to make generation deterministic.
403
- latents (`torch.FloatTensor`, *optional*):
403
+ latents (`torch.Tensor`, *optional*):
404
404
  Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
405
405
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
406
406
  tensor will ge generated by sampling using the supplied random `generator`.