diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -11,6 +11,7 @@
11
11
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
+ import itertools
14
15
  from typing import Dict, Optional, Tuple, Union
15
16
 
16
17
  import torch
@@ -86,16 +87,16 @@ class TemporalDecoder(nn.Module):
86
87
 
87
88
  def forward(
88
89
  self,
89
- sample: torch.FloatTensor,
90
- image_only_indicator: torch.FloatTensor,
90
+ sample: torch.Tensor,
91
+ image_only_indicator: torch.Tensor,
91
92
  num_frames: int = 1,
92
- ) -> torch.FloatTensor:
93
+ ) -> torch.Tensor:
93
94
  r"""The forward method of the `Decoder` class."""
94
95
 
95
96
  sample = self.conv_in(sample)
96
97
 
97
- upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
98
- if self.training and self.gradient_checkpointing:
98
+ upscale_dtype = next(itertools.chain(self.up_blocks.parameters(), self.up_blocks.buffers())).dtype
99
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
99
100
 
100
101
  def create_custom_forward(module):
101
102
  def custom_forward(*inputs):
@@ -228,14 +229,6 @@ class AutoencoderKLTemporalDecoder(ModelMixin, ConfigMixin):
228
229
 
229
230
  self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
230
231
 
231
- sample_size = (
232
- self.config.sample_size[0]
233
- if isinstance(self.config.sample_size, (list, tuple))
234
- else self.config.sample_size
235
- )
236
- self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1)))
237
- self.tile_overlap_factor = 0.25
238
-
239
232
  def _set_gradient_checkpointing(self, module, value=False):
240
233
  if isinstance(module, (Encoder, TemporalDecoder)):
241
234
  module.gradient_checkpointing = value
@@ -253,7 +246,7 @@ class AutoencoderKLTemporalDecoder(ModelMixin, ConfigMixin):
253
246
 
254
247
  def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
255
248
  if hasattr(module, "get_processor"):
256
- processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
249
+ processors[f"{name}.processor"] = module.get_processor()
257
250
 
258
251
  for sub_name, child in module.named_children():
259
252
  fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
@@ -315,19 +308,21 @@ class AutoencoderKLTemporalDecoder(ModelMixin, ConfigMixin):
315
308
 
316
309
  @apply_forward_hook
317
310
  def encode(
318
- self, x: torch.FloatTensor, return_dict: bool = True
311
+ self, x: torch.Tensor, return_dict: bool = True
319
312
  ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
320
313
  """
321
314
  Encode a batch of images into latents.
322
315
 
323
316
  Args:
324
- x (`torch.FloatTensor`): Input batch of images.
317
+ x (`torch.Tensor`): Input batch of images.
325
318
  return_dict (`bool`, *optional*, defaults to `True`):
326
- Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
319
+ Whether to return a [`~models.autoencoders.autoencoder_kl.AutoencoderKLOutput`] instead of a plain
320
+ tuple.
327
321
 
328
322
  Returns:
329
323
  The latent representations of the encoded images. If `return_dict` is True, a
330
- [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
324
+ [`~models.autoencoders.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is
325
+ returned.
331
326
  """
332
327
  h = self.encoder(x)
333
328
  moments = self.quant_conv(h)
@@ -341,15 +336,15 @@ class AutoencoderKLTemporalDecoder(ModelMixin, ConfigMixin):
341
336
  @apply_forward_hook
342
337
  def decode(
343
338
  self,
344
- z: torch.FloatTensor,
339
+ z: torch.Tensor,
345
340
  num_frames: int,
346
341
  return_dict: bool = True,
347
- ) -> Union[DecoderOutput, torch.FloatTensor]:
342
+ ) -> Union[DecoderOutput, torch.Tensor]:
348
343
  """
349
344
  Decode a batch of images.
350
345
 
351
346
  Args:
352
- z (`torch.FloatTensor`): Input batch of latent vectors.
347
+ z (`torch.Tensor`): Input batch of latent vectors.
353
348
  return_dict (`bool`, *optional*, defaults to `True`):
354
349
  Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
355
350
 
@@ -370,15 +365,15 @@ class AutoencoderKLTemporalDecoder(ModelMixin, ConfigMixin):
370
365
 
371
366
  def forward(
372
367
  self,
373
- sample: torch.FloatTensor,
368
+ sample: torch.Tensor,
374
369
  sample_posterior: bool = False,
375
370
  return_dict: bool = True,
376
371
  generator: Optional[torch.Generator] = None,
377
372
  num_frames: int = 1,
378
- ) -> Union[DecoderOutput, torch.FloatTensor]:
373
+ ) -> Union[DecoderOutput, torch.Tensor]:
379
374
  r"""
380
375
  Args:
381
- sample (`torch.FloatTensor`): Input sample.
376
+ sample (`torch.Tensor`): Input sample.
382
377
  sample_posterior (`bool`, *optional*, defaults to `False`):
383
378
  Whether to sample from the posterior.
384
379
  return_dict (`bool`, *optional*, defaults to `True`):
@@ -0,0 +1,464 @@
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import math
15
+ from dataclasses import dataclass
16
+ from typing import Optional, Tuple, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ import torch.nn as nn
21
+ from torch.nn.utils import weight_norm
22
+
23
+ from ...configuration_utils import ConfigMixin, register_to_config
24
+ from ...utils import BaseOutput
25
+ from ...utils.accelerate_utils import apply_forward_hook
26
+ from ...utils.torch_utils import randn_tensor
27
+ from ..modeling_utils import ModelMixin
28
+
29
+
30
+ class Snake1d(nn.Module):
31
+ """
32
+ A 1-dimensional Snake activation function module.
33
+ """
34
+
35
+ def __init__(self, hidden_dim, logscale=True):
36
+ super().__init__()
37
+ self.alpha = nn.Parameter(torch.zeros(1, hidden_dim, 1))
38
+ self.beta = nn.Parameter(torch.zeros(1, hidden_dim, 1))
39
+
40
+ self.alpha.requires_grad = True
41
+ self.beta.requires_grad = True
42
+ self.logscale = logscale
43
+
44
+ def forward(self, hidden_states):
45
+ shape = hidden_states.shape
46
+
47
+ alpha = self.alpha if not self.logscale else torch.exp(self.alpha)
48
+ beta = self.beta if not self.logscale else torch.exp(self.beta)
49
+
50
+ hidden_states = hidden_states.reshape(shape[0], shape[1], -1)
51
+ hidden_states = hidden_states + (beta + 1e-9).reciprocal() * torch.sin(alpha * hidden_states).pow(2)
52
+ hidden_states = hidden_states.reshape(shape)
53
+ return hidden_states
54
+
55
+
56
+ class OobleckResidualUnit(nn.Module):
57
+ """
58
+ A residual unit composed of Snake1d and weight-normalized Conv1d layers with dilations.
59
+ """
60
+
61
+ def __init__(self, dimension: int = 16, dilation: int = 1):
62
+ super().__init__()
63
+ pad = ((7 - 1) * dilation) // 2
64
+
65
+ self.snake1 = Snake1d(dimension)
66
+ self.conv1 = weight_norm(nn.Conv1d(dimension, dimension, kernel_size=7, dilation=dilation, padding=pad))
67
+ self.snake2 = Snake1d(dimension)
68
+ self.conv2 = weight_norm(nn.Conv1d(dimension, dimension, kernel_size=1))
69
+
70
+ def forward(self, hidden_state):
71
+ """
72
+ Forward pass through the residual unit.
73
+
74
+ Args:
75
+ hidden_state (`torch.Tensor` of shape `(batch_size, channels, time_steps)`):
76
+ Input tensor .
77
+
78
+ Returns:
79
+ output_tensor (`torch.Tensor` of shape `(batch_size, channels, time_steps)`)
80
+ Input tensor after passing through the residual unit.
81
+ """
82
+ output_tensor = hidden_state
83
+ output_tensor = self.conv1(self.snake1(output_tensor))
84
+ output_tensor = self.conv2(self.snake2(output_tensor))
85
+
86
+ padding = (hidden_state.shape[-1] - output_tensor.shape[-1]) // 2
87
+ if padding > 0:
88
+ hidden_state = hidden_state[..., padding:-padding]
89
+ output_tensor = hidden_state + output_tensor
90
+ return output_tensor
91
+
92
+
93
+ class OobleckEncoderBlock(nn.Module):
94
+ """Encoder block used in Oobleck encoder."""
95
+
96
+ def __init__(self, input_dim, output_dim, stride: int = 1):
97
+ super().__init__()
98
+
99
+ self.res_unit1 = OobleckResidualUnit(input_dim, dilation=1)
100
+ self.res_unit2 = OobleckResidualUnit(input_dim, dilation=3)
101
+ self.res_unit3 = OobleckResidualUnit(input_dim, dilation=9)
102
+ self.snake1 = Snake1d(input_dim)
103
+ self.conv1 = weight_norm(
104
+ nn.Conv1d(input_dim, output_dim, kernel_size=2 * stride, stride=stride, padding=math.ceil(stride / 2))
105
+ )
106
+
107
+ def forward(self, hidden_state):
108
+ hidden_state = self.res_unit1(hidden_state)
109
+ hidden_state = self.res_unit2(hidden_state)
110
+ hidden_state = self.snake1(self.res_unit3(hidden_state))
111
+ hidden_state = self.conv1(hidden_state)
112
+
113
+ return hidden_state
114
+
115
+
116
+ class OobleckDecoderBlock(nn.Module):
117
+ """Decoder block used in Oobleck decoder."""
118
+
119
+ def __init__(self, input_dim, output_dim, stride: int = 1):
120
+ super().__init__()
121
+
122
+ self.snake1 = Snake1d(input_dim)
123
+ self.conv_t1 = weight_norm(
124
+ nn.ConvTranspose1d(
125
+ input_dim,
126
+ output_dim,
127
+ kernel_size=2 * stride,
128
+ stride=stride,
129
+ padding=math.ceil(stride / 2),
130
+ )
131
+ )
132
+ self.res_unit1 = OobleckResidualUnit(output_dim, dilation=1)
133
+ self.res_unit2 = OobleckResidualUnit(output_dim, dilation=3)
134
+ self.res_unit3 = OobleckResidualUnit(output_dim, dilation=9)
135
+
136
+ def forward(self, hidden_state):
137
+ hidden_state = self.snake1(hidden_state)
138
+ hidden_state = self.conv_t1(hidden_state)
139
+ hidden_state = self.res_unit1(hidden_state)
140
+ hidden_state = self.res_unit2(hidden_state)
141
+ hidden_state = self.res_unit3(hidden_state)
142
+
143
+ return hidden_state
144
+
145
+
146
+ class OobleckDiagonalGaussianDistribution(object):
147
+ def __init__(self, parameters: torch.Tensor, deterministic: bool = False):
148
+ self.parameters = parameters
149
+ self.mean, self.scale = parameters.chunk(2, dim=1)
150
+ self.std = nn.functional.softplus(self.scale) + 1e-4
151
+ self.var = self.std * self.std
152
+ self.logvar = torch.log(self.var)
153
+ self.deterministic = deterministic
154
+
155
+ def sample(self, generator: Optional[torch.Generator] = None) -> torch.Tensor:
156
+ # make sure sample is on the same device as the parameters and has same dtype
157
+ sample = randn_tensor(
158
+ self.mean.shape,
159
+ generator=generator,
160
+ device=self.parameters.device,
161
+ dtype=self.parameters.dtype,
162
+ )
163
+ x = self.mean + self.std * sample
164
+ return x
165
+
166
+ def kl(self, other: "OobleckDiagonalGaussianDistribution" = None) -> torch.Tensor:
167
+ if self.deterministic:
168
+ return torch.Tensor([0.0])
169
+ else:
170
+ if other is None:
171
+ return (self.mean * self.mean + self.var - self.logvar - 1.0).sum(1).mean()
172
+ else:
173
+ normalized_diff = torch.pow(self.mean - other.mean, 2) / other.var
174
+ var_ratio = self.var / other.var
175
+ logvar_diff = self.logvar - other.logvar
176
+
177
+ kl = normalized_diff + var_ratio + logvar_diff - 1
178
+
179
+ kl = kl.sum(1).mean()
180
+ return kl
181
+
182
+ def mode(self) -> torch.Tensor:
183
+ return self.mean
184
+
185
+
186
+ @dataclass
187
+ class AutoencoderOobleckOutput(BaseOutput):
188
+ """
189
+ Output of AutoencoderOobleck encoding method.
190
+
191
+ Args:
192
+ latent_dist (`OobleckDiagonalGaussianDistribution`):
193
+ Encoded outputs of `Encoder` represented as the mean and standard deviation of
194
+ `OobleckDiagonalGaussianDistribution`. `OobleckDiagonalGaussianDistribution` allows for sampling latents
195
+ from the distribution.
196
+ """
197
+
198
+ latent_dist: "OobleckDiagonalGaussianDistribution" # noqa: F821
199
+
200
+
201
+ @dataclass
202
+ class OobleckDecoderOutput(BaseOutput):
203
+ r"""
204
+ Output of decoding method.
205
+
206
+ Args:
207
+ sample (`torch.Tensor` of shape `(batch_size, audio_channels, sequence_length)`):
208
+ The decoded output sample from the last layer of the model.
209
+ """
210
+
211
+ sample: torch.Tensor
212
+
213
+
214
+ class OobleckEncoder(nn.Module):
215
+ """Oobleck Encoder"""
216
+
217
+ def __init__(self, encoder_hidden_size, audio_channels, downsampling_ratios, channel_multiples):
218
+ super().__init__()
219
+
220
+ strides = downsampling_ratios
221
+ channel_multiples = [1] + channel_multiples
222
+
223
+ # Create first convolution
224
+ self.conv1 = weight_norm(nn.Conv1d(audio_channels, encoder_hidden_size, kernel_size=7, padding=3))
225
+
226
+ self.block = []
227
+ # Create EncoderBlocks that double channels as they downsample by `stride`
228
+ for stride_index, stride in enumerate(strides):
229
+ self.block += [
230
+ OobleckEncoderBlock(
231
+ input_dim=encoder_hidden_size * channel_multiples[stride_index],
232
+ output_dim=encoder_hidden_size * channel_multiples[stride_index + 1],
233
+ stride=stride,
234
+ )
235
+ ]
236
+
237
+ self.block = nn.ModuleList(self.block)
238
+ d_model = encoder_hidden_size * channel_multiples[-1]
239
+ self.snake1 = Snake1d(d_model)
240
+ self.conv2 = weight_norm(nn.Conv1d(d_model, encoder_hidden_size, kernel_size=3, padding=1))
241
+
242
+ def forward(self, hidden_state):
243
+ hidden_state = self.conv1(hidden_state)
244
+
245
+ for module in self.block:
246
+ hidden_state = module(hidden_state)
247
+
248
+ hidden_state = self.snake1(hidden_state)
249
+ hidden_state = self.conv2(hidden_state)
250
+
251
+ return hidden_state
252
+
253
+
254
+ class OobleckDecoder(nn.Module):
255
+ """Oobleck Decoder"""
256
+
257
+ def __init__(self, channels, input_channels, audio_channels, upsampling_ratios, channel_multiples):
258
+ super().__init__()
259
+
260
+ strides = upsampling_ratios
261
+ channel_multiples = [1] + channel_multiples
262
+
263
+ # Add first conv layer
264
+ self.conv1 = weight_norm(nn.Conv1d(input_channels, channels * channel_multiples[-1], kernel_size=7, padding=3))
265
+
266
+ # Add upsampling + MRF blocks
267
+ block = []
268
+ for stride_index, stride in enumerate(strides):
269
+ block += [
270
+ OobleckDecoderBlock(
271
+ input_dim=channels * channel_multiples[len(strides) - stride_index],
272
+ output_dim=channels * channel_multiples[len(strides) - stride_index - 1],
273
+ stride=stride,
274
+ )
275
+ ]
276
+
277
+ self.block = nn.ModuleList(block)
278
+ output_dim = channels
279
+ self.snake1 = Snake1d(output_dim)
280
+ self.conv2 = weight_norm(nn.Conv1d(channels, audio_channels, kernel_size=7, padding=3, bias=False))
281
+
282
+ def forward(self, hidden_state):
283
+ hidden_state = self.conv1(hidden_state)
284
+
285
+ for layer in self.block:
286
+ hidden_state = layer(hidden_state)
287
+
288
+ hidden_state = self.snake1(hidden_state)
289
+ hidden_state = self.conv2(hidden_state)
290
+
291
+ return hidden_state
292
+
293
+
294
+ class AutoencoderOobleck(ModelMixin, ConfigMixin):
295
+ r"""
296
+ An autoencoder for encoding waveforms into latents and decoding latent representations into waveforms. First
297
+ introduced in Stable Audio.
298
+
299
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
300
+ for all models (such as downloading or saving).
301
+
302
+ Parameters:
303
+ encoder_hidden_size (`int`, *optional*, defaults to 128):
304
+ Intermediate representation dimension for the encoder.
305
+ downsampling_ratios (`List[int]`, *optional*, defaults to `[2, 4, 4, 8, 8]`):
306
+ Ratios for downsampling in the encoder. These are used in reverse order for upsampling in the decoder.
307
+ channel_multiples (`List[int]`, *optional*, defaults to `[1, 2, 4, 8, 16]`):
308
+ Multiples used to determine the hidden sizes of the hidden layers.
309
+ decoder_channels (`int`, *optional*, defaults to 128):
310
+ Intermediate representation dimension for the decoder.
311
+ decoder_input_channels (`int`, *optional*, defaults to 64):
312
+ Input dimension for the decoder. Corresponds to the latent dimension.
313
+ audio_channels (`int`, *optional*, defaults to 2):
314
+ Number of channels in the audio data. Either 1 for mono or 2 for stereo.
315
+ sampling_rate (`int`, *optional*, defaults to 44100):
316
+ The sampling rate at which the audio waveform should be digitalized expressed in hertz (Hz).
317
+ """
318
+
319
+ _supports_gradient_checkpointing = False
320
+
321
+ @register_to_config
322
+ def __init__(
323
+ self,
324
+ encoder_hidden_size=128,
325
+ downsampling_ratios=[2, 4, 4, 8, 8],
326
+ channel_multiples=[1, 2, 4, 8, 16],
327
+ decoder_channels=128,
328
+ decoder_input_channels=64,
329
+ audio_channels=2,
330
+ sampling_rate=44100,
331
+ ):
332
+ super().__init__()
333
+
334
+ self.encoder_hidden_size = encoder_hidden_size
335
+ self.downsampling_ratios = downsampling_ratios
336
+ self.decoder_channels = decoder_channels
337
+ self.upsampling_ratios = downsampling_ratios[::-1]
338
+ self.hop_length = int(np.prod(downsampling_ratios))
339
+ self.sampling_rate = sampling_rate
340
+
341
+ self.encoder = OobleckEncoder(
342
+ encoder_hidden_size=encoder_hidden_size,
343
+ audio_channels=audio_channels,
344
+ downsampling_ratios=downsampling_ratios,
345
+ channel_multiples=channel_multiples,
346
+ )
347
+
348
+ self.decoder = OobleckDecoder(
349
+ channels=decoder_channels,
350
+ input_channels=decoder_input_channels,
351
+ audio_channels=audio_channels,
352
+ upsampling_ratios=self.upsampling_ratios,
353
+ channel_multiples=channel_multiples,
354
+ )
355
+
356
+ self.use_slicing = False
357
+
358
+ def enable_slicing(self):
359
+ r"""
360
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
361
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
362
+ """
363
+ self.use_slicing = True
364
+
365
+ def disable_slicing(self):
366
+ r"""
367
+ Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
368
+ decoding in one step.
369
+ """
370
+ self.use_slicing = False
371
+
372
+ @apply_forward_hook
373
+ def encode(
374
+ self, x: torch.Tensor, return_dict: bool = True
375
+ ) -> Union[AutoencoderOobleckOutput, Tuple[OobleckDiagonalGaussianDistribution]]:
376
+ """
377
+ Encode a batch of images into latents.
378
+
379
+ Args:
380
+ x (`torch.Tensor`): Input batch of images.
381
+ return_dict (`bool`, *optional*, defaults to `True`):
382
+ Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
383
+
384
+ Returns:
385
+ The latent representations of the encoded images. If `return_dict` is True, a
386
+ [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
387
+ """
388
+ if self.use_slicing and x.shape[0] > 1:
389
+ encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)]
390
+ h = torch.cat(encoded_slices)
391
+ else:
392
+ h = self.encoder(x)
393
+
394
+ posterior = OobleckDiagonalGaussianDistribution(h)
395
+
396
+ if not return_dict:
397
+ return (posterior,)
398
+
399
+ return AutoencoderOobleckOutput(latent_dist=posterior)
400
+
401
+ def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[OobleckDecoderOutput, torch.Tensor]:
402
+ dec = self.decoder(z)
403
+
404
+ if not return_dict:
405
+ return (dec,)
406
+
407
+ return OobleckDecoderOutput(sample=dec)
408
+
409
+ @apply_forward_hook
410
+ def decode(
411
+ self, z: torch.FloatTensor, return_dict: bool = True, generator=None
412
+ ) -> Union[OobleckDecoderOutput, torch.FloatTensor]:
413
+ """
414
+ Decode a batch of images.
415
+
416
+ Args:
417
+ z (`torch.Tensor`): Input batch of latent vectors.
418
+ return_dict (`bool`, *optional*, defaults to `True`):
419
+ Whether to return a [`~models.vae.OobleckDecoderOutput`] instead of a plain tuple.
420
+
421
+ Returns:
422
+ [`~models.vae.OobleckDecoderOutput`] or `tuple`:
423
+ If return_dict is True, a [`~models.vae.OobleckDecoderOutput`] is returned, otherwise a plain `tuple`
424
+ is returned.
425
+
426
+ """
427
+ if self.use_slicing and z.shape[0] > 1:
428
+ decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
429
+ decoded = torch.cat(decoded_slices)
430
+ else:
431
+ decoded = self._decode(z).sample
432
+
433
+ if not return_dict:
434
+ return (decoded,)
435
+
436
+ return OobleckDecoderOutput(sample=decoded)
437
+
438
+ def forward(
439
+ self,
440
+ sample: torch.Tensor,
441
+ sample_posterior: bool = False,
442
+ return_dict: bool = True,
443
+ generator: Optional[torch.Generator] = None,
444
+ ) -> Union[OobleckDecoderOutput, torch.Tensor]:
445
+ r"""
446
+ Args:
447
+ sample (`torch.Tensor`): Input sample.
448
+ sample_posterior (`bool`, *optional*, defaults to `False`):
449
+ Whether to sample from the posterior.
450
+ return_dict (`bool`, *optional*, defaults to `True`):
451
+ Whether or not to return a [`OobleckDecoderOutput`] instead of a plain tuple.
452
+ """
453
+ x = sample
454
+ posterior = self.encode(x).latent_dist
455
+ if sample_posterior:
456
+ z = posterior.sample(generator=generator)
457
+ else:
458
+ z = posterior.mode()
459
+ dec = self.decode(z).sample
460
+
461
+ if not return_dict:
462
+ return (dec,)
463
+
464
+ return OobleckDecoderOutput(sample=dec)