diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,916 @@
1
+ # Copyright 2024 HunyuanDiT Authors and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Callable, Dict, List, Optional, Tuple, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ from transformers import BertModel, BertTokenizer, CLIPImageProcessor, MT5Tokenizer, T5EncoderModel
21
+
22
+ from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
23
+
24
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
25
+ from ...image_processor import VaeImageProcessor
26
+ from ...models import AutoencoderKL, HunyuanDiT2DModel
27
+ from ...models.embeddings import get_2d_rotary_pos_embed
28
+ from ...pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
29
+ from ...schedulers import DDPMScheduler
30
+ from ...utils import (
31
+ is_torch_xla_available,
32
+ logging,
33
+ replace_example_docstring,
34
+ )
35
+ from ...utils.torch_utils import randn_tensor
36
+ from ..pipeline_utils import DiffusionPipeline
37
+
38
+
39
+ if is_torch_xla_available():
40
+ import torch_xla.core.xla_model as xm
41
+
42
+ XLA_AVAILABLE = True
43
+ else:
44
+ XLA_AVAILABLE = False
45
+
46
+
47
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
48
+
49
+ EXAMPLE_DOC_STRING = """
50
+ Examples:
51
+ ```py
52
+ >>> import torch
53
+ >>> from diffusers import HunyuanDiTPipeline
54
+
55
+ >>> pipe = HunyuanDiTPipeline.from_pretrained(
56
+ ... "Tencent-Hunyuan/HunyuanDiT-Diffusers", torch_dtype=torch.float16
57
+ ... )
58
+ >>> pipe.to("cuda")
59
+
60
+ >>> # You may also use English prompt as HunyuanDiT supports both English and Chinese
61
+ >>> # prompt = "An astronaut riding a horse"
62
+ >>> prompt = "一个宇航员在骑马"
63
+ >>> image = pipe(prompt).images[0]
64
+ ```
65
+ """
66
+
67
+ STANDARD_RATIO = np.array(
68
+ [
69
+ 1.0, # 1:1
70
+ 4.0 / 3.0, # 4:3
71
+ 3.0 / 4.0, # 3:4
72
+ 16.0 / 9.0, # 16:9
73
+ 9.0 / 16.0, # 9:16
74
+ ]
75
+ )
76
+ STANDARD_SHAPE = [
77
+ [(1024, 1024), (1280, 1280)], # 1:1
78
+ [(1024, 768), (1152, 864), (1280, 960)], # 4:3
79
+ [(768, 1024), (864, 1152), (960, 1280)], # 3:4
80
+ [(1280, 768)], # 16:9
81
+ [(768, 1280)], # 9:16
82
+ ]
83
+ STANDARD_AREA = [np.array([w * h for w, h in shapes]) for shapes in STANDARD_SHAPE]
84
+ SUPPORTED_SHAPE = [
85
+ (1024, 1024),
86
+ (1280, 1280), # 1:1
87
+ (1024, 768),
88
+ (1152, 864),
89
+ (1280, 960), # 4:3
90
+ (768, 1024),
91
+ (864, 1152),
92
+ (960, 1280), # 3:4
93
+ (1280, 768), # 16:9
94
+ (768, 1280), # 9:16
95
+ ]
96
+
97
+
98
+ def map_to_standard_shapes(target_width, target_height):
99
+ target_ratio = target_width / target_height
100
+ closest_ratio_idx = np.argmin(np.abs(STANDARD_RATIO - target_ratio))
101
+ closest_area_idx = np.argmin(np.abs(STANDARD_AREA[closest_ratio_idx] - target_width * target_height))
102
+ width, height = STANDARD_SHAPE[closest_ratio_idx][closest_area_idx]
103
+ return width, height
104
+
105
+
106
+ def get_resize_crop_region_for_grid(src, tgt_size):
107
+ th = tw = tgt_size
108
+ h, w = src
109
+
110
+ r = h / w
111
+
112
+ # resize
113
+ if r > 1:
114
+ resize_height = th
115
+ resize_width = int(round(th / h * w))
116
+ else:
117
+ resize_width = tw
118
+ resize_height = int(round(tw / w * h))
119
+
120
+ crop_top = int(round((th - resize_height) / 2.0))
121
+ crop_left = int(round((tw - resize_width) / 2.0))
122
+
123
+ return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
124
+
125
+
126
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
127
+ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
128
+ r"""
129
+ Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
130
+ Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
131
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf).
132
+
133
+ Args:
134
+ noise_cfg (`torch.Tensor`):
135
+ The predicted noise tensor for the guided diffusion process.
136
+ noise_pred_text (`torch.Tensor`):
137
+ The predicted noise tensor for the text-guided diffusion process.
138
+ guidance_rescale (`float`, *optional*, defaults to 0.0):
139
+ A rescale factor applied to the noise predictions.
140
+
141
+ Returns:
142
+ noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
143
+ """
144
+ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
145
+ std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
146
+ # rescale the results from guidance (fixes overexposure)
147
+ noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
148
+ # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
149
+ noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
150
+ return noise_cfg
151
+
152
+
153
+ class HunyuanDiTPipeline(DiffusionPipeline):
154
+ r"""
155
+ Pipeline for English/Chinese-to-image generation using HunyuanDiT.
156
+
157
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
158
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
159
+
160
+ HunyuanDiT uses two text encoders: [mT5](https://huggingface.co/google/mt5-base) and [bilingual CLIP](fine-tuned by
161
+ ourselves)
162
+
163
+ Args:
164
+ vae ([`AutoencoderKL`]):
165
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. We use
166
+ `sdxl-vae-fp16-fix`.
167
+ text_encoder (Optional[`~transformers.BertModel`, `~transformers.CLIPTextModel`]):
168
+ Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
169
+ HunyuanDiT uses a fine-tuned [bilingual CLIP].
170
+ tokenizer (Optional[`~transformers.BertTokenizer`, `~transformers.CLIPTokenizer`]):
171
+ A `BertTokenizer` or `CLIPTokenizer` to tokenize text.
172
+ transformer ([`HunyuanDiT2DModel`]):
173
+ The HunyuanDiT model designed by Tencent Hunyuan.
174
+ text_encoder_2 (`T5EncoderModel`):
175
+ The mT5 embedder. Specifically, it is 't5-v1_1-xxl'.
176
+ tokenizer_2 (`MT5Tokenizer`):
177
+ The tokenizer for the mT5 embedder.
178
+ scheduler ([`DDPMScheduler`]):
179
+ A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents.
180
+ """
181
+
182
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
183
+ _optional_components = [
184
+ "safety_checker",
185
+ "feature_extractor",
186
+ "text_encoder_2",
187
+ "tokenizer_2",
188
+ "text_encoder",
189
+ "tokenizer",
190
+ ]
191
+ _exclude_from_cpu_offload = ["safety_checker"]
192
+ _callback_tensor_inputs = [
193
+ "latents",
194
+ "prompt_embeds",
195
+ "negative_prompt_embeds",
196
+ "prompt_embeds_2",
197
+ "negative_prompt_embeds_2",
198
+ ]
199
+
200
+ def __init__(
201
+ self,
202
+ vae: AutoencoderKL,
203
+ text_encoder: BertModel,
204
+ tokenizer: BertTokenizer,
205
+ transformer: HunyuanDiT2DModel,
206
+ scheduler: DDPMScheduler,
207
+ safety_checker: StableDiffusionSafetyChecker,
208
+ feature_extractor: CLIPImageProcessor,
209
+ requires_safety_checker: bool = True,
210
+ text_encoder_2=T5EncoderModel,
211
+ tokenizer_2=MT5Tokenizer,
212
+ ):
213
+ super().__init__()
214
+
215
+ self.register_modules(
216
+ vae=vae,
217
+ text_encoder=text_encoder,
218
+ tokenizer=tokenizer,
219
+ tokenizer_2=tokenizer_2,
220
+ transformer=transformer,
221
+ scheduler=scheduler,
222
+ safety_checker=safety_checker,
223
+ feature_extractor=feature_extractor,
224
+ text_encoder_2=text_encoder_2,
225
+ )
226
+
227
+ if safety_checker is None and requires_safety_checker:
228
+ logger.warning(
229
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
230
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
231
+ " results in services or applications open to the public. Both the diffusers team and Hugging Face"
232
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
233
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
234
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
235
+ )
236
+
237
+ if safety_checker is not None and feature_extractor is None:
238
+ raise ValueError(
239
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
240
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
241
+ )
242
+
243
+ self.vae_scale_factor = (
244
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
245
+ )
246
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
247
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
248
+ self.default_sample_size = (
249
+ self.transformer.config.sample_size
250
+ if hasattr(self, "transformer") and self.transformer is not None
251
+ else 128
252
+ )
253
+
254
+ def encode_prompt(
255
+ self,
256
+ prompt: str,
257
+ device: torch.device = None,
258
+ dtype: torch.dtype = None,
259
+ num_images_per_prompt: int = 1,
260
+ do_classifier_free_guidance: bool = True,
261
+ negative_prompt: Optional[str] = None,
262
+ prompt_embeds: Optional[torch.Tensor] = None,
263
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
264
+ prompt_attention_mask: Optional[torch.Tensor] = None,
265
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
266
+ max_sequence_length: Optional[int] = None,
267
+ text_encoder_index: int = 0,
268
+ ):
269
+ r"""
270
+ Encodes the prompt into text encoder hidden states.
271
+
272
+ Args:
273
+ prompt (`str` or `List[str]`, *optional*):
274
+ prompt to be encoded
275
+ device: (`torch.device`):
276
+ torch device
277
+ dtype (`torch.dtype`):
278
+ torch dtype
279
+ num_images_per_prompt (`int`):
280
+ number of images that should be generated per prompt
281
+ do_classifier_free_guidance (`bool`):
282
+ whether to use classifier free guidance or not
283
+ negative_prompt (`str` or `List[str]`, *optional*):
284
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
285
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
286
+ less than `1`).
287
+ prompt_embeds (`torch.Tensor`, *optional*):
288
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
289
+ provided, text embeddings will be generated from `prompt` input argument.
290
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
291
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
292
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
293
+ argument.
294
+ prompt_attention_mask (`torch.Tensor`, *optional*):
295
+ Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
296
+ negative_prompt_attention_mask (`torch.Tensor`, *optional*):
297
+ Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
298
+ max_sequence_length (`int`, *optional*): maximum sequence length to use for the prompt.
299
+ text_encoder_index (`int`, *optional*):
300
+ Index of the text encoder to use. `0` for clip and `1` for T5.
301
+ """
302
+ if dtype is None:
303
+ if self.text_encoder_2 is not None:
304
+ dtype = self.text_encoder_2.dtype
305
+ elif self.transformer is not None:
306
+ dtype = self.transformer.dtype
307
+ else:
308
+ dtype = None
309
+
310
+ if device is None:
311
+ device = self._execution_device
312
+
313
+ tokenizers = [self.tokenizer, self.tokenizer_2]
314
+ text_encoders = [self.text_encoder, self.text_encoder_2]
315
+
316
+ tokenizer = tokenizers[text_encoder_index]
317
+ text_encoder = text_encoders[text_encoder_index]
318
+
319
+ if max_sequence_length is None:
320
+ if text_encoder_index == 0:
321
+ max_length = 77
322
+ if text_encoder_index == 1:
323
+ max_length = 256
324
+ else:
325
+ max_length = max_sequence_length
326
+
327
+ if prompt is not None and isinstance(prompt, str):
328
+ batch_size = 1
329
+ elif prompt is not None and isinstance(prompt, list):
330
+ batch_size = len(prompt)
331
+ else:
332
+ batch_size = prompt_embeds.shape[0]
333
+
334
+ if prompt_embeds is None:
335
+ text_inputs = tokenizer(
336
+ prompt,
337
+ padding="max_length",
338
+ max_length=max_length,
339
+ truncation=True,
340
+ return_attention_mask=True,
341
+ return_tensors="pt",
342
+ )
343
+ text_input_ids = text_inputs.input_ids
344
+ untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
345
+
346
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
347
+ text_input_ids, untruncated_ids
348
+ ):
349
+ removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
350
+ logger.warning(
351
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
352
+ f" {tokenizer.model_max_length} tokens: {removed_text}"
353
+ )
354
+
355
+ prompt_attention_mask = text_inputs.attention_mask.to(device)
356
+ prompt_embeds = text_encoder(
357
+ text_input_ids.to(device),
358
+ attention_mask=prompt_attention_mask,
359
+ )
360
+ prompt_embeds = prompt_embeds[0]
361
+ prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
362
+
363
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
364
+
365
+ bs_embed, seq_len, _ = prompt_embeds.shape
366
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
367
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
368
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
369
+
370
+ # get unconditional embeddings for classifier free guidance
371
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
372
+ uncond_tokens: List[str]
373
+ if negative_prompt is None:
374
+ uncond_tokens = [""] * batch_size
375
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
376
+ raise TypeError(
377
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
378
+ f" {type(prompt)}."
379
+ )
380
+ elif isinstance(negative_prompt, str):
381
+ uncond_tokens = [negative_prompt]
382
+ elif batch_size != len(negative_prompt):
383
+ raise ValueError(
384
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
385
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
386
+ " the batch size of `prompt`."
387
+ )
388
+ else:
389
+ uncond_tokens = negative_prompt
390
+
391
+ max_length = prompt_embeds.shape[1]
392
+ uncond_input = tokenizer(
393
+ uncond_tokens,
394
+ padding="max_length",
395
+ max_length=max_length,
396
+ truncation=True,
397
+ return_tensors="pt",
398
+ )
399
+
400
+ negative_prompt_attention_mask = uncond_input.attention_mask.to(device)
401
+ negative_prompt_embeds = text_encoder(
402
+ uncond_input.input_ids.to(device),
403
+ attention_mask=negative_prompt_attention_mask,
404
+ )
405
+ negative_prompt_embeds = negative_prompt_embeds[0]
406
+ negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
407
+
408
+ if do_classifier_free_guidance:
409
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
410
+ seq_len = negative_prompt_embeds.shape[1]
411
+
412
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
413
+
414
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
415
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
416
+
417
+ return prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask
418
+
419
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
420
+ def run_safety_checker(self, image, device, dtype):
421
+ if self.safety_checker is None:
422
+ has_nsfw_concept = None
423
+ else:
424
+ if torch.is_tensor(image):
425
+ feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
426
+ else:
427
+ feature_extractor_input = self.image_processor.numpy_to_pil(image)
428
+ safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
429
+ image, has_nsfw_concept = self.safety_checker(
430
+ images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
431
+ )
432
+ return image, has_nsfw_concept
433
+
434
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
435
+ def prepare_extra_step_kwargs(self, generator, eta):
436
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
437
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
438
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
439
+ # and should be between [0, 1]
440
+
441
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
442
+ extra_step_kwargs = {}
443
+ if accepts_eta:
444
+ extra_step_kwargs["eta"] = eta
445
+
446
+ # check if the scheduler accepts generator
447
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
448
+ if accepts_generator:
449
+ extra_step_kwargs["generator"] = generator
450
+ return extra_step_kwargs
451
+
452
+ def check_inputs(
453
+ self,
454
+ prompt,
455
+ height,
456
+ width,
457
+ negative_prompt=None,
458
+ prompt_embeds=None,
459
+ negative_prompt_embeds=None,
460
+ prompt_attention_mask=None,
461
+ negative_prompt_attention_mask=None,
462
+ prompt_embeds_2=None,
463
+ negative_prompt_embeds_2=None,
464
+ prompt_attention_mask_2=None,
465
+ negative_prompt_attention_mask_2=None,
466
+ callback_on_step_end_tensor_inputs=None,
467
+ ):
468
+ if height % 8 != 0 or width % 8 != 0:
469
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
470
+
471
+ if callback_on_step_end_tensor_inputs is not None and not all(
472
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
473
+ ):
474
+ raise ValueError(
475
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
476
+ )
477
+
478
+ if prompt is not None and prompt_embeds is not None:
479
+ raise ValueError(
480
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
481
+ " only forward one of the two."
482
+ )
483
+ elif prompt is None and prompt_embeds is None:
484
+ raise ValueError(
485
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
486
+ )
487
+ elif prompt is None and prompt_embeds_2 is None:
488
+ raise ValueError(
489
+ "Provide either `prompt` or `prompt_embeds_2`. Cannot leave both `prompt` and `prompt_embeds_2` undefined."
490
+ )
491
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
492
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
493
+
494
+ if prompt_embeds is not None and prompt_attention_mask is None:
495
+ raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
496
+
497
+ if prompt_embeds_2 is not None and prompt_attention_mask_2 is None:
498
+ raise ValueError("Must provide `prompt_attention_mask_2` when specifying `prompt_embeds_2`.")
499
+
500
+ if negative_prompt is not None and negative_prompt_embeds is not None:
501
+ raise ValueError(
502
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
503
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
504
+ )
505
+
506
+ if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
507
+ raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
508
+
509
+ if negative_prompt_embeds_2 is not None and negative_prompt_attention_mask_2 is None:
510
+ raise ValueError(
511
+ "Must provide `negative_prompt_attention_mask_2` when specifying `negative_prompt_embeds_2`."
512
+ )
513
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
514
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
515
+ raise ValueError(
516
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
517
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
518
+ f" {negative_prompt_embeds.shape}."
519
+ )
520
+ if prompt_embeds_2 is not None and negative_prompt_embeds_2 is not None:
521
+ if prompt_embeds_2.shape != negative_prompt_embeds_2.shape:
522
+ raise ValueError(
523
+ "`prompt_embeds_2` and `negative_prompt_embeds_2` must have the same shape when passed directly, but"
524
+ f" got: `prompt_embeds_2` {prompt_embeds_2.shape} != `negative_prompt_embeds_2`"
525
+ f" {negative_prompt_embeds_2.shape}."
526
+ )
527
+
528
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
529
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
530
+ shape = (
531
+ batch_size,
532
+ num_channels_latents,
533
+ int(height) // self.vae_scale_factor,
534
+ int(width) // self.vae_scale_factor,
535
+ )
536
+ if isinstance(generator, list) and len(generator) != batch_size:
537
+ raise ValueError(
538
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
539
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
540
+ )
541
+
542
+ if latents is None:
543
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
544
+ else:
545
+ latents = latents.to(device)
546
+
547
+ # scale the initial noise by the standard deviation required by the scheduler
548
+ latents = latents * self.scheduler.init_noise_sigma
549
+ return latents
550
+
551
+ @property
552
+ def guidance_scale(self):
553
+ return self._guidance_scale
554
+
555
+ @property
556
+ def guidance_rescale(self):
557
+ return self._guidance_rescale
558
+
559
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
560
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
561
+ # corresponds to doing no classifier free guidance.
562
+ @property
563
+ def do_classifier_free_guidance(self):
564
+ return self._guidance_scale > 1
565
+
566
+ @property
567
+ def num_timesteps(self):
568
+ return self._num_timesteps
569
+
570
+ @property
571
+ def interrupt(self):
572
+ return self._interrupt
573
+
574
+ @torch.no_grad()
575
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
576
+ def __call__(
577
+ self,
578
+ prompt: Union[str, List[str]] = None,
579
+ height: Optional[int] = None,
580
+ width: Optional[int] = None,
581
+ num_inference_steps: Optional[int] = 50,
582
+ guidance_scale: Optional[float] = 5.0,
583
+ negative_prompt: Optional[Union[str, List[str]]] = None,
584
+ num_images_per_prompt: Optional[int] = 1,
585
+ eta: Optional[float] = 0.0,
586
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
587
+ latents: Optional[torch.Tensor] = None,
588
+ prompt_embeds: Optional[torch.Tensor] = None,
589
+ prompt_embeds_2: Optional[torch.Tensor] = None,
590
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
591
+ negative_prompt_embeds_2: Optional[torch.Tensor] = None,
592
+ prompt_attention_mask: Optional[torch.Tensor] = None,
593
+ prompt_attention_mask_2: Optional[torch.Tensor] = None,
594
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
595
+ negative_prompt_attention_mask_2: Optional[torch.Tensor] = None,
596
+ output_type: Optional[str] = "pil",
597
+ return_dict: bool = True,
598
+ callback_on_step_end: Optional[
599
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
600
+ ] = None,
601
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
602
+ guidance_rescale: float = 0.0,
603
+ original_size: Optional[Tuple[int, int]] = (1024, 1024),
604
+ target_size: Optional[Tuple[int, int]] = None,
605
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
606
+ use_resolution_binning: bool = True,
607
+ ):
608
+ r"""
609
+ The call function to the pipeline for generation with HunyuanDiT.
610
+
611
+ Args:
612
+ prompt (`str` or `List[str]`, *optional*):
613
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
614
+ height (`int`):
615
+ The height in pixels of the generated image.
616
+ width (`int`):
617
+ The width in pixels of the generated image.
618
+ num_inference_steps (`int`, *optional*, defaults to 50):
619
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
620
+ expense of slower inference. This parameter is modulated by `strength`.
621
+ guidance_scale (`float`, *optional*, defaults to 7.5):
622
+ A higher guidance scale value encourages the model to generate images closely linked to the text
623
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
624
+ negative_prompt (`str` or `List[str]`, *optional*):
625
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
626
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
627
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
628
+ The number of images to generate per prompt.
629
+ eta (`float`, *optional*, defaults to 0.0):
630
+ Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
631
+ to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
632
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
633
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
634
+ generation deterministic.
635
+ prompt_embeds (`torch.Tensor`, *optional*):
636
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
637
+ provided, text embeddings are generated from the `prompt` input argument.
638
+ prompt_embeds_2 (`torch.Tensor`, *optional*):
639
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
640
+ provided, text embeddings are generated from the `prompt` input argument.
641
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
642
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
643
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
644
+ negative_prompt_embeds_2 (`torch.Tensor`, *optional*):
645
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
646
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
647
+ prompt_attention_mask (`torch.Tensor`, *optional*):
648
+ Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
649
+ prompt_attention_mask_2 (`torch.Tensor`, *optional*):
650
+ Attention mask for the prompt. Required when `prompt_embeds_2` is passed directly.
651
+ negative_prompt_attention_mask (`torch.Tensor`, *optional*):
652
+ Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
653
+ negative_prompt_attention_mask_2 (`torch.Tensor`, *optional*):
654
+ Attention mask for the negative prompt. Required when `negative_prompt_embeds_2` is passed directly.
655
+ output_type (`str`, *optional*, defaults to `"pil"`):
656
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
657
+ return_dict (`bool`, *optional*, defaults to `True`):
658
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
659
+ plain tuple.
660
+ callback_on_step_end (`Callable[[int, int, Dict], None]`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
661
+ A callback function or a list of callback functions to be called at the end of each denoising step.
662
+ callback_on_step_end_tensor_inputs (`List[str]`, *optional*):
663
+ A list of tensor inputs that should be passed to the callback function. If not defined, all tensor
664
+ inputs will be passed.
665
+ guidance_rescale (`float`, *optional*, defaults to 0.0):
666
+ Rescale the noise_cfg according to `guidance_rescale`. Based on findings of [Common Diffusion Noise
667
+ Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
668
+ original_size (`Tuple[int, int]`, *optional*, defaults to `(1024, 1024)`):
669
+ The original size of the image. Used to calculate the time ids.
670
+ target_size (`Tuple[int, int]`, *optional*):
671
+ The target size of the image. Used to calculate the time ids.
672
+ crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to `(0, 0)`):
673
+ The top left coordinates of the crop. Used to calculate the time ids.
674
+ use_resolution_binning (`bool`, *optional*, defaults to `True`):
675
+ Whether to use resolution binning or not. If `True`, the input resolution will be mapped to the closest
676
+ standard resolution. Supported resolutions are 1024x1024, 1280x1280, 1024x768, 1152x864, 1280x960,
677
+ 768x1024, 864x1152, 960x1280, 1280x768, and 768x1280. It is recommended to set this to `True`.
678
+
679
+ Examples:
680
+
681
+ Returns:
682
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
683
+ If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
684
+ otherwise a `tuple` is returned where the first element is a list with the generated images and the
685
+ second element is a list of `bool`s indicating whether the corresponding generated image contains
686
+ "not-safe-for-work" (nsfw) content.
687
+ """
688
+
689
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
690
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
691
+
692
+ # 0. default height and width
693
+ height = height or self.default_sample_size * self.vae_scale_factor
694
+ width = width or self.default_sample_size * self.vae_scale_factor
695
+ height = int((height // 16) * 16)
696
+ width = int((width // 16) * 16)
697
+
698
+ if use_resolution_binning and (height, width) not in SUPPORTED_SHAPE:
699
+ width, height = map_to_standard_shapes(width, height)
700
+ height = int(height)
701
+ width = int(width)
702
+ logger.warning(f"Reshaped to (height, width)=({height}, {width}), Supported shapes are {SUPPORTED_SHAPE}")
703
+
704
+ # 1. Check inputs. Raise error if not correct
705
+ self.check_inputs(
706
+ prompt,
707
+ height,
708
+ width,
709
+ negative_prompt,
710
+ prompt_embeds,
711
+ negative_prompt_embeds,
712
+ prompt_attention_mask,
713
+ negative_prompt_attention_mask,
714
+ prompt_embeds_2,
715
+ negative_prompt_embeds_2,
716
+ prompt_attention_mask_2,
717
+ negative_prompt_attention_mask_2,
718
+ callback_on_step_end_tensor_inputs,
719
+ )
720
+ self._guidance_scale = guidance_scale
721
+ self._guidance_rescale = guidance_rescale
722
+ self._interrupt = False
723
+
724
+ # 2. Define call parameters
725
+ if prompt is not None and isinstance(prompt, str):
726
+ batch_size = 1
727
+ elif prompt is not None and isinstance(prompt, list):
728
+ batch_size = len(prompt)
729
+ else:
730
+ batch_size = prompt_embeds.shape[0]
731
+
732
+ device = self._execution_device
733
+
734
+ # 3. Encode input prompt
735
+
736
+ (
737
+ prompt_embeds,
738
+ negative_prompt_embeds,
739
+ prompt_attention_mask,
740
+ negative_prompt_attention_mask,
741
+ ) = self.encode_prompt(
742
+ prompt=prompt,
743
+ device=device,
744
+ dtype=self.transformer.dtype,
745
+ num_images_per_prompt=num_images_per_prompt,
746
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
747
+ negative_prompt=negative_prompt,
748
+ prompt_embeds=prompt_embeds,
749
+ negative_prompt_embeds=negative_prompt_embeds,
750
+ prompt_attention_mask=prompt_attention_mask,
751
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
752
+ max_sequence_length=77,
753
+ text_encoder_index=0,
754
+ )
755
+ (
756
+ prompt_embeds_2,
757
+ negative_prompt_embeds_2,
758
+ prompt_attention_mask_2,
759
+ negative_prompt_attention_mask_2,
760
+ ) = self.encode_prompt(
761
+ prompt=prompt,
762
+ device=device,
763
+ dtype=self.transformer.dtype,
764
+ num_images_per_prompt=num_images_per_prompt,
765
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
766
+ negative_prompt=negative_prompt,
767
+ prompt_embeds=prompt_embeds_2,
768
+ negative_prompt_embeds=negative_prompt_embeds_2,
769
+ prompt_attention_mask=prompt_attention_mask_2,
770
+ negative_prompt_attention_mask=negative_prompt_attention_mask_2,
771
+ max_sequence_length=256,
772
+ text_encoder_index=1,
773
+ )
774
+
775
+ # 4. Prepare timesteps
776
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
777
+ timesteps = self.scheduler.timesteps
778
+
779
+ # 5. Prepare latent variables
780
+ num_channels_latents = self.transformer.config.in_channels
781
+ latents = self.prepare_latents(
782
+ batch_size * num_images_per_prompt,
783
+ num_channels_latents,
784
+ height,
785
+ width,
786
+ prompt_embeds.dtype,
787
+ device,
788
+ generator,
789
+ latents,
790
+ )
791
+
792
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
793
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
794
+
795
+ # 7 create image_rotary_emb, style embedding & time ids
796
+ grid_height = height // 8 // self.transformer.config.patch_size
797
+ grid_width = width // 8 // self.transformer.config.patch_size
798
+ base_size = 512 // 8 // self.transformer.config.patch_size
799
+ grid_crops_coords = get_resize_crop_region_for_grid((grid_height, grid_width), base_size)
800
+ image_rotary_emb = get_2d_rotary_pos_embed(
801
+ self.transformer.inner_dim // self.transformer.num_heads,
802
+ grid_crops_coords,
803
+ (grid_height, grid_width),
804
+ device=device,
805
+ output_type="pt",
806
+ )
807
+
808
+ style = torch.tensor([0], device=device)
809
+
810
+ target_size = target_size or (height, width)
811
+ add_time_ids = list(original_size + target_size + crops_coords_top_left)
812
+ add_time_ids = torch.tensor([add_time_ids], dtype=prompt_embeds.dtype)
813
+
814
+ if self.do_classifier_free_guidance:
815
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
816
+ prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask])
817
+ prompt_embeds_2 = torch.cat([negative_prompt_embeds_2, prompt_embeds_2])
818
+ prompt_attention_mask_2 = torch.cat([negative_prompt_attention_mask_2, prompt_attention_mask_2])
819
+ add_time_ids = torch.cat([add_time_ids] * 2, dim=0)
820
+ style = torch.cat([style] * 2, dim=0)
821
+
822
+ prompt_embeds = prompt_embeds.to(device=device)
823
+ prompt_attention_mask = prompt_attention_mask.to(device=device)
824
+ prompt_embeds_2 = prompt_embeds_2.to(device=device)
825
+ prompt_attention_mask_2 = prompt_attention_mask_2.to(device=device)
826
+ add_time_ids = add_time_ids.to(dtype=prompt_embeds.dtype, device=device).repeat(
827
+ batch_size * num_images_per_prompt, 1
828
+ )
829
+ style = style.to(device=device).repeat(batch_size * num_images_per_prompt)
830
+
831
+ # 8. Denoising loop
832
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
833
+ self._num_timesteps = len(timesteps)
834
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
835
+ for i, t in enumerate(timesteps):
836
+ if self.interrupt:
837
+ continue
838
+
839
+ # expand the latents if we are doing classifier free guidance
840
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
841
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
842
+
843
+ # expand scalar t to 1-D tensor to match the 1st dim of latent_model_input
844
+ t_expand = torch.tensor([t] * latent_model_input.shape[0], device=device).to(
845
+ dtype=latent_model_input.dtype
846
+ )
847
+
848
+ # predict the noise residual
849
+ noise_pred = self.transformer(
850
+ latent_model_input,
851
+ t_expand,
852
+ encoder_hidden_states=prompt_embeds,
853
+ text_embedding_mask=prompt_attention_mask,
854
+ encoder_hidden_states_t5=prompt_embeds_2,
855
+ text_embedding_mask_t5=prompt_attention_mask_2,
856
+ image_meta_size=add_time_ids,
857
+ style=style,
858
+ image_rotary_emb=image_rotary_emb,
859
+ return_dict=False,
860
+ )[0]
861
+
862
+ noise_pred, _ = noise_pred.chunk(2, dim=1)
863
+
864
+ # perform guidance
865
+ if self.do_classifier_free_guidance:
866
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
867
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
868
+
869
+ if self.do_classifier_free_guidance and guidance_rescale > 0.0:
870
+ # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
871
+ noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
872
+
873
+ # compute the previous noisy sample x_t -> x_t-1
874
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
875
+
876
+ if callback_on_step_end is not None:
877
+ callback_kwargs = {}
878
+ for k in callback_on_step_end_tensor_inputs:
879
+ callback_kwargs[k] = locals()[k]
880
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
881
+
882
+ latents = callback_outputs.pop("latents", latents)
883
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
884
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
885
+ prompt_embeds_2 = callback_outputs.pop("prompt_embeds_2", prompt_embeds_2)
886
+ negative_prompt_embeds_2 = callback_outputs.pop(
887
+ "negative_prompt_embeds_2", negative_prompt_embeds_2
888
+ )
889
+
890
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
891
+ progress_bar.update()
892
+
893
+ if XLA_AVAILABLE:
894
+ xm.mark_step()
895
+
896
+ if not output_type == "latent":
897
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
898
+ image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
899
+ else:
900
+ image = latents
901
+ has_nsfw_concept = None
902
+
903
+ if has_nsfw_concept is None:
904
+ do_denormalize = [True] * image.shape[0]
905
+ else:
906
+ do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
907
+
908
+ image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
909
+
910
+ # Offload all models
911
+ self.maybe_free_model_hooks()
912
+
913
+ if not return_dict:
914
+ return (image, has_nsfw_concept)
915
+
916
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)