diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +50 -53
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.0.dist-info/RECORD +0 -399
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -11,6 +11,7 @@
|
|
11
11
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
|
+
import itertools
|
14
15
|
from typing import Dict, Optional, Tuple, Union
|
15
16
|
|
16
17
|
import torch
|
@@ -86,16 +87,16 @@ class TemporalDecoder(nn.Module):
|
|
86
87
|
|
87
88
|
def forward(
|
88
89
|
self,
|
89
|
-
sample: torch.
|
90
|
-
image_only_indicator: torch.
|
90
|
+
sample: torch.Tensor,
|
91
|
+
image_only_indicator: torch.Tensor,
|
91
92
|
num_frames: int = 1,
|
92
|
-
) -> torch.
|
93
|
+
) -> torch.Tensor:
|
93
94
|
r"""The forward method of the `Decoder` class."""
|
94
95
|
|
95
96
|
sample = self.conv_in(sample)
|
96
97
|
|
97
|
-
upscale_dtype = next(
|
98
|
-
if
|
98
|
+
upscale_dtype = next(itertools.chain(self.up_blocks.parameters(), self.up_blocks.buffers())).dtype
|
99
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
99
100
|
|
100
101
|
def create_custom_forward(module):
|
101
102
|
def custom_forward(*inputs):
|
@@ -228,14 +229,6 @@ class AutoencoderKLTemporalDecoder(ModelMixin, ConfigMixin):
|
|
228
229
|
|
229
230
|
self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
|
230
231
|
|
231
|
-
sample_size = (
|
232
|
-
self.config.sample_size[0]
|
233
|
-
if isinstance(self.config.sample_size, (list, tuple))
|
234
|
-
else self.config.sample_size
|
235
|
-
)
|
236
|
-
self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1)))
|
237
|
-
self.tile_overlap_factor = 0.25
|
238
|
-
|
239
232
|
def _set_gradient_checkpointing(self, module, value=False):
|
240
233
|
if isinstance(module, (Encoder, TemporalDecoder)):
|
241
234
|
module.gradient_checkpointing = value
|
@@ -253,7 +246,7 @@ class AutoencoderKLTemporalDecoder(ModelMixin, ConfigMixin):
|
|
253
246
|
|
254
247
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
255
248
|
if hasattr(module, "get_processor"):
|
256
|
-
processors[f"{name}.processor"] = module.get_processor(
|
249
|
+
processors[f"{name}.processor"] = module.get_processor()
|
257
250
|
|
258
251
|
for sub_name, child in module.named_children():
|
259
252
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
@@ -315,19 +308,21 @@ class AutoencoderKLTemporalDecoder(ModelMixin, ConfigMixin):
|
|
315
308
|
|
316
309
|
@apply_forward_hook
|
317
310
|
def encode(
|
318
|
-
self, x: torch.
|
311
|
+
self, x: torch.Tensor, return_dict: bool = True
|
319
312
|
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
|
320
313
|
"""
|
321
314
|
Encode a batch of images into latents.
|
322
315
|
|
323
316
|
Args:
|
324
|
-
x (`torch.
|
317
|
+
x (`torch.Tensor`): Input batch of images.
|
325
318
|
return_dict (`bool`, *optional*, defaults to `True`):
|
326
|
-
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain
|
319
|
+
Whether to return a [`~models.autoencoders.autoencoder_kl.AutoencoderKLOutput`] instead of a plain
|
320
|
+
tuple.
|
327
321
|
|
328
322
|
Returns:
|
329
323
|
The latent representations of the encoded images. If `return_dict` is True, a
|
330
|
-
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is
|
324
|
+
[`~models.autoencoders.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is
|
325
|
+
returned.
|
331
326
|
"""
|
332
327
|
h = self.encoder(x)
|
333
328
|
moments = self.quant_conv(h)
|
@@ -341,15 +336,15 @@ class AutoencoderKLTemporalDecoder(ModelMixin, ConfigMixin):
|
|
341
336
|
@apply_forward_hook
|
342
337
|
def decode(
|
343
338
|
self,
|
344
|
-
z: torch.
|
339
|
+
z: torch.Tensor,
|
345
340
|
num_frames: int,
|
346
341
|
return_dict: bool = True,
|
347
|
-
) -> Union[DecoderOutput, torch.
|
342
|
+
) -> Union[DecoderOutput, torch.Tensor]:
|
348
343
|
"""
|
349
344
|
Decode a batch of images.
|
350
345
|
|
351
346
|
Args:
|
352
|
-
z (`torch.
|
347
|
+
z (`torch.Tensor`): Input batch of latent vectors.
|
353
348
|
return_dict (`bool`, *optional*, defaults to `True`):
|
354
349
|
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
355
350
|
|
@@ -370,15 +365,15 @@ class AutoencoderKLTemporalDecoder(ModelMixin, ConfigMixin):
|
|
370
365
|
|
371
366
|
def forward(
|
372
367
|
self,
|
373
|
-
sample: torch.
|
368
|
+
sample: torch.Tensor,
|
374
369
|
sample_posterior: bool = False,
|
375
370
|
return_dict: bool = True,
|
376
371
|
generator: Optional[torch.Generator] = None,
|
377
372
|
num_frames: int = 1,
|
378
|
-
) -> Union[DecoderOutput, torch.
|
373
|
+
) -> Union[DecoderOutput, torch.Tensor]:
|
379
374
|
r"""
|
380
375
|
Args:
|
381
|
-
sample (`torch.
|
376
|
+
sample (`torch.Tensor`): Input sample.
|
382
377
|
sample_posterior (`bool`, *optional*, defaults to `False`):
|
383
378
|
Whether to sample from the posterior.
|
384
379
|
return_dict (`bool`, *optional*, defaults to `True`):
|
@@ -0,0 +1,464 @@
|
|
1
|
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
import math
|
15
|
+
from dataclasses import dataclass
|
16
|
+
from typing import Optional, Tuple, Union
|
17
|
+
|
18
|
+
import numpy as np
|
19
|
+
import torch
|
20
|
+
import torch.nn as nn
|
21
|
+
from torch.nn.utils import weight_norm
|
22
|
+
|
23
|
+
from ...configuration_utils import ConfigMixin, register_to_config
|
24
|
+
from ...utils import BaseOutput
|
25
|
+
from ...utils.accelerate_utils import apply_forward_hook
|
26
|
+
from ...utils.torch_utils import randn_tensor
|
27
|
+
from ..modeling_utils import ModelMixin
|
28
|
+
|
29
|
+
|
30
|
+
class Snake1d(nn.Module):
|
31
|
+
"""
|
32
|
+
A 1-dimensional Snake activation function module.
|
33
|
+
"""
|
34
|
+
|
35
|
+
def __init__(self, hidden_dim, logscale=True):
|
36
|
+
super().__init__()
|
37
|
+
self.alpha = nn.Parameter(torch.zeros(1, hidden_dim, 1))
|
38
|
+
self.beta = nn.Parameter(torch.zeros(1, hidden_dim, 1))
|
39
|
+
|
40
|
+
self.alpha.requires_grad = True
|
41
|
+
self.beta.requires_grad = True
|
42
|
+
self.logscale = logscale
|
43
|
+
|
44
|
+
def forward(self, hidden_states):
|
45
|
+
shape = hidden_states.shape
|
46
|
+
|
47
|
+
alpha = self.alpha if not self.logscale else torch.exp(self.alpha)
|
48
|
+
beta = self.beta if not self.logscale else torch.exp(self.beta)
|
49
|
+
|
50
|
+
hidden_states = hidden_states.reshape(shape[0], shape[1], -1)
|
51
|
+
hidden_states = hidden_states + (beta + 1e-9).reciprocal() * torch.sin(alpha * hidden_states).pow(2)
|
52
|
+
hidden_states = hidden_states.reshape(shape)
|
53
|
+
return hidden_states
|
54
|
+
|
55
|
+
|
56
|
+
class OobleckResidualUnit(nn.Module):
|
57
|
+
"""
|
58
|
+
A residual unit composed of Snake1d and weight-normalized Conv1d layers with dilations.
|
59
|
+
"""
|
60
|
+
|
61
|
+
def __init__(self, dimension: int = 16, dilation: int = 1):
|
62
|
+
super().__init__()
|
63
|
+
pad = ((7 - 1) * dilation) // 2
|
64
|
+
|
65
|
+
self.snake1 = Snake1d(dimension)
|
66
|
+
self.conv1 = weight_norm(nn.Conv1d(dimension, dimension, kernel_size=7, dilation=dilation, padding=pad))
|
67
|
+
self.snake2 = Snake1d(dimension)
|
68
|
+
self.conv2 = weight_norm(nn.Conv1d(dimension, dimension, kernel_size=1))
|
69
|
+
|
70
|
+
def forward(self, hidden_state):
|
71
|
+
"""
|
72
|
+
Forward pass through the residual unit.
|
73
|
+
|
74
|
+
Args:
|
75
|
+
hidden_state (`torch.Tensor` of shape `(batch_size, channels, time_steps)`):
|
76
|
+
Input tensor .
|
77
|
+
|
78
|
+
Returns:
|
79
|
+
output_tensor (`torch.Tensor` of shape `(batch_size, channels, time_steps)`)
|
80
|
+
Input tensor after passing through the residual unit.
|
81
|
+
"""
|
82
|
+
output_tensor = hidden_state
|
83
|
+
output_tensor = self.conv1(self.snake1(output_tensor))
|
84
|
+
output_tensor = self.conv2(self.snake2(output_tensor))
|
85
|
+
|
86
|
+
padding = (hidden_state.shape[-1] - output_tensor.shape[-1]) // 2
|
87
|
+
if padding > 0:
|
88
|
+
hidden_state = hidden_state[..., padding:-padding]
|
89
|
+
output_tensor = hidden_state + output_tensor
|
90
|
+
return output_tensor
|
91
|
+
|
92
|
+
|
93
|
+
class OobleckEncoderBlock(nn.Module):
|
94
|
+
"""Encoder block used in Oobleck encoder."""
|
95
|
+
|
96
|
+
def __init__(self, input_dim, output_dim, stride: int = 1):
|
97
|
+
super().__init__()
|
98
|
+
|
99
|
+
self.res_unit1 = OobleckResidualUnit(input_dim, dilation=1)
|
100
|
+
self.res_unit2 = OobleckResidualUnit(input_dim, dilation=3)
|
101
|
+
self.res_unit3 = OobleckResidualUnit(input_dim, dilation=9)
|
102
|
+
self.snake1 = Snake1d(input_dim)
|
103
|
+
self.conv1 = weight_norm(
|
104
|
+
nn.Conv1d(input_dim, output_dim, kernel_size=2 * stride, stride=stride, padding=math.ceil(stride / 2))
|
105
|
+
)
|
106
|
+
|
107
|
+
def forward(self, hidden_state):
|
108
|
+
hidden_state = self.res_unit1(hidden_state)
|
109
|
+
hidden_state = self.res_unit2(hidden_state)
|
110
|
+
hidden_state = self.snake1(self.res_unit3(hidden_state))
|
111
|
+
hidden_state = self.conv1(hidden_state)
|
112
|
+
|
113
|
+
return hidden_state
|
114
|
+
|
115
|
+
|
116
|
+
class OobleckDecoderBlock(nn.Module):
|
117
|
+
"""Decoder block used in Oobleck decoder."""
|
118
|
+
|
119
|
+
def __init__(self, input_dim, output_dim, stride: int = 1):
|
120
|
+
super().__init__()
|
121
|
+
|
122
|
+
self.snake1 = Snake1d(input_dim)
|
123
|
+
self.conv_t1 = weight_norm(
|
124
|
+
nn.ConvTranspose1d(
|
125
|
+
input_dim,
|
126
|
+
output_dim,
|
127
|
+
kernel_size=2 * stride,
|
128
|
+
stride=stride,
|
129
|
+
padding=math.ceil(stride / 2),
|
130
|
+
)
|
131
|
+
)
|
132
|
+
self.res_unit1 = OobleckResidualUnit(output_dim, dilation=1)
|
133
|
+
self.res_unit2 = OobleckResidualUnit(output_dim, dilation=3)
|
134
|
+
self.res_unit3 = OobleckResidualUnit(output_dim, dilation=9)
|
135
|
+
|
136
|
+
def forward(self, hidden_state):
|
137
|
+
hidden_state = self.snake1(hidden_state)
|
138
|
+
hidden_state = self.conv_t1(hidden_state)
|
139
|
+
hidden_state = self.res_unit1(hidden_state)
|
140
|
+
hidden_state = self.res_unit2(hidden_state)
|
141
|
+
hidden_state = self.res_unit3(hidden_state)
|
142
|
+
|
143
|
+
return hidden_state
|
144
|
+
|
145
|
+
|
146
|
+
class OobleckDiagonalGaussianDistribution(object):
|
147
|
+
def __init__(self, parameters: torch.Tensor, deterministic: bool = False):
|
148
|
+
self.parameters = parameters
|
149
|
+
self.mean, self.scale = parameters.chunk(2, dim=1)
|
150
|
+
self.std = nn.functional.softplus(self.scale) + 1e-4
|
151
|
+
self.var = self.std * self.std
|
152
|
+
self.logvar = torch.log(self.var)
|
153
|
+
self.deterministic = deterministic
|
154
|
+
|
155
|
+
def sample(self, generator: Optional[torch.Generator] = None) -> torch.Tensor:
|
156
|
+
# make sure sample is on the same device as the parameters and has same dtype
|
157
|
+
sample = randn_tensor(
|
158
|
+
self.mean.shape,
|
159
|
+
generator=generator,
|
160
|
+
device=self.parameters.device,
|
161
|
+
dtype=self.parameters.dtype,
|
162
|
+
)
|
163
|
+
x = self.mean + self.std * sample
|
164
|
+
return x
|
165
|
+
|
166
|
+
def kl(self, other: "OobleckDiagonalGaussianDistribution" = None) -> torch.Tensor:
|
167
|
+
if self.deterministic:
|
168
|
+
return torch.Tensor([0.0])
|
169
|
+
else:
|
170
|
+
if other is None:
|
171
|
+
return (self.mean * self.mean + self.var - self.logvar - 1.0).sum(1).mean()
|
172
|
+
else:
|
173
|
+
normalized_diff = torch.pow(self.mean - other.mean, 2) / other.var
|
174
|
+
var_ratio = self.var / other.var
|
175
|
+
logvar_diff = self.logvar - other.logvar
|
176
|
+
|
177
|
+
kl = normalized_diff + var_ratio + logvar_diff - 1
|
178
|
+
|
179
|
+
kl = kl.sum(1).mean()
|
180
|
+
return kl
|
181
|
+
|
182
|
+
def mode(self) -> torch.Tensor:
|
183
|
+
return self.mean
|
184
|
+
|
185
|
+
|
186
|
+
@dataclass
|
187
|
+
class AutoencoderOobleckOutput(BaseOutput):
|
188
|
+
"""
|
189
|
+
Output of AutoencoderOobleck encoding method.
|
190
|
+
|
191
|
+
Args:
|
192
|
+
latent_dist (`OobleckDiagonalGaussianDistribution`):
|
193
|
+
Encoded outputs of `Encoder` represented as the mean and standard deviation of
|
194
|
+
`OobleckDiagonalGaussianDistribution`. `OobleckDiagonalGaussianDistribution` allows for sampling latents
|
195
|
+
from the distribution.
|
196
|
+
"""
|
197
|
+
|
198
|
+
latent_dist: "OobleckDiagonalGaussianDistribution" # noqa: F821
|
199
|
+
|
200
|
+
|
201
|
+
@dataclass
|
202
|
+
class OobleckDecoderOutput(BaseOutput):
|
203
|
+
r"""
|
204
|
+
Output of decoding method.
|
205
|
+
|
206
|
+
Args:
|
207
|
+
sample (`torch.Tensor` of shape `(batch_size, audio_channels, sequence_length)`):
|
208
|
+
The decoded output sample from the last layer of the model.
|
209
|
+
"""
|
210
|
+
|
211
|
+
sample: torch.Tensor
|
212
|
+
|
213
|
+
|
214
|
+
class OobleckEncoder(nn.Module):
|
215
|
+
"""Oobleck Encoder"""
|
216
|
+
|
217
|
+
def __init__(self, encoder_hidden_size, audio_channels, downsampling_ratios, channel_multiples):
|
218
|
+
super().__init__()
|
219
|
+
|
220
|
+
strides = downsampling_ratios
|
221
|
+
channel_multiples = [1] + channel_multiples
|
222
|
+
|
223
|
+
# Create first convolution
|
224
|
+
self.conv1 = weight_norm(nn.Conv1d(audio_channels, encoder_hidden_size, kernel_size=7, padding=3))
|
225
|
+
|
226
|
+
self.block = []
|
227
|
+
# Create EncoderBlocks that double channels as they downsample by `stride`
|
228
|
+
for stride_index, stride in enumerate(strides):
|
229
|
+
self.block += [
|
230
|
+
OobleckEncoderBlock(
|
231
|
+
input_dim=encoder_hidden_size * channel_multiples[stride_index],
|
232
|
+
output_dim=encoder_hidden_size * channel_multiples[stride_index + 1],
|
233
|
+
stride=stride,
|
234
|
+
)
|
235
|
+
]
|
236
|
+
|
237
|
+
self.block = nn.ModuleList(self.block)
|
238
|
+
d_model = encoder_hidden_size * channel_multiples[-1]
|
239
|
+
self.snake1 = Snake1d(d_model)
|
240
|
+
self.conv2 = weight_norm(nn.Conv1d(d_model, encoder_hidden_size, kernel_size=3, padding=1))
|
241
|
+
|
242
|
+
def forward(self, hidden_state):
|
243
|
+
hidden_state = self.conv1(hidden_state)
|
244
|
+
|
245
|
+
for module in self.block:
|
246
|
+
hidden_state = module(hidden_state)
|
247
|
+
|
248
|
+
hidden_state = self.snake1(hidden_state)
|
249
|
+
hidden_state = self.conv2(hidden_state)
|
250
|
+
|
251
|
+
return hidden_state
|
252
|
+
|
253
|
+
|
254
|
+
class OobleckDecoder(nn.Module):
|
255
|
+
"""Oobleck Decoder"""
|
256
|
+
|
257
|
+
def __init__(self, channels, input_channels, audio_channels, upsampling_ratios, channel_multiples):
|
258
|
+
super().__init__()
|
259
|
+
|
260
|
+
strides = upsampling_ratios
|
261
|
+
channel_multiples = [1] + channel_multiples
|
262
|
+
|
263
|
+
# Add first conv layer
|
264
|
+
self.conv1 = weight_norm(nn.Conv1d(input_channels, channels * channel_multiples[-1], kernel_size=7, padding=3))
|
265
|
+
|
266
|
+
# Add upsampling + MRF blocks
|
267
|
+
block = []
|
268
|
+
for stride_index, stride in enumerate(strides):
|
269
|
+
block += [
|
270
|
+
OobleckDecoderBlock(
|
271
|
+
input_dim=channels * channel_multiples[len(strides) - stride_index],
|
272
|
+
output_dim=channels * channel_multiples[len(strides) - stride_index - 1],
|
273
|
+
stride=stride,
|
274
|
+
)
|
275
|
+
]
|
276
|
+
|
277
|
+
self.block = nn.ModuleList(block)
|
278
|
+
output_dim = channels
|
279
|
+
self.snake1 = Snake1d(output_dim)
|
280
|
+
self.conv2 = weight_norm(nn.Conv1d(channels, audio_channels, kernel_size=7, padding=3, bias=False))
|
281
|
+
|
282
|
+
def forward(self, hidden_state):
|
283
|
+
hidden_state = self.conv1(hidden_state)
|
284
|
+
|
285
|
+
for layer in self.block:
|
286
|
+
hidden_state = layer(hidden_state)
|
287
|
+
|
288
|
+
hidden_state = self.snake1(hidden_state)
|
289
|
+
hidden_state = self.conv2(hidden_state)
|
290
|
+
|
291
|
+
return hidden_state
|
292
|
+
|
293
|
+
|
294
|
+
class AutoencoderOobleck(ModelMixin, ConfigMixin):
|
295
|
+
r"""
|
296
|
+
An autoencoder for encoding waveforms into latents and decoding latent representations into waveforms. First
|
297
|
+
introduced in Stable Audio.
|
298
|
+
|
299
|
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
300
|
+
for all models (such as downloading or saving).
|
301
|
+
|
302
|
+
Parameters:
|
303
|
+
encoder_hidden_size (`int`, *optional*, defaults to 128):
|
304
|
+
Intermediate representation dimension for the encoder.
|
305
|
+
downsampling_ratios (`List[int]`, *optional*, defaults to `[2, 4, 4, 8, 8]`):
|
306
|
+
Ratios for downsampling in the encoder. These are used in reverse order for upsampling in the decoder.
|
307
|
+
channel_multiples (`List[int]`, *optional*, defaults to `[1, 2, 4, 8, 16]`):
|
308
|
+
Multiples used to determine the hidden sizes of the hidden layers.
|
309
|
+
decoder_channels (`int`, *optional*, defaults to 128):
|
310
|
+
Intermediate representation dimension for the decoder.
|
311
|
+
decoder_input_channels (`int`, *optional*, defaults to 64):
|
312
|
+
Input dimension for the decoder. Corresponds to the latent dimension.
|
313
|
+
audio_channels (`int`, *optional*, defaults to 2):
|
314
|
+
Number of channels in the audio data. Either 1 for mono or 2 for stereo.
|
315
|
+
sampling_rate (`int`, *optional*, defaults to 44100):
|
316
|
+
The sampling rate at which the audio waveform should be digitalized expressed in hertz (Hz).
|
317
|
+
"""
|
318
|
+
|
319
|
+
_supports_gradient_checkpointing = False
|
320
|
+
|
321
|
+
@register_to_config
|
322
|
+
def __init__(
|
323
|
+
self,
|
324
|
+
encoder_hidden_size=128,
|
325
|
+
downsampling_ratios=[2, 4, 4, 8, 8],
|
326
|
+
channel_multiples=[1, 2, 4, 8, 16],
|
327
|
+
decoder_channels=128,
|
328
|
+
decoder_input_channels=64,
|
329
|
+
audio_channels=2,
|
330
|
+
sampling_rate=44100,
|
331
|
+
):
|
332
|
+
super().__init__()
|
333
|
+
|
334
|
+
self.encoder_hidden_size = encoder_hidden_size
|
335
|
+
self.downsampling_ratios = downsampling_ratios
|
336
|
+
self.decoder_channels = decoder_channels
|
337
|
+
self.upsampling_ratios = downsampling_ratios[::-1]
|
338
|
+
self.hop_length = int(np.prod(downsampling_ratios))
|
339
|
+
self.sampling_rate = sampling_rate
|
340
|
+
|
341
|
+
self.encoder = OobleckEncoder(
|
342
|
+
encoder_hidden_size=encoder_hidden_size,
|
343
|
+
audio_channels=audio_channels,
|
344
|
+
downsampling_ratios=downsampling_ratios,
|
345
|
+
channel_multiples=channel_multiples,
|
346
|
+
)
|
347
|
+
|
348
|
+
self.decoder = OobleckDecoder(
|
349
|
+
channels=decoder_channels,
|
350
|
+
input_channels=decoder_input_channels,
|
351
|
+
audio_channels=audio_channels,
|
352
|
+
upsampling_ratios=self.upsampling_ratios,
|
353
|
+
channel_multiples=channel_multiples,
|
354
|
+
)
|
355
|
+
|
356
|
+
self.use_slicing = False
|
357
|
+
|
358
|
+
def enable_slicing(self):
|
359
|
+
r"""
|
360
|
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
361
|
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
362
|
+
"""
|
363
|
+
self.use_slicing = True
|
364
|
+
|
365
|
+
def disable_slicing(self):
|
366
|
+
r"""
|
367
|
+
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
368
|
+
decoding in one step.
|
369
|
+
"""
|
370
|
+
self.use_slicing = False
|
371
|
+
|
372
|
+
@apply_forward_hook
|
373
|
+
def encode(
|
374
|
+
self, x: torch.Tensor, return_dict: bool = True
|
375
|
+
) -> Union[AutoencoderOobleckOutput, Tuple[OobleckDiagonalGaussianDistribution]]:
|
376
|
+
"""
|
377
|
+
Encode a batch of images into latents.
|
378
|
+
|
379
|
+
Args:
|
380
|
+
x (`torch.Tensor`): Input batch of images.
|
381
|
+
return_dict (`bool`, *optional*, defaults to `True`):
|
382
|
+
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
383
|
+
|
384
|
+
Returns:
|
385
|
+
The latent representations of the encoded images. If `return_dict` is True, a
|
386
|
+
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
|
387
|
+
"""
|
388
|
+
if self.use_slicing and x.shape[0] > 1:
|
389
|
+
encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)]
|
390
|
+
h = torch.cat(encoded_slices)
|
391
|
+
else:
|
392
|
+
h = self.encoder(x)
|
393
|
+
|
394
|
+
posterior = OobleckDiagonalGaussianDistribution(h)
|
395
|
+
|
396
|
+
if not return_dict:
|
397
|
+
return (posterior,)
|
398
|
+
|
399
|
+
return AutoencoderOobleckOutput(latent_dist=posterior)
|
400
|
+
|
401
|
+
def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[OobleckDecoderOutput, torch.Tensor]:
|
402
|
+
dec = self.decoder(z)
|
403
|
+
|
404
|
+
if not return_dict:
|
405
|
+
return (dec,)
|
406
|
+
|
407
|
+
return OobleckDecoderOutput(sample=dec)
|
408
|
+
|
409
|
+
@apply_forward_hook
|
410
|
+
def decode(
|
411
|
+
self, z: torch.FloatTensor, return_dict: bool = True, generator=None
|
412
|
+
) -> Union[OobleckDecoderOutput, torch.FloatTensor]:
|
413
|
+
"""
|
414
|
+
Decode a batch of images.
|
415
|
+
|
416
|
+
Args:
|
417
|
+
z (`torch.Tensor`): Input batch of latent vectors.
|
418
|
+
return_dict (`bool`, *optional*, defaults to `True`):
|
419
|
+
Whether to return a [`~models.vae.OobleckDecoderOutput`] instead of a plain tuple.
|
420
|
+
|
421
|
+
Returns:
|
422
|
+
[`~models.vae.OobleckDecoderOutput`] or `tuple`:
|
423
|
+
If return_dict is True, a [`~models.vae.OobleckDecoderOutput`] is returned, otherwise a plain `tuple`
|
424
|
+
is returned.
|
425
|
+
|
426
|
+
"""
|
427
|
+
if self.use_slicing and z.shape[0] > 1:
|
428
|
+
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
|
429
|
+
decoded = torch.cat(decoded_slices)
|
430
|
+
else:
|
431
|
+
decoded = self._decode(z).sample
|
432
|
+
|
433
|
+
if not return_dict:
|
434
|
+
return (decoded,)
|
435
|
+
|
436
|
+
return OobleckDecoderOutput(sample=decoded)
|
437
|
+
|
438
|
+
def forward(
|
439
|
+
self,
|
440
|
+
sample: torch.Tensor,
|
441
|
+
sample_posterior: bool = False,
|
442
|
+
return_dict: bool = True,
|
443
|
+
generator: Optional[torch.Generator] = None,
|
444
|
+
) -> Union[OobleckDecoderOutput, torch.Tensor]:
|
445
|
+
r"""
|
446
|
+
Args:
|
447
|
+
sample (`torch.Tensor`): Input sample.
|
448
|
+
sample_posterior (`bool`, *optional*, defaults to `False`):
|
449
|
+
Whether to sample from the posterior.
|
450
|
+
return_dict (`bool`, *optional*, defaults to `True`):
|
451
|
+
Whether or not to return a [`OobleckDecoderOutput`] instead of a plain tuple.
|
452
|
+
"""
|
453
|
+
x = sample
|
454
|
+
posterior = self.encode(x).latent_dist
|
455
|
+
if sample_posterior:
|
456
|
+
z = posterior.sample(generator=generator)
|
457
|
+
else:
|
458
|
+
z = posterior.mode()
|
459
|
+
dec = self.decode(z).sample
|
460
|
+
|
461
|
+
if not return_dict:
|
462
|
+
return (dec,)
|
463
|
+
|
464
|
+
return OobleckDecoderOutput(sample=dec)
|