diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +50 -53
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.0.dist-info/RECORD +0 -399
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -115,14 +115,14 @@ class KandinskyPriorPipelineOutput(BaseOutput):
|
|
115
115
|
Output class for KandinskyPriorPipeline.
|
116
116
|
|
117
117
|
Args:
|
118
|
-
image_embeds (`torch.
|
118
|
+
image_embeds (`torch.Tensor`)
|
119
119
|
clip image embeddings for text prompt
|
120
120
|
negative_image_embeds (`List[PIL.Image.Image]` or `np.ndarray`)
|
121
121
|
clip image embeddings for unconditional tokens
|
122
122
|
"""
|
123
123
|
|
124
|
-
image_embeds: Union[torch.
|
125
|
-
negative_image_embeds: Union[torch.
|
124
|
+
image_embeds: Union[torch.Tensor, np.ndarray]
|
125
|
+
negative_image_embeds: Union[torch.Tensor, np.ndarray]
|
126
126
|
|
127
127
|
|
128
128
|
class KandinskyPriorPipeline(DiffusionPipeline):
|
@@ -134,7 +134,7 @@ class KandinskyPriorPipeline(DiffusionPipeline):
|
|
134
134
|
|
135
135
|
Args:
|
136
136
|
prior ([`PriorTransformer`]):
|
137
|
-
The
|
137
|
+
The canonical unCLIP prior to approximate the image embedding from the text embedding.
|
138
138
|
image_encoder ([`CLIPVisionModelWithProjection`]):
|
139
139
|
Frozen image-encoder.
|
140
140
|
text_encoder ([`CLIPTextModelWithProjection`]):
|
@@ -173,12 +173,12 @@ class KandinskyPriorPipeline(DiffusionPipeline):
|
|
173
173
|
@replace_example_docstring(EXAMPLE_INTERPOLATE_DOC_STRING)
|
174
174
|
def interpolate(
|
175
175
|
self,
|
176
|
-
images_and_prompts: List[Union[str, PIL.Image.Image, torch.
|
176
|
+
images_and_prompts: List[Union[str, PIL.Image.Image, torch.Tensor]],
|
177
177
|
weights: List[float],
|
178
178
|
num_images_per_prompt: int = 1,
|
179
179
|
num_inference_steps: int = 25,
|
180
180
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
181
|
-
latents: Optional[torch.
|
181
|
+
latents: Optional[torch.Tensor] = None,
|
182
182
|
negative_prior_prompt: Optional[str] = None,
|
183
183
|
negative_prompt: str = "",
|
184
184
|
guidance_scale: float = 4.0,
|
@@ -188,7 +188,7 @@ class KandinskyPriorPipeline(DiffusionPipeline):
|
|
188
188
|
Function invoked when using the prior pipeline for interpolation.
|
189
189
|
|
190
190
|
Args:
|
191
|
-
images_and_prompts (`List[Union[str, PIL.Image.Image, torch.
|
191
|
+
images_and_prompts (`List[Union[str, PIL.Image.Image, torch.Tensor]]`):
|
192
192
|
list of prompts and images to guide the image generation.
|
193
193
|
weights: (`List[float]`):
|
194
194
|
list of weights for each condition in `images_and_prompts`
|
@@ -200,7 +200,7 @@ class KandinskyPriorPipeline(DiffusionPipeline):
|
|
200
200
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
201
201
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
202
202
|
to make generation deterministic.
|
203
|
-
latents (`torch.
|
203
|
+
latents (`torch.Tensor`, *optional*):
|
204
204
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
205
205
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
206
206
|
tensor will ge generated by sampling using the supplied random `generator`.
|
@@ -403,7 +403,7 @@ class KandinskyPriorPipeline(DiffusionPipeline):
|
|
403
403
|
num_images_per_prompt: int = 1,
|
404
404
|
num_inference_steps: int = 25,
|
405
405
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
406
|
-
latents: Optional[torch.
|
406
|
+
latents: Optional[torch.Tensor] = None,
|
407
407
|
guidance_scale: float = 4.0,
|
408
408
|
output_type: Optional[str] = "pt",
|
409
409
|
return_dict: bool = True,
|
@@ -425,7 +425,7 @@ class KandinskyPriorPipeline(DiffusionPipeline):
|
|
425
425
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
426
426
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
427
427
|
to make generation deterministic.
|
428
|
-
latents (`torch.
|
428
|
+
latents (`torch.Tensor`, *optional*):
|
429
429
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
430
430
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
431
431
|
tensor will ge generated by sampling using the supplied random `generator`.
|
@@ -123,15 +123,15 @@ class KandinskyV22Pipeline(DiffusionPipeline):
|
|
123
123
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
124
124
|
def __call__(
|
125
125
|
self,
|
126
|
-
image_embeds: Union[torch.
|
127
|
-
negative_image_embeds: Union[torch.
|
126
|
+
image_embeds: Union[torch.Tensor, List[torch.Tensor]],
|
127
|
+
negative_image_embeds: Union[torch.Tensor, List[torch.Tensor]],
|
128
128
|
height: int = 512,
|
129
129
|
width: int = 512,
|
130
130
|
num_inference_steps: int = 100,
|
131
131
|
guidance_scale: float = 4.0,
|
132
132
|
num_images_per_prompt: int = 1,
|
133
133
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
134
|
-
latents: Optional[torch.
|
134
|
+
latents: Optional[torch.Tensor] = None,
|
135
135
|
output_type: Optional[str] = "pil",
|
136
136
|
return_dict: bool = True,
|
137
137
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
@@ -142,9 +142,9 @@ class KandinskyV22Pipeline(DiffusionPipeline):
|
|
142
142
|
Function invoked when calling the pipeline for generation.
|
143
143
|
|
144
144
|
Args:
|
145
|
-
image_embeds (`torch.
|
145
|
+
image_embeds (`torch.Tensor` or `List[torch.Tensor]`):
|
146
146
|
The clip image embeddings for text prompt, that will be used to condition the image generation.
|
147
|
-
negative_image_embeds (`torch.
|
147
|
+
negative_image_embeds (`torch.Tensor` or `List[torch.Tensor]`):
|
148
148
|
The clip image embeddings for negative text prompt, will be used to condition the image generation.
|
149
149
|
height (`int`, *optional*, defaults to 512):
|
150
150
|
The height in pixels of the generated image.
|
@@ -164,7 +164,7 @@ class KandinskyV22Pipeline(DiffusionPipeline):
|
|
164
164
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
165
165
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
166
166
|
to make generation deterministic.
|
167
|
-
latents (`torch.
|
167
|
+
latents (`torch.Tensor`, *optional*):
|
168
168
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
169
169
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
170
170
|
tensor will ge generated by sampling using the supplied random `generator`.
|
@@ -119,7 +119,7 @@ class KandinskyV22CombinedPipeline(DiffusionPipeline):
|
|
119
119
|
movq ([`VQModel`]):
|
120
120
|
MoVQ Decoder to generate the image from the latents.
|
121
121
|
prior_prior ([`PriorTransformer`]):
|
122
|
-
The
|
122
|
+
The canonical unCLIP prior to approximate the image embedding from the text embedding.
|
123
123
|
prior_image_encoder ([`CLIPVisionModelWithProjection`]):
|
124
124
|
Frozen image-encoder.
|
125
125
|
prior_text_encoder ([`CLIPTextModelWithProjection`]):
|
@@ -135,6 +135,7 @@ class KandinskyV22CombinedPipeline(DiffusionPipeline):
|
|
135
135
|
|
136
136
|
model_cpu_offload_seq = "prior_text_encoder->prior_image_encoder->unet->movq"
|
137
137
|
_load_connected_pipes = True
|
138
|
+
_exclude_from_cpu_offload = ["prior_prior"]
|
138
139
|
|
139
140
|
def __init__(
|
140
141
|
self,
|
@@ -178,7 +179,7 @@ class KandinskyV22CombinedPipeline(DiffusionPipeline):
|
|
178
179
|
def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
|
179
180
|
self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op)
|
180
181
|
|
181
|
-
def enable_sequential_cpu_offload(self, gpu_id=
|
182
|
+
def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"):
|
182
183
|
r"""
|
183
184
|
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
184
185
|
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
|
@@ -186,8 +187,8 @@ class KandinskyV22CombinedPipeline(DiffusionPipeline):
|
|
186
187
|
Note that offloading happens on a submodule basis. Memory savings are higher than with
|
187
188
|
`enable_model_cpu_offload`, but performance is lower.
|
188
189
|
"""
|
189
|
-
self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
|
190
|
-
self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
|
190
|
+
self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device)
|
191
|
+
self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device)
|
191
192
|
|
192
193
|
def progress_bar(self, iterable=None, total=None):
|
193
194
|
self.prior_pipe.progress_bar(iterable=iterable, total=total)
|
@@ -212,9 +213,9 @@ class KandinskyV22CombinedPipeline(DiffusionPipeline):
|
|
212
213
|
prior_guidance_scale: float = 4.0,
|
213
214
|
prior_num_inference_steps: int = 25,
|
214
215
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
215
|
-
latents: Optional[torch.
|
216
|
+
latents: Optional[torch.Tensor] = None,
|
216
217
|
output_type: Optional[str] = "pil",
|
217
|
-
callback: Optional[Callable[[int, int, torch.
|
218
|
+
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
218
219
|
callback_steps: int = 1,
|
219
220
|
return_dict: bool = True,
|
220
221
|
prior_callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
@@ -258,7 +259,7 @@ class KandinskyV22CombinedPipeline(DiffusionPipeline):
|
|
258
259
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
259
260
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
260
261
|
to make generation deterministic.
|
261
|
-
latents (`torch.
|
262
|
+
latents (`torch.Tensor`, *optional*):
|
262
263
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
263
264
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
264
265
|
tensor will ge generated by sampling using the supplied random `generator`.
|
@@ -346,7 +347,7 @@ class KandinskyV22Img2ImgCombinedPipeline(DiffusionPipeline):
|
|
346
347
|
movq ([`VQModel`]):
|
347
348
|
MoVQ Decoder to generate the image from the latents.
|
348
349
|
prior_prior ([`PriorTransformer`]):
|
349
|
-
The
|
350
|
+
The canonical unCLIP prior to approximate the image embedding from the text embedding.
|
350
351
|
prior_image_encoder ([`CLIPVisionModelWithProjection`]):
|
351
352
|
Frozen image-encoder.
|
352
353
|
prior_text_encoder ([`CLIPTextModelWithProjection`]):
|
@@ -362,6 +363,7 @@ class KandinskyV22Img2ImgCombinedPipeline(DiffusionPipeline):
|
|
362
363
|
|
363
364
|
model_cpu_offload_seq = "prior_text_encoder->prior_image_encoder->unet->movq"
|
364
365
|
_load_connected_pipes = True
|
366
|
+
_exclude_from_cpu_offload = ["prior_prior"]
|
365
367
|
|
366
368
|
def __init__(
|
367
369
|
self,
|
@@ -405,17 +407,17 @@ class KandinskyV22Img2ImgCombinedPipeline(DiffusionPipeline):
|
|
405
407
|
def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
|
406
408
|
self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op)
|
407
409
|
|
408
|
-
def enable_model_cpu_offload(self, gpu_id=
|
410
|
+
def enable_model_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"):
|
409
411
|
r"""
|
410
412
|
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
411
413
|
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
412
414
|
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
413
415
|
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
414
416
|
"""
|
415
|
-
self.prior_pipe.enable_model_cpu_offload()
|
416
|
-
self.decoder_pipe.enable_model_cpu_offload()
|
417
|
+
self.prior_pipe.enable_model_cpu_offload(gpu_id=gpu_id, device=device)
|
418
|
+
self.decoder_pipe.enable_model_cpu_offload(gpu_id=gpu_id, device=device)
|
417
419
|
|
418
|
-
def enable_sequential_cpu_offload(self, gpu_id=
|
420
|
+
def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"):
|
419
421
|
r"""
|
420
422
|
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
421
423
|
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
|
@@ -423,8 +425,8 @@ class KandinskyV22Img2ImgCombinedPipeline(DiffusionPipeline):
|
|
423
425
|
Note that offloading happens on a submodule basis. Memory savings are higher than with
|
424
426
|
`enable_model_cpu_offload`, but performance is lower.
|
425
427
|
"""
|
426
|
-
self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
|
427
|
-
self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
|
428
|
+
self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device)
|
429
|
+
self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device)
|
428
430
|
|
429
431
|
def progress_bar(self, iterable=None, total=None):
|
430
432
|
self.prior_pipe.progress_bar(iterable=iterable, total=total)
|
@@ -440,7 +442,7 @@ class KandinskyV22Img2ImgCombinedPipeline(DiffusionPipeline):
|
|
440
442
|
def __call__(
|
441
443
|
self,
|
442
444
|
prompt: Union[str, List[str]],
|
443
|
-
image: Union[torch.
|
445
|
+
image: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]],
|
444
446
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
445
447
|
num_inference_steps: int = 100,
|
446
448
|
guidance_scale: float = 4.0,
|
@@ -451,9 +453,9 @@ class KandinskyV22Img2ImgCombinedPipeline(DiffusionPipeline):
|
|
451
453
|
prior_guidance_scale: float = 4.0,
|
452
454
|
prior_num_inference_steps: int = 25,
|
453
455
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
454
|
-
latents: Optional[torch.
|
456
|
+
latents: Optional[torch.Tensor] = None,
|
455
457
|
output_type: Optional[str] = "pil",
|
456
|
-
callback: Optional[Callable[[int, int, torch.
|
458
|
+
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
457
459
|
callback_steps: int = 1,
|
458
460
|
return_dict: bool = True,
|
459
461
|
prior_callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
@@ -467,7 +469,7 @@ class KandinskyV22Img2ImgCombinedPipeline(DiffusionPipeline):
|
|
467
469
|
Args:
|
468
470
|
prompt (`str` or `List[str]`):
|
469
471
|
The prompt or prompts to guide the image generation.
|
470
|
-
image (`torch.
|
472
|
+
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
471
473
|
`Image`, or tensor representing an image batch, that will be used as the starting point for the
|
472
474
|
process. Can also accept image latents as `image`, if passing latents directly, it will not be encoded
|
473
475
|
again.
|
@@ -507,7 +509,7 @@ class KandinskyV22Img2ImgCombinedPipeline(DiffusionPipeline):
|
|
507
509
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
508
510
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
509
511
|
to make generation deterministic.
|
510
|
-
latents (`torch.
|
512
|
+
latents (`torch.Tensor`, *optional*):
|
511
513
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
512
514
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
513
515
|
tensor will ge generated by sampling using the supplied random `generator`.
|
@@ -516,7 +518,7 @@ class KandinskyV22Img2ImgCombinedPipeline(DiffusionPipeline):
|
|
516
518
|
(`np.array`) or `"pt"` (`torch.Tensor`).
|
517
519
|
callback (`Callable`, *optional*):
|
518
520
|
A function that calls every `callback_steps` steps during inference. The function is called with the
|
519
|
-
following arguments: `callback(step: int, timestep: int, latents: torch.
|
521
|
+
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
520
522
|
callback_steps (`int`, *optional*, defaults to 1):
|
521
523
|
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
522
524
|
every step.
|
@@ -545,7 +547,7 @@ class KandinskyV22Img2ImgCombinedPipeline(DiffusionPipeline):
|
|
545
547
|
negative_image_embeds = prior_outputs[1]
|
546
548
|
|
547
549
|
prompt = [prompt] if not isinstance(prompt, (list, tuple)) else prompt
|
548
|
-
image = [image] if isinstance(
|
550
|
+
image = [image] if isinstance(image, PIL.Image.Image) else image
|
549
551
|
|
550
552
|
if len(prompt) < image_embeds.shape[0] and image_embeds.shape[0] % len(prompt) == 0:
|
551
553
|
prompt = (image_embeds.shape[0] // len(prompt)) * prompt
|
@@ -594,7 +596,7 @@ class KandinskyV22InpaintCombinedPipeline(DiffusionPipeline):
|
|
594
596
|
movq ([`VQModel`]):
|
595
597
|
MoVQ Decoder to generate the image from the latents.
|
596
598
|
prior_prior ([`PriorTransformer`]):
|
597
|
-
The
|
599
|
+
The canonical unCLIP prior to approximate the image embedding from the text embedding.
|
598
600
|
prior_image_encoder ([`CLIPVisionModelWithProjection`]):
|
599
601
|
Frozen image-encoder.
|
600
602
|
prior_text_encoder ([`CLIPTextModelWithProjection`]):
|
@@ -610,6 +612,7 @@ class KandinskyV22InpaintCombinedPipeline(DiffusionPipeline):
|
|
610
612
|
|
611
613
|
model_cpu_offload_seq = "prior_text_encoder->prior_image_encoder->unet->movq"
|
612
614
|
_load_connected_pipes = True
|
615
|
+
_exclude_from_cpu_offload = ["prior_prior"]
|
613
616
|
|
614
617
|
def __init__(
|
615
618
|
self,
|
@@ -653,7 +656,7 @@ class KandinskyV22InpaintCombinedPipeline(DiffusionPipeline):
|
|
653
656
|
def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
|
654
657
|
self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op)
|
655
658
|
|
656
|
-
def enable_sequential_cpu_offload(self, gpu_id=
|
659
|
+
def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"):
|
657
660
|
r"""
|
658
661
|
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
659
662
|
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
|
@@ -661,8 +664,8 @@ class KandinskyV22InpaintCombinedPipeline(DiffusionPipeline):
|
|
661
664
|
Note that offloading happens on a submodule basis. Memory savings are higher than with
|
662
665
|
`enable_model_cpu_offload`, but performance is lower.
|
663
666
|
"""
|
664
|
-
self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
|
665
|
-
self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
|
667
|
+
self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device)
|
668
|
+
self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device)
|
666
669
|
|
667
670
|
def progress_bar(self, iterable=None, total=None):
|
668
671
|
self.prior_pipe.progress_bar(iterable=iterable, total=total)
|
@@ -678,8 +681,8 @@ class KandinskyV22InpaintCombinedPipeline(DiffusionPipeline):
|
|
678
681
|
def __call__(
|
679
682
|
self,
|
680
683
|
prompt: Union[str, List[str]],
|
681
|
-
image: Union[torch.
|
682
|
-
mask_image: Union[torch.
|
684
|
+
image: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]],
|
685
|
+
mask_image: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]],
|
683
686
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
684
687
|
num_inference_steps: int = 100,
|
685
688
|
guidance_scale: float = 4.0,
|
@@ -689,7 +692,7 @@ class KandinskyV22InpaintCombinedPipeline(DiffusionPipeline):
|
|
689
692
|
prior_guidance_scale: float = 4.0,
|
690
693
|
prior_num_inference_steps: int = 25,
|
691
694
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
692
|
-
latents: Optional[torch.
|
695
|
+
latents: Optional[torch.Tensor] = None,
|
693
696
|
output_type: Optional[str] = "pil",
|
694
697
|
return_dict: bool = True,
|
695
698
|
prior_callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
@@ -704,7 +707,7 @@ class KandinskyV22InpaintCombinedPipeline(DiffusionPipeline):
|
|
704
707
|
Args:
|
705
708
|
prompt (`str` or `List[str]`):
|
706
709
|
The prompt or prompts to guide the image generation.
|
707
|
-
image (`torch.
|
710
|
+
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
708
711
|
`Image`, or tensor representing an image batch, that will be used as the starting point for the
|
709
712
|
process. Can also accept image latents as `image`, if passing latents directly, it will not be encoded
|
710
713
|
again.
|
@@ -743,7 +746,7 @@ class KandinskyV22InpaintCombinedPipeline(DiffusionPipeline):
|
|
743
746
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
744
747
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
745
748
|
to make generation deterministic.
|
746
|
-
latents (`torch.
|
749
|
+
latents (`torch.Tensor`, *optional*):
|
747
750
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
748
751
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
749
752
|
tensor will ge generated by sampling using the supplied random `generator`.
|
@@ -810,7 +813,7 @@ class KandinskyV22InpaintCombinedPipeline(DiffusionPipeline):
|
|
810
813
|
negative_image_embeds = prior_outputs[1]
|
811
814
|
|
812
815
|
prompt = [prompt] if not isinstance(prompt, (list, tuple)) else prompt
|
813
|
-
image = [image] if isinstance(
|
816
|
+
image = [image] if isinstance(image, PIL.Image.Image) else image
|
814
817
|
mask_image = [mask_image] if isinstance(mask_image, PIL.Image.Image) else mask_image
|
815
818
|
|
816
819
|
if len(prompt) < image_embeds.shape[0] and image_embeds.shape[0] % len(prompt) == 0:
|
@@ -151,18 +151,18 @@ class KandinskyV22ControlnetPipeline(DiffusionPipeline):
|
|
151
151
|
@torch.no_grad()
|
152
152
|
def __call__(
|
153
153
|
self,
|
154
|
-
image_embeds: Union[torch.
|
155
|
-
negative_image_embeds: Union[torch.
|
156
|
-
hint: torch.
|
154
|
+
image_embeds: Union[torch.Tensor, List[torch.Tensor]],
|
155
|
+
negative_image_embeds: Union[torch.Tensor, List[torch.Tensor]],
|
156
|
+
hint: torch.Tensor,
|
157
157
|
height: int = 512,
|
158
158
|
width: int = 512,
|
159
159
|
num_inference_steps: int = 100,
|
160
160
|
guidance_scale: float = 4.0,
|
161
161
|
num_images_per_prompt: int = 1,
|
162
162
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
163
|
-
latents: Optional[torch.
|
163
|
+
latents: Optional[torch.Tensor] = None,
|
164
164
|
output_type: Optional[str] = "pil",
|
165
|
-
callback: Optional[Callable[[int, int, torch.
|
165
|
+
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
166
166
|
callback_steps: int = 1,
|
167
167
|
return_dict: bool = True,
|
168
168
|
):
|
@@ -172,11 +172,11 @@ class KandinskyV22ControlnetPipeline(DiffusionPipeline):
|
|
172
172
|
Args:
|
173
173
|
prompt (`str` or `List[str]`):
|
174
174
|
The prompt or prompts to guide the image generation.
|
175
|
-
hint (`torch.
|
175
|
+
hint (`torch.Tensor`):
|
176
176
|
The controlnet condition.
|
177
|
-
image_embeds (`torch.
|
177
|
+
image_embeds (`torch.Tensor` or `List[torch.Tensor]`):
|
178
178
|
The clip image embeddings for text prompt, that will be used to condition the image generation.
|
179
|
-
negative_image_embeds (`torch.
|
179
|
+
negative_image_embeds (`torch.Tensor` or `List[torch.Tensor]`):
|
180
180
|
The clip image embeddings for negative text prompt, will be used to condition the image generation.
|
181
181
|
negative_prompt (`str` or `List[str]`, *optional*):
|
182
182
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
@@ -199,7 +199,7 @@ class KandinskyV22ControlnetPipeline(DiffusionPipeline):
|
|
199
199
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
200
200
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
201
201
|
to make generation deterministic.
|
202
|
-
latents (`torch.
|
202
|
+
latents (`torch.Tensor`, *optional*):
|
203
203
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
204
204
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
205
205
|
tensor will ge generated by sampling using the supplied random `generator`.
|
@@ -208,7 +208,7 @@ class KandinskyV22ControlnetPipeline(DiffusionPipeline):
|
|
208
208
|
(`np.array`) or `"pt"` (`torch.Tensor`).
|
209
209
|
callback (`Callable`, *optional*):
|
210
210
|
A function that calls every `callback_steps` steps during inference. The function is called with the
|
211
|
-
following arguments: `callback(step: int, timestep: int, latents: torch.
|
211
|
+
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
212
212
|
callback_steps (`int`, *optional*, defaults to 1):
|
213
213
|
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
214
214
|
every step.
|
@@ -206,10 +206,10 @@ class KandinskyV22ControlnetImg2ImgPipeline(DiffusionPipeline):
|
|
206
206
|
@torch.no_grad()
|
207
207
|
def __call__(
|
208
208
|
self,
|
209
|
-
image_embeds: Union[torch.
|
210
|
-
image: Union[torch.
|
211
|
-
negative_image_embeds: Union[torch.
|
212
|
-
hint: torch.
|
209
|
+
image_embeds: Union[torch.Tensor, List[torch.Tensor]],
|
210
|
+
image: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]],
|
211
|
+
negative_image_embeds: Union[torch.Tensor, List[torch.Tensor]],
|
212
|
+
hint: torch.Tensor,
|
213
213
|
height: int = 512,
|
214
214
|
width: int = 512,
|
215
215
|
num_inference_steps: int = 100,
|
@@ -218,7 +218,7 @@ class KandinskyV22ControlnetImg2ImgPipeline(DiffusionPipeline):
|
|
218
218
|
num_images_per_prompt: int = 1,
|
219
219
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
220
220
|
output_type: Optional[str] = "pil",
|
221
|
-
callback: Optional[Callable[[int, int, torch.
|
221
|
+
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
222
222
|
callback_steps: int = 1,
|
223
223
|
return_dict: bool = True,
|
224
224
|
):
|
@@ -226,9 +226,9 @@ class KandinskyV22ControlnetImg2ImgPipeline(DiffusionPipeline):
|
|
226
226
|
Function invoked when calling the pipeline for generation.
|
227
227
|
|
228
228
|
Args:
|
229
|
-
image_embeds (`torch.
|
229
|
+
image_embeds (`torch.Tensor` or `List[torch.Tensor]`):
|
230
230
|
The clip image embeddings for text prompt, that will be used to condition the image generation.
|
231
|
-
image (`torch.
|
231
|
+
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
232
232
|
`Image`, or tensor representing an image batch, that will be used as the starting point for the
|
233
233
|
process. Can also accept image latents as `image`, if passing latents directly, it will not be encoded
|
234
234
|
again.
|
@@ -238,9 +238,9 @@ class KandinskyV22ControlnetImg2ImgPipeline(DiffusionPipeline):
|
|
238
238
|
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
|
239
239
|
be maximum and the denoising process will run for the full number of iterations specified in
|
240
240
|
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
|
241
|
-
hint (`torch.
|
241
|
+
hint (`torch.Tensor`):
|
242
242
|
The controlnet condition.
|
243
|
-
negative_image_embeds (`torch.
|
243
|
+
negative_image_embeds (`torch.Tensor` or `List[torch.Tensor]`):
|
244
244
|
The clip image embeddings for negative text prompt, will be used to condition the image generation.
|
245
245
|
height (`int`, *optional*, defaults to 512):
|
246
246
|
The height in pixels of the generated image.
|
@@ -265,7 +265,7 @@ class KandinskyV22ControlnetImg2ImgPipeline(DiffusionPipeline):
|
|
265
265
|
(`np.array`) or `"pt"` (`torch.Tensor`).
|
266
266
|
callback (`Callable`, *optional*):
|
267
267
|
A function that calls every `callback_steps` steps during inference. The function is called with the
|
268
|
-
following arguments: `callback(step: int, timestep: int, latents: torch.
|
268
|
+
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
269
269
|
callback_steps (`int`, *optional*, defaults to 1):
|
270
270
|
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
271
271
|
every step.
|
@@ -190,9 +190,9 @@ class KandinskyV22Img2ImgPipeline(DiffusionPipeline):
|
|
190
190
|
@torch.no_grad()
|
191
191
|
def __call__(
|
192
192
|
self,
|
193
|
-
image_embeds: Union[torch.
|
194
|
-
image: Union[torch.
|
195
|
-
negative_image_embeds: Union[torch.
|
193
|
+
image_embeds: Union[torch.Tensor, List[torch.Tensor]],
|
194
|
+
image: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]],
|
195
|
+
negative_image_embeds: Union[torch.Tensor, List[torch.Tensor]],
|
196
196
|
height: int = 512,
|
197
197
|
width: int = 512,
|
198
198
|
num_inference_steps: int = 100,
|
@@ -210,9 +210,9 @@ class KandinskyV22Img2ImgPipeline(DiffusionPipeline):
|
|
210
210
|
Function invoked when calling the pipeline for generation.
|
211
211
|
|
212
212
|
Args:
|
213
|
-
image_embeds (`torch.
|
213
|
+
image_embeds (`torch.Tensor` or `List[torch.Tensor]`):
|
214
214
|
The clip image embeddings for text prompt, that will be used to condition the image generation.
|
215
|
-
image (`torch.
|
215
|
+
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
216
216
|
`Image`, or tensor representing an image batch, that will be used as the starting point for the
|
217
217
|
process. Can also accept image latents as `image`, if passing latents directly, it will not be encoded
|
218
218
|
again.
|
@@ -222,7 +222,7 @@ class KandinskyV22Img2ImgPipeline(DiffusionPipeline):
|
|
222
222
|
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
|
223
223
|
be maximum and the denoising process will run for the full number of iterations specified in
|
224
224
|
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
|
225
|
-
negative_image_embeds (`torch.
|
225
|
+
negative_image_embeds (`torch.Tensor` or `List[torch.Tensor]`):
|
226
226
|
The clip image embeddings for negative text prompt, will be used to condition the image generation.
|
227
227
|
height (`int`, *optional*, defaults to 512):
|
228
228
|
The height in pixels of the generated image.
|
@@ -294,17 +294,17 @@ class KandinskyV22InpaintPipeline(DiffusionPipeline):
|
|
294
294
|
@torch.no_grad()
|
295
295
|
def __call__(
|
296
296
|
self,
|
297
|
-
image_embeds: Union[torch.
|
298
|
-
image: Union[torch.
|
299
|
-
mask_image: Union[torch.
|
300
|
-
negative_image_embeds: Union[torch.
|
297
|
+
image_embeds: Union[torch.Tensor, List[torch.Tensor]],
|
298
|
+
image: Union[torch.Tensor, PIL.Image.Image],
|
299
|
+
mask_image: Union[torch.Tensor, PIL.Image.Image, np.ndarray],
|
300
|
+
negative_image_embeds: Union[torch.Tensor, List[torch.Tensor]],
|
301
301
|
height: int = 512,
|
302
302
|
width: int = 512,
|
303
303
|
num_inference_steps: int = 100,
|
304
304
|
guidance_scale: float = 4.0,
|
305
305
|
num_images_per_prompt: int = 1,
|
306
306
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
307
|
-
latents: Optional[torch.
|
307
|
+
latents: Optional[torch.Tensor] = None,
|
308
308
|
output_type: Optional[str] = "pil",
|
309
309
|
return_dict: bool = True,
|
310
310
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
@@ -315,7 +315,7 @@ class KandinskyV22InpaintPipeline(DiffusionPipeline):
|
|
315
315
|
Function invoked when calling the pipeline for generation.
|
316
316
|
|
317
317
|
Args:
|
318
|
-
image_embeds (`torch.
|
318
|
+
image_embeds (`torch.Tensor` or `List[torch.Tensor]`):
|
319
319
|
The clip image embeddings for text prompt, that will be used to condition the image generation.
|
320
320
|
image (`PIL.Image.Image`):
|
321
321
|
`Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
|
@@ -325,7 +325,7 @@ class KandinskyV22InpaintPipeline(DiffusionPipeline):
|
|
325
325
|
black pixels will be preserved. If `mask_image` is a PIL image, it will be converted to a single
|
326
326
|
channel (luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3,
|
327
327
|
so the expected shape would be `(B, H, W, 1)`.
|
328
|
-
negative_image_embeds (`torch.
|
328
|
+
negative_image_embeds (`torch.Tensor` or `List[torch.Tensor]`):
|
329
329
|
The clip image embeddings for negative text prompt, will be used to condition the image generation.
|
330
330
|
height (`int`, *optional*, defaults to 512):
|
331
331
|
The height in pixels of the generated image.
|
@@ -345,7 +345,7 @@ class KandinskyV22InpaintPipeline(DiffusionPipeline):
|
|
345
345
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
346
346
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
347
347
|
to make generation deterministic.
|
348
|
-
latents (`torch.
|
348
|
+
latents (`torch.Tensor`, *optional*):
|
349
349
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
350
350
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
351
351
|
tensor will ge generated by sampling using the supplied random `generator`.
|
@@ -90,7 +90,7 @@ class KandinskyV22PriorPipeline(DiffusionPipeline):
|
|
90
90
|
|
91
91
|
Args:
|
92
92
|
prior ([`PriorTransformer`]):
|
93
|
-
The
|
93
|
+
The canonical unCLIP prior to approximate the image embedding from the text embedding.
|
94
94
|
image_encoder ([`CLIPVisionModelWithProjection`]):
|
95
95
|
Frozen image-encoder.
|
96
96
|
text_encoder ([`CLIPTextModelWithProjection`]):
|
@@ -132,12 +132,12 @@ class KandinskyV22PriorPipeline(DiffusionPipeline):
|
|
132
132
|
@replace_example_docstring(EXAMPLE_INTERPOLATE_DOC_STRING)
|
133
133
|
def interpolate(
|
134
134
|
self,
|
135
|
-
images_and_prompts: List[Union[str, PIL.Image.Image, torch.
|
135
|
+
images_and_prompts: List[Union[str, PIL.Image.Image, torch.Tensor]],
|
136
136
|
weights: List[float],
|
137
137
|
num_images_per_prompt: int = 1,
|
138
138
|
num_inference_steps: int = 25,
|
139
139
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
140
|
-
latents: Optional[torch.
|
140
|
+
latents: Optional[torch.Tensor] = None,
|
141
141
|
negative_prior_prompt: Optional[str] = None,
|
142
142
|
negative_prompt: str = "",
|
143
143
|
guidance_scale: float = 4.0,
|
@@ -147,7 +147,7 @@ class KandinskyV22PriorPipeline(DiffusionPipeline):
|
|
147
147
|
Function invoked when using the prior pipeline for interpolation.
|
148
148
|
|
149
149
|
Args:
|
150
|
-
images_and_prompts (`List[Union[str, PIL.Image.Image, torch.
|
150
|
+
images_and_prompts (`List[Union[str, PIL.Image.Image, torch.Tensor]]`):
|
151
151
|
list of prompts and images to guide the image generation.
|
152
152
|
weights: (`List[float]`):
|
153
153
|
list of weights for each condition in `images_and_prompts`
|
@@ -159,7 +159,7 @@ class KandinskyV22PriorPipeline(DiffusionPipeline):
|
|
159
159
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
160
160
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
161
161
|
to make generation deterministic.
|
162
|
-
latents (`torch.
|
162
|
+
latents (`torch.Tensor`, *optional*):
|
163
163
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
164
164
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
165
165
|
tensor will ge generated by sampling using the supplied random `generator`.
|
@@ -376,7 +376,7 @@ class KandinskyV22PriorPipeline(DiffusionPipeline):
|
|
376
376
|
num_images_per_prompt: int = 1,
|
377
377
|
num_inference_steps: int = 25,
|
378
378
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
379
|
-
latents: Optional[torch.
|
379
|
+
latents: Optional[torch.Tensor] = None,
|
380
380
|
guidance_scale: float = 4.0,
|
381
381
|
output_type: Optional[str] = "pt", # pt only
|
382
382
|
return_dict: bool = True,
|
@@ -400,7 +400,7 @@ class KandinskyV22PriorPipeline(DiffusionPipeline):
|
|
400
400
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
401
401
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
402
402
|
to make generation deterministic.
|
403
|
-
latents (`torch.
|
403
|
+
latents (`torch.Tensor`, *optional*):
|
404
404
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
405
405
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
406
406
|
tensor will ge generated by sampling using the supplied random `generator`.
|