diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1946 @@
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from dataclasses import dataclass
15
+ from math import gcd
16
+ from typing import Any, Dict, List, Optional, Tuple, Union
17
+
18
+ import torch
19
+ import torch.utils.checkpoint
20
+ from torch import Tensor, nn
21
+
22
+ from ...configuration_utils import ConfigMixin, register_to_config
23
+ from ...utils import BaseOutput, is_torch_version, logging
24
+ from ...utils.torch_utils import apply_freeu
25
+ from ..attention_processor import (
26
+ ADDED_KV_ATTENTION_PROCESSORS,
27
+ CROSS_ATTENTION_PROCESSORS,
28
+ Attention,
29
+ AttentionProcessor,
30
+ AttnAddedKVProcessor,
31
+ AttnProcessor,
32
+ FusedAttnProcessor2_0,
33
+ )
34
+ from ..embeddings import TimestepEmbedding, Timesteps
35
+ from ..modeling_utils import ModelMixin
36
+ from ..unets.unet_2d_blocks import (
37
+ CrossAttnDownBlock2D,
38
+ CrossAttnUpBlock2D,
39
+ Downsample2D,
40
+ ResnetBlock2D,
41
+ Transformer2DModel,
42
+ UNetMidBlock2DCrossAttn,
43
+ Upsample2D,
44
+ )
45
+ from ..unets.unet_2d_condition import UNet2DConditionModel
46
+ from .controlnet import ControlNetConditioningEmbedding
47
+
48
+
49
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
50
+
51
+
52
+ @dataclass
53
+ class ControlNetXSOutput(BaseOutput):
54
+ """
55
+ The output of [`UNetControlNetXSModel`].
56
+
57
+ Args:
58
+ sample (`Tensor` of shape `(batch_size, num_channels, height, width)`):
59
+ The output of the `UNetControlNetXSModel`. Unlike `ControlNetOutput` this is NOT to be added to the base
60
+ model output, but is already the final output.
61
+ """
62
+
63
+ sample: Tensor = None
64
+
65
+
66
+ class DownBlockControlNetXSAdapter(nn.Module):
67
+ """Components that together with corresponding components from the base model will form a
68
+ `ControlNetXSCrossAttnDownBlock2D`"""
69
+
70
+ def __init__(
71
+ self,
72
+ resnets: nn.ModuleList,
73
+ base_to_ctrl: nn.ModuleList,
74
+ ctrl_to_base: nn.ModuleList,
75
+ attentions: Optional[nn.ModuleList] = None,
76
+ downsampler: Optional[nn.Conv2d] = None,
77
+ ):
78
+ super().__init__()
79
+ self.resnets = resnets
80
+ self.base_to_ctrl = base_to_ctrl
81
+ self.ctrl_to_base = ctrl_to_base
82
+ self.attentions = attentions
83
+ self.downsamplers = downsampler
84
+
85
+
86
+ class MidBlockControlNetXSAdapter(nn.Module):
87
+ """Components that together with corresponding components from the base model will form a
88
+ `ControlNetXSCrossAttnMidBlock2D`"""
89
+
90
+ def __init__(self, midblock: UNetMidBlock2DCrossAttn, base_to_ctrl: nn.ModuleList, ctrl_to_base: nn.ModuleList):
91
+ super().__init__()
92
+ self.midblock = midblock
93
+ self.base_to_ctrl = base_to_ctrl
94
+ self.ctrl_to_base = ctrl_to_base
95
+
96
+
97
+ class UpBlockControlNetXSAdapter(nn.Module):
98
+ """Components that together with corresponding components from the base model will form a `ControlNetXSCrossAttnUpBlock2D`"""
99
+
100
+ def __init__(self, ctrl_to_base: nn.ModuleList):
101
+ super().__init__()
102
+ self.ctrl_to_base = ctrl_to_base
103
+
104
+
105
+ def get_down_block_adapter(
106
+ base_in_channels: int,
107
+ base_out_channels: int,
108
+ ctrl_in_channels: int,
109
+ ctrl_out_channels: int,
110
+ temb_channels: int,
111
+ max_norm_num_groups: Optional[int] = 32,
112
+ has_crossattn=True,
113
+ transformer_layers_per_block: Optional[Union[int, Tuple[int]]] = 1,
114
+ num_attention_heads: Optional[int] = 1,
115
+ cross_attention_dim: Optional[int] = 1024,
116
+ add_downsample: bool = True,
117
+ upcast_attention: Optional[bool] = False,
118
+ use_linear_projection: Optional[bool] = True,
119
+ ):
120
+ num_layers = 2 # only support sd + sdxl
121
+
122
+ resnets = []
123
+ attentions = []
124
+ ctrl_to_base = []
125
+ base_to_ctrl = []
126
+
127
+ if isinstance(transformer_layers_per_block, int):
128
+ transformer_layers_per_block = [transformer_layers_per_block] * num_layers
129
+
130
+ for i in range(num_layers):
131
+ base_in_channels = base_in_channels if i == 0 else base_out_channels
132
+ ctrl_in_channels = ctrl_in_channels if i == 0 else ctrl_out_channels
133
+
134
+ # Before the resnet/attention application, information is concatted from base to control.
135
+ # Concat doesn't require change in number of channels
136
+ base_to_ctrl.append(make_zero_conv(base_in_channels, base_in_channels))
137
+
138
+ resnets.append(
139
+ ResnetBlock2D(
140
+ in_channels=ctrl_in_channels + base_in_channels, # information from base is concatted to ctrl
141
+ out_channels=ctrl_out_channels,
142
+ temb_channels=temb_channels,
143
+ groups=find_largest_factor(ctrl_in_channels + base_in_channels, max_factor=max_norm_num_groups),
144
+ groups_out=find_largest_factor(ctrl_out_channels, max_factor=max_norm_num_groups),
145
+ eps=1e-5,
146
+ )
147
+ )
148
+
149
+ if has_crossattn:
150
+ attentions.append(
151
+ Transformer2DModel(
152
+ num_attention_heads,
153
+ ctrl_out_channels // num_attention_heads,
154
+ in_channels=ctrl_out_channels,
155
+ num_layers=transformer_layers_per_block[i],
156
+ cross_attention_dim=cross_attention_dim,
157
+ use_linear_projection=use_linear_projection,
158
+ upcast_attention=upcast_attention,
159
+ norm_num_groups=find_largest_factor(ctrl_out_channels, max_factor=max_norm_num_groups),
160
+ )
161
+ )
162
+
163
+ # After the resnet/attention application, information is added from control to base
164
+ # Addition requires change in number of channels
165
+ ctrl_to_base.append(make_zero_conv(ctrl_out_channels, base_out_channels))
166
+
167
+ if add_downsample:
168
+ # Before the downsampler application, information is concatted from base to control
169
+ # Concat doesn't require change in number of channels
170
+ base_to_ctrl.append(make_zero_conv(base_out_channels, base_out_channels))
171
+
172
+ downsamplers = Downsample2D(
173
+ ctrl_out_channels + base_out_channels, use_conv=True, out_channels=ctrl_out_channels, name="op"
174
+ )
175
+
176
+ # After the downsampler application, information is added from control to base
177
+ # Addition requires change in number of channels
178
+ ctrl_to_base.append(make_zero_conv(ctrl_out_channels, base_out_channels))
179
+ else:
180
+ downsamplers = None
181
+
182
+ down_block_components = DownBlockControlNetXSAdapter(
183
+ resnets=nn.ModuleList(resnets),
184
+ base_to_ctrl=nn.ModuleList(base_to_ctrl),
185
+ ctrl_to_base=nn.ModuleList(ctrl_to_base),
186
+ )
187
+
188
+ if has_crossattn:
189
+ down_block_components.attentions = nn.ModuleList(attentions)
190
+ if downsamplers is not None:
191
+ down_block_components.downsamplers = downsamplers
192
+
193
+ return down_block_components
194
+
195
+
196
+ def get_mid_block_adapter(
197
+ base_channels: int,
198
+ ctrl_channels: int,
199
+ temb_channels: Optional[int] = None,
200
+ max_norm_num_groups: Optional[int] = 32,
201
+ transformer_layers_per_block: int = 1,
202
+ num_attention_heads: Optional[int] = 1,
203
+ cross_attention_dim: Optional[int] = 1024,
204
+ upcast_attention: bool = False,
205
+ use_linear_projection: bool = True,
206
+ ):
207
+ # Before the midblock application, information is concatted from base to control.
208
+ # Concat doesn't require change in number of channels
209
+ base_to_ctrl = make_zero_conv(base_channels, base_channels)
210
+
211
+ midblock = UNetMidBlock2DCrossAttn(
212
+ transformer_layers_per_block=transformer_layers_per_block,
213
+ in_channels=ctrl_channels + base_channels,
214
+ out_channels=ctrl_channels,
215
+ temb_channels=temb_channels,
216
+ # number or norm groups must divide both in_channels and out_channels
217
+ resnet_groups=find_largest_factor(gcd(ctrl_channels, ctrl_channels + base_channels), max_norm_num_groups),
218
+ cross_attention_dim=cross_attention_dim,
219
+ num_attention_heads=num_attention_heads,
220
+ use_linear_projection=use_linear_projection,
221
+ upcast_attention=upcast_attention,
222
+ )
223
+
224
+ # After the midblock application, information is added from control to base
225
+ # Addition requires change in number of channels
226
+ ctrl_to_base = make_zero_conv(ctrl_channels, base_channels)
227
+
228
+ return MidBlockControlNetXSAdapter(base_to_ctrl=base_to_ctrl, midblock=midblock, ctrl_to_base=ctrl_to_base)
229
+
230
+
231
+ def get_up_block_adapter(
232
+ out_channels: int,
233
+ prev_output_channel: int,
234
+ ctrl_skip_channels: List[int],
235
+ ):
236
+ ctrl_to_base = []
237
+ num_layers = 3 # only support sd + sdxl
238
+ for i in range(num_layers):
239
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
240
+ ctrl_to_base.append(make_zero_conv(ctrl_skip_channels[i], resnet_in_channels))
241
+
242
+ return UpBlockControlNetXSAdapter(ctrl_to_base=nn.ModuleList(ctrl_to_base))
243
+
244
+
245
+ class ControlNetXSAdapter(ModelMixin, ConfigMixin):
246
+ r"""
247
+ A `ControlNetXSAdapter` model. To use it, pass it into a `UNetControlNetXSModel` (together with a
248
+ `UNet2DConditionModel` base model).
249
+
250
+ This model inherits from [`ModelMixin`] and [`ConfigMixin`]. Check the superclass documentation for it's generic
251
+ methods implemented for all models (such as downloading or saving).
252
+
253
+ Like `UNetControlNetXSModel`, `ControlNetXSAdapter` is compatible with StableDiffusion and StableDiffusion-XL. It's
254
+ default parameters are compatible with StableDiffusion.
255
+
256
+ Parameters:
257
+ conditioning_channels (`int`, defaults to 3):
258
+ Number of channels of conditioning input (e.g. an image)
259
+ conditioning_channel_order (`str`, defaults to `"rgb"`):
260
+ The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
261
+ conditioning_embedding_out_channels (`tuple[int]`, defaults to `(16, 32, 96, 256)`):
262
+ The tuple of output channels for each block in the `controlnet_cond_embedding` layer.
263
+ time_embedding_mix (`float`, defaults to 1.0):
264
+ If 0, then only the control adapters's time embedding is used. If 1, then only the base unet's time
265
+ embedding is used. Otherwise, both are combined.
266
+ learn_time_embedding (`bool`, defaults to `False`):
267
+ Whether a time embedding should be learned. If yes, `UNetControlNetXSModel` will combine the time
268
+ embeddings of the base model and the control adapter. If no, `UNetControlNetXSModel` will use the base
269
+ model's time embedding.
270
+ num_attention_heads (`list[int]`, defaults to `[4]`):
271
+ The number of attention heads.
272
+ block_out_channels (`list[int]`, defaults to `[4, 8, 16, 16]`):
273
+ The tuple of output channels for each block.
274
+ base_block_out_channels (`list[int]`, defaults to `[320, 640, 1280, 1280]`):
275
+ The tuple of output channels for each block in the base unet.
276
+ cross_attention_dim (`int`, defaults to 1024):
277
+ The dimension of the cross attention features.
278
+ down_block_types (`list[str]`, defaults to `["CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D"]`):
279
+ The tuple of downsample blocks to use.
280
+ sample_size (`int`, defaults to 96):
281
+ Height and width of input/output sample.
282
+ transformer_layers_per_block (`Union[int, Tuple[int]]`, defaults to 1):
283
+ The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
284
+ [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
285
+ upcast_attention (`bool`, defaults to `True`):
286
+ Whether the attention computation should always be upcasted.
287
+ max_norm_num_groups (`int`, defaults to 32):
288
+ Maximum number of groups in group normal. The actual number will be the largest divisor of the respective
289
+ channels, that is <= max_norm_num_groups.
290
+ """
291
+
292
+ @register_to_config
293
+ def __init__(
294
+ self,
295
+ conditioning_channels: int = 3,
296
+ conditioning_channel_order: str = "rgb",
297
+ conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256),
298
+ time_embedding_mix: float = 1.0,
299
+ learn_time_embedding: bool = False,
300
+ num_attention_heads: Union[int, Tuple[int]] = 4,
301
+ block_out_channels: Tuple[int] = (4, 8, 16, 16),
302
+ base_block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
303
+ cross_attention_dim: int = 1024,
304
+ down_block_types: Tuple[str] = (
305
+ "CrossAttnDownBlock2D",
306
+ "CrossAttnDownBlock2D",
307
+ "CrossAttnDownBlock2D",
308
+ "DownBlock2D",
309
+ ),
310
+ sample_size: Optional[int] = 96,
311
+ transformer_layers_per_block: Union[int, Tuple[int]] = 1,
312
+ upcast_attention: bool = True,
313
+ max_norm_num_groups: int = 32,
314
+ use_linear_projection: bool = True,
315
+ ):
316
+ super().__init__()
317
+
318
+ time_embedding_input_dim = base_block_out_channels[0]
319
+ time_embedding_dim = base_block_out_channels[0] * 4
320
+
321
+ # Check inputs
322
+ if conditioning_channel_order not in ["rgb", "bgr"]:
323
+ raise ValueError(f"unknown `conditioning_channel_order`: {conditioning_channel_order}")
324
+
325
+ if len(block_out_channels) != len(down_block_types):
326
+ raise ValueError(
327
+ f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
328
+ )
329
+
330
+ if not isinstance(transformer_layers_per_block, (list, tuple)):
331
+ transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
332
+ if not isinstance(cross_attention_dim, (list, tuple)):
333
+ cross_attention_dim = [cross_attention_dim] * len(down_block_types)
334
+ # see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why `ControlNetXSAdapter` takes `num_attention_heads` instead of `attention_head_dim`
335
+ if not isinstance(num_attention_heads, (list, tuple)):
336
+ num_attention_heads = [num_attention_heads] * len(down_block_types)
337
+
338
+ if len(num_attention_heads) != len(down_block_types):
339
+ raise ValueError(
340
+ f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
341
+ )
342
+
343
+ # 5 - Create conditioning hint embedding
344
+ self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
345
+ conditioning_embedding_channels=block_out_channels[0],
346
+ block_out_channels=conditioning_embedding_out_channels,
347
+ conditioning_channels=conditioning_channels,
348
+ )
349
+
350
+ # time
351
+ if learn_time_embedding:
352
+ self.time_embedding = TimestepEmbedding(time_embedding_input_dim, time_embedding_dim)
353
+ else:
354
+ self.time_embedding = None
355
+
356
+ self.down_blocks = nn.ModuleList([])
357
+ self.up_connections = nn.ModuleList([])
358
+
359
+ # input
360
+ self.conv_in = nn.Conv2d(4, block_out_channels[0], kernel_size=3, padding=1)
361
+ self.control_to_base_for_conv_in = make_zero_conv(block_out_channels[0], base_block_out_channels[0])
362
+
363
+ # down
364
+ base_out_channels = base_block_out_channels[0]
365
+ ctrl_out_channels = block_out_channels[0]
366
+ for i, down_block_type in enumerate(down_block_types):
367
+ base_in_channels = base_out_channels
368
+ base_out_channels = base_block_out_channels[i]
369
+ ctrl_in_channels = ctrl_out_channels
370
+ ctrl_out_channels = block_out_channels[i]
371
+ has_crossattn = "CrossAttn" in down_block_type
372
+ is_final_block = i == len(down_block_types) - 1
373
+
374
+ self.down_blocks.append(
375
+ get_down_block_adapter(
376
+ base_in_channels=base_in_channels,
377
+ base_out_channels=base_out_channels,
378
+ ctrl_in_channels=ctrl_in_channels,
379
+ ctrl_out_channels=ctrl_out_channels,
380
+ temb_channels=time_embedding_dim,
381
+ max_norm_num_groups=max_norm_num_groups,
382
+ has_crossattn=has_crossattn,
383
+ transformer_layers_per_block=transformer_layers_per_block[i],
384
+ num_attention_heads=num_attention_heads[i],
385
+ cross_attention_dim=cross_attention_dim[i],
386
+ add_downsample=not is_final_block,
387
+ upcast_attention=upcast_attention,
388
+ use_linear_projection=use_linear_projection,
389
+ )
390
+ )
391
+
392
+ # mid
393
+ self.mid_block = get_mid_block_adapter(
394
+ base_channels=base_block_out_channels[-1],
395
+ ctrl_channels=block_out_channels[-1],
396
+ temb_channels=time_embedding_dim,
397
+ transformer_layers_per_block=transformer_layers_per_block[-1],
398
+ num_attention_heads=num_attention_heads[-1],
399
+ cross_attention_dim=cross_attention_dim[-1],
400
+ upcast_attention=upcast_attention,
401
+ use_linear_projection=use_linear_projection,
402
+ )
403
+
404
+ # up
405
+ # The skip connection channels are the output of the conv_in and of all the down subblocks
406
+ ctrl_skip_channels = [block_out_channels[0]]
407
+ for i, out_channels in enumerate(block_out_channels):
408
+ number_of_subblocks = (
409
+ 3 if i < len(block_out_channels) - 1 else 2
410
+ ) # every block has 3 subblocks, except last one, which has 2 as it has no downsampler
411
+ ctrl_skip_channels.extend([out_channels] * number_of_subblocks)
412
+
413
+ reversed_base_block_out_channels = list(reversed(base_block_out_channels))
414
+
415
+ base_out_channels = reversed_base_block_out_channels[0]
416
+ for i in range(len(down_block_types)):
417
+ prev_base_output_channel = base_out_channels
418
+ base_out_channels = reversed_base_block_out_channels[i]
419
+ ctrl_skip_channels_ = [ctrl_skip_channels.pop() for _ in range(3)]
420
+
421
+ self.up_connections.append(
422
+ get_up_block_adapter(
423
+ out_channels=base_out_channels,
424
+ prev_output_channel=prev_base_output_channel,
425
+ ctrl_skip_channels=ctrl_skip_channels_,
426
+ )
427
+ )
428
+
429
+ @classmethod
430
+ def from_unet(
431
+ cls,
432
+ unet: UNet2DConditionModel,
433
+ size_ratio: Optional[float] = None,
434
+ block_out_channels: Optional[List[int]] = None,
435
+ num_attention_heads: Optional[List[int]] = None,
436
+ learn_time_embedding: bool = False,
437
+ time_embedding_mix: int = 1.0,
438
+ conditioning_channels: int = 3,
439
+ conditioning_channel_order: str = "rgb",
440
+ conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256),
441
+ ):
442
+ r"""
443
+ Instantiate a [`ControlNetXSAdapter`] from a [`UNet2DConditionModel`].
444
+
445
+ Parameters:
446
+ unet (`UNet2DConditionModel`):
447
+ The UNet model we want to control. The dimensions of the ControlNetXSAdapter will be adapted to it.
448
+ size_ratio (float, *optional*, defaults to `None`):
449
+ When given, block_out_channels is set to a fraction of the base model's block_out_channels. Either this
450
+ or `block_out_channels` must be given.
451
+ block_out_channels (`List[int]`, *optional*, defaults to `None`):
452
+ Down blocks output channels in control model. Either this or `size_ratio` must be given.
453
+ num_attention_heads (`List[int]`, *optional*, defaults to `None`):
454
+ The dimension of the attention heads. The naming seems a bit confusing and it is, see
455
+ https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why.
456
+ learn_time_embedding (`bool`, defaults to `False`):
457
+ Whether the `ControlNetXSAdapter` should learn a time embedding.
458
+ time_embedding_mix (`float`, defaults to 1.0):
459
+ If 0, then only the control adapter's time embedding is used. If 1, then only the base unet's time
460
+ embedding is used. Otherwise, both are combined.
461
+ conditioning_channels (`int`, defaults to 3):
462
+ Number of channels of conditioning input (e.g. an image)
463
+ conditioning_channel_order (`str`, defaults to `"rgb"`):
464
+ The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
465
+ conditioning_embedding_out_channels (`Tuple[int]`, defaults to `(16, 32, 96, 256)`):
466
+ The tuple of output channel for each block in the `controlnet_cond_embedding` layer.
467
+ """
468
+
469
+ # Check input
470
+ fixed_size = block_out_channels is not None
471
+ relative_size = size_ratio is not None
472
+ if not (fixed_size ^ relative_size):
473
+ raise ValueError(
474
+ "Pass exactly one of `block_out_channels` (for absolute sizing) or `size_ratio` (for relative sizing)."
475
+ )
476
+
477
+ # Create model
478
+ block_out_channels = block_out_channels or [int(b * size_ratio) for b in unet.config.block_out_channels]
479
+ if num_attention_heads is None:
480
+ # The naming seems a bit confusing and it is, see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why.
481
+ num_attention_heads = unet.config.attention_head_dim
482
+
483
+ model = cls(
484
+ conditioning_channels=conditioning_channels,
485
+ conditioning_channel_order=conditioning_channel_order,
486
+ conditioning_embedding_out_channels=conditioning_embedding_out_channels,
487
+ time_embedding_mix=time_embedding_mix,
488
+ learn_time_embedding=learn_time_embedding,
489
+ num_attention_heads=num_attention_heads,
490
+ block_out_channels=block_out_channels,
491
+ base_block_out_channels=unet.config.block_out_channels,
492
+ cross_attention_dim=unet.config.cross_attention_dim,
493
+ down_block_types=unet.config.down_block_types,
494
+ sample_size=unet.config.sample_size,
495
+ transformer_layers_per_block=unet.config.transformer_layers_per_block,
496
+ upcast_attention=unet.config.upcast_attention,
497
+ max_norm_num_groups=unet.config.norm_num_groups,
498
+ use_linear_projection=unet.config.use_linear_projection,
499
+ )
500
+
501
+ # ensure that the ControlNetXSAdapter is the same dtype as the UNet2DConditionModel
502
+ model.to(unet.dtype)
503
+
504
+ return model
505
+
506
+ def forward(self, *args, **kwargs):
507
+ raise ValueError(
508
+ "A ControlNetXSAdapter cannot be run by itself. Use it together with a UNet2DConditionModel to instantiate a UNetControlNetXSModel."
509
+ )
510
+
511
+
512
+ class UNetControlNetXSModel(ModelMixin, ConfigMixin):
513
+ r"""
514
+ A UNet fused with a ControlNet-XS adapter model
515
+
516
+ This model inherits from [`ModelMixin`] and [`ConfigMixin`]. Check the superclass documentation for it's generic
517
+ methods implemented for all models (such as downloading or saving).
518
+
519
+ `UNetControlNetXSModel` is compatible with StableDiffusion and StableDiffusion-XL. It's default parameters are
520
+ compatible with StableDiffusion.
521
+
522
+ It's parameters are either passed to the underlying `UNet2DConditionModel` or used exactly like in
523
+ `ControlNetXSAdapter` . See their documentation for details.
524
+ """
525
+
526
+ _supports_gradient_checkpointing = True
527
+
528
+ @register_to_config
529
+ def __init__(
530
+ self,
531
+ # unet configs
532
+ sample_size: Optional[int] = 96,
533
+ down_block_types: Tuple[str] = (
534
+ "CrossAttnDownBlock2D",
535
+ "CrossAttnDownBlock2D",
536
+ "CrossAttnDownBlock2D",
537
+ "DownBlock2D",
538
+ ),
539
+ up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
540
+ block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
541
+ norm_num_groups: Optional[int] = 32,
542
+ cross_attention_dim: Union[int, Tuple[int]] = 1024,
543
+ transformer_layers_per_block: Union[int, Tuple[int]] = 1,
544
+ num_attention_heads: Union[int, Tuple[int]] = 8,
545
+ addition_embed_type: Optional[str] = None,
546
+ addition_time_embed_dim: Optional[int] = None,
547
+ upcast_attention: bool = True,
548
+ use_linear_projection: bool = True,
549
+ time_cond_proj_dim: Optional[int] = None,
550
+ projection_class_embeddings_input_dim: Optional[int] = None,
551
+ # additional controlnet configs
552
+ time_embedding_mix: float = 1.0,
553
+ ctrl_conditioning_channels: int = 3,
554
+ ctrl_conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256),
555
+ ctrl_conditioning_channel_order: str = "rgb",
556
+ ctrl_learn_time_embedding: bool = False,
557
+ ctrl_block_out_channels: Tuple[int] = (4, 8, 16, 16),
558
+ ctrl_num_attention_heads: Union[int, Tuple[int]] = 4,
559
+ ctrl_max_norm_num_groups: int = 32,
560
+ ):
561
+ super().__init__()
562
+
563
+ if time_embedding_mix < 0 or time_embedding_mix > 1:
564
+ raise ValueError("`time_embedding_mix` needs to be between 0 and 1.")
565
+ if time_embedding_mix < 1 and not ctrl_learn_time_embedding:
566
+ raise ValueError("To use `time_embedding_mix` < 1, `ctrl_learn_time_embedding` must be `True`")
567
+
568
+ if addition_embed_type is not None and addition_embed_type != "text_time":
569
+ raise ValueError(
570
+ "As `UNetControlNetXSModel` currently only supports StableDiffusion and StableDiffusion-XL, `addition_embed_type` must be `None` or `'text_time'`."
571
+ )
572
+
573
+ if not isinstance(transformer_layers_per_block, (list, tuple)):
574
+ transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
575
+ if not isinstance(cross_attention_dim, (list, tuple)):
576
+ cross_attention_dim = [cross_attention_dim] * len(down_block_types)
577
+ if not isinstance(num_attention_heads, (list, tuple)):
578
+ num_attention_heads = [num_attention_heads] * len(down_block_types)
579
+ if not isinstance(ctrl_num_attention_heads, (list, tuple)):
580
+ ctrl_num_attention_heads = [ctrl_num_attention_heads] * len(down_block_types)
581
+
582
+ base_num_attention_heads = num_attention_heads
583
+
584
+ self.in_channels = 4
585
+
586
+ # # Input
587
+ self.base_conv_in = nn.Conv2d(4, block_out_channels[0], kernel_size=3, padding=1)
588
+ self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
589
+ conditioning_embedding_channels=ctrl_block_out_channels[0],
590
+ block_out_channels=ctrl_conditioning_embedding_out_channels,
591
+ conditioning_channels=ctrl_conditioning_channels,
592
+ )
593
+ self.ctrl_conv_in = nn.Conv2d(4, ctrl_block_out_channels[0], kernel_size=3, padding=1)
594
+ self.control_to_base_for_conv_in = make_zero_conv(ctrl_block_out_channels[0], block_out_channels[0])
595
+
596
+ # # Time
597
+ time_embed_input_dim = block_out_channels[0]
598
+ time_embed_dim = block_out_channels[0] * 4
599
+
600
+ self.base_time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos=True, downscale_freq_shift=0)
601
+ self.base_time_embedding = TimestepEmbedding(
602
+ time_embed_input_dim,
603
+ time_embed_dim,
604
+ cond_proj_dim=time_cond_proj_dim,
605
+ )
606
+ if ctrl_learn_time_embedding:
607
+ self.ctrl_time_embedding = TimestepEmbedding(
608
+ in_channels=time_embed_input_dim, time_embed_dim=time_embed_dim
609
+ )
610
+ else:
611
+ self.ctrl_time_embedding = None
612
+
613
+ if addition_embed_type is None:
614
+ self.base_add_time_proj = None
615
+ self.base_add_embedding = None
616
+ else:
617
+ self.base_add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos=True, downscale_freq_shift=0)
618
+ self.base_add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
619
+
620
+ # # Create down blocks
621
+ down_blocks = []
622
+ base_out_channels = block_out_channels[0]
623
+ ctrl_out_channels = ctrl_block_out_channels[0]
624
+ for i, down_block_type in enumerate(down_block_types):
625
+ base_in_channels = base_out_channels
626
+ base_out_channels = block_out_channels[i]
627
+ ctrl_in_channels = ctrl_out_channels
628
+ ctrl_out_channels = ctrl_block_out_channels[i]
629
+ has_crossattn = "CrossAttn" in down_block_type
630
+ is_final_block = i == len(down_block_types) - 1
631
+
632
+ down_blocks.append(
633
+ ControlNetXSCrossAttnDownBlock2D(
634
+ base_in_channels=base_in_channels,
635
+ base_out_channels=base_out_channels,
636
+ ctrl_in_channels=ctrl_in_channels,
637
+ ctrl_out_channels=ctrl_out_channels,
638
+ temb_channels=time_embed_dim,
639
+ norm_num_groups=norm_num_groups,
640
+ ctrl_max_norm_num_groups=ctrl_max_norm_num_groups,
641
+ has_crossattn=has_crossattn,
642
+ transformer_layers_per_block=transformer_layers_per_block[i],
643
+ base_num_attention_heads=base_num_attention_heads[i],
644
+ ctrl_num_attention_heads=ctrl_num_attention_heads[i],
645
+ cross_attention_dim=cross_attention_dim[i],
646
+ add_downsample=not is_final_block,
647
+ upcast_attention=upcast_attention,
648
+ use_linear_projection=use_linear_projection,
649
+ )
650
+ )
651
+
652
+ # # Create mid block
653
+ self.mid_block = ControlNetXSCrossAttnMidBlock2D(
654
+ base_channels=block_out_channels[-1],
655
+ ctrl_channels=ctrl_block_out_channels[-1],
656
+ temb_channels=time_embed_dim,
657
+ norm_num_groups=norm_num_groups,
658
+ ctrl_max_norm_num_groups=ctrl_max_norm_num_groups,
659
+ transformer_layers_per_block=transformer_layers_per_block[-1],
660
+ base_num_attention_heads=base_num_attention_heads[-1],
661
+ ctrl_num_attention_heads=ctrl_num_attention_heads[-1],
662
+ cross_attention_dim=cross_attention_dim[-1],
663
+ upcast_attention=upcast_attention,
664
+ use_linear_projection=use_linear_projection,
665
+ )
666
+
667
+ # # Create up blocks
668
+ up_blocks = []
669
+ rev_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
670
+ rev_num_attention_heads = list(reversed(base_num_attention_heads))
671
+ rev_cross_attention_dim = list(reversed(cross_attention_dim))
672
+
673
+ # The skip connection channels are the output of the conv_in and of all the down subblocks
674
+ ctrl_skip_channels = [ctrl_block_out_channels[0]]
675
+ for i, out_channels in enumerate(ctrl_block_out_channels):
676
+ number_of_subblocks = (
677
+ 3 if i < len(ctrl_block_out_channels) - 1 else 2
678
+ ) # every block has 3 subblocks, except last one, which has 2 as it has no downsampler
679
+ ctrl_skip_channels.extend([out_channels] * number_of_subblocks)
680
+
681
+ reversed_block_out_channels = list(reversed(block_out_channels))
682
+
683
+ out_channels = reversed_block_out_channels[0]
684
+ for i, up_block_type in enumerate(up_block_types):
685
+ prev_output_channel = out_channels
686
+ out_channels = reversed_block_out_channels[i]
687
+ in_channels = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
688
+ ctrl_skip_channels_ = [ctrl_skip_channels.pop() for _ in range(3)]
689
+
690
+ has_crossattn = "CrossAttn" in up_block_type
691
+ is_final_block = i == len(block_out_channels) - 1
692
+
693
+ up_blocks.append(
694
+ ControlNetXSCrossAttnUpBlock2D(
695
+ in_channels=in_channels,
696
+ out_channels=out_channels,
697
+ prev_output_channel=prev_output_channel,
698
+ ctrl_skip_channels=ctrl_skip_channels_,
699
+ temb_channels=time_embed_dim,
700
+ resolution_idx=i,
701
+ has_crossattn=has_crossattn,
702
+ transformer_layers_per_block=rev_transformer_layers_per_block[i],
703
+ num_attention_heads=rev_num_attention_heads[i],
704
+ cross_attention_dim=rev_cross_attention_dim[i],
705
+ add_upsample=not is_final_block,
706
+ upcast_attention=upcast_attention,
707
+ norm_num_groups=norm_num_groups,
708
+ use_linear_projection=use_linear_projection,
709
+ )
710
+ )
711
+
712
+ self.down_blocks = nn.ModuleList(down_blocks)
713
+ self.up_blocks = nn.ModuleList(up_blocks)
714
+
715
+ self.base_conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups)
716
+ self.base_conv_act = nn.SiLU()
717
+ self.base_conv_out = nn.Conv2d(block_out_channels[0], 4, kernel_size=3, padding=1)
718
+
719
+ @classmethod
720
+ def from_unet(
721
+ cls,
722
+ unet: UNet2DConditionModel,
723
+ controlnet: Optional[ControlNetXSAdapter] = None,
724
+ size_ratio: Optional[float] = None,
725
+ ctrl_block_out_channels: Optional[List[float]] = None,
726
+ time_embedding_mix: Optional[float] = None,
727
+ ctrl_optional_kwargs: Optional[Dict] = None,
728
+ ):
729
+ r"""
730
+ Instantiate a [`UNetControlNetXSModel`] from a [`UNet2DConditionModel`] and an optional [`ControlNetXSAdapter`]
731
+ .
732
+
733
+ Parameters:
734
+ unet (`UNet2DConditionModel`):
735
+ The UNet model we want to control.
736
+ controlnet (`ControlNetXSAdapter`):
737
+ The ConntrolNet-XS adapter with which the UNet will be fused. If none is given, a new ConntrolNet-XS
738
+ adapter will be created.
739
+ size_ratio (float, *optional*, defaults to `None`):
740
+ Used to contruct the controlnet if none is given. See [`ControlNetXSAdapter.from_unet`] for details.
741
+ ctrl_block_out_channels (`List[int]`, *optional*, defaults to `None`):
742
+ Used to contruct the controlnet if none is given. See [`ControlNetXSAdapter.from_unet`] for details,
743
+ where this parameter is called `block_out_channels`.
744
+ time_embedding_mix (`float`, *optional*, defaults to None):
745
+ Used to contruct the controlnet if none is given. See [`ControlNetXSAdapter.from_unet`] for details.
746
+ ctrl_optional_kwargs (`Dict`, *optional*, defaults to `None`):
747
+ Passed to the `init` of the new controlent if no controlent was given.
748
+ """
749
+ if controlnet is None:
750
+ controlnet = ControlNetXSAdapter.from_unet(
751
+ unet, size_ratio, ctrl_block_out_channels, **ctrl_optional_kwargs
752
+ )
753
+ else:
754
+ if any(
755
+ o is not None for o in (size_ratio, ctrl_block_out_channels, time_embedding_mix, ctrl_optional_kwargs)
756
+ ):
757
+ raise ValueError(
758
+ "When a controlnet is passed, none of these parameters should be passed: size_ratio, ctrl_block_out_channels, time_embedding_mix, ctrl_optional_kwargs."
759
+ )
760
+
761
+ # # get params
762
+ params_for_unet = [
763
+ "sample_size",
764
+ "down_block_types",
765
+ "up_block_types",
766
+ "block_out_channels",
767
+ "norm_num_groups",
768
+ "cross_attention_dim",
769
+ "transformer_layers_per_block",
770
+ "addition_embed_type",
771
+ "addition_time_embed_dim",
772
+ "upcast_attention",
773
+ "use_linear_projection",
774
+ "time_cond_proj_dim",
775
+ "projection_class_embeddings_input_dim",
776
+ ]
777
+ params_for_unet = {k: v for k, v in unet.config.items() if k in params_for_unet}
778
+ # The naming seems a bit confusing and it is, see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why.
779
+ params_for_unet["num_attention_heads"] = unet.config.attention_head_dim
780
+
781
+ params_for_controlnet = [
782
+ "conditioning_channels",
783
+ "conditioning_embedding_out_channels",
784
+ "conditioning_channel_order",
785
+ "learn_time_embedding",
786
+ "block_out_channels",
787
+ "num_attention_heads",
788
+ "max_norm_num_groups",
789
+ ]
790
+ params_for_controlnet = {"ctrl_" + k: v for k, v in controlnet.config.items() if k in params_for_controlnet}
791
+ params_for_controlnet["time_embedding_mix"] = controlnet.config.time_embedding_mix
792
+
793
+ # # create model
794
+ model = cls.from_config({**params_for_unet, **params_for_controlnet})
795
+
796
+ # # load weights
797
+ # from unet
798
+ modules_from_unet = [
799
+ "time_embedding",
800
+ "conv_in",
801
+ "conv_norm_out",
802
+ "conv_out",
803
+ ]
804
+ for m in modules_from_unet:
805
+ getattr(model, "base_" + m).load_state_dict(getattr(unet, m).state_dict())
806
+
807
+ optional_modules_from_unet = [
808
+ "add_time_proj",
809
+ "add_embedding",
810
+ ]
811
+ for m in optional_modules_from_unet:
812
+ if hasattr(unet, m) and getattr(unet, m) is not None:
813
+ getattr(model, "base_" + m).load_state_dict(getattr(unet, m).state_dict())
814
+
815
+ # from controlnet
816
+ model.controlnet_cond_embedding.load_state_dict(controlnet.controlnet_cond_embedding.state_dict())
817
+ model.ctrl_conv_in.load_state_dict(controlnet.conv_in.state_dict())
818
+ if controlnet.time_embedding is not None:
819
+ model.ctrl_time_embedding.load_state_dict(controlnet.time_embedding.state_dict())
820
+ model.control_to_base_for_conv_in.load_state_dict(controlnet.control_to_base_for_conv_in.state_dict())
821
+
822
+ # from both
823
+ model.down_blocks = nn.ModuleList(
824
+ ControlNetXSCrossAttnDownBlock2D.from_modules(b, c)
825
+ for b, c in zip(unet.down_blocks, controlnet.down_blocks)
826
+ )
827
+ model.mid_block = ControlNetXSCrossAttnMidBlock2D.from_modules(unet.mid_block, controlnet.mid_block)
828
+ model.up_blocks = nn.ModuleList(
829
+ ControlNetXSCrossAttnUpBlock2D.from_modules(b, c)
830
+ for b, c in zip(unet.up_blocks, controlnet.up_connections)
831
+ )
832
+
833
+ # ensure that the UNetControlNetXSModel is the same dtype as the UNet2DConditionModel
834
+ model.to(unet.dtype)
835
+
836
+ return model
837
+
838
+ def freeze_unet_params(self) -> None:
839
+ """Freeze the weights of the parts belonging to the base UNet2DConditionModel, and leave everything else unfrozen for fine
840
+ tuning."""
841
+ # Freeze everything
842
+ for param in self.parameters():
843
+ param.requires_grad = True
844
+
845
+ # Unfreeze ControlNetXSAdapter
846
+ base_parts = [
847
+ "base_time_proj",
848
+ "base_time_embedding",
849
+ "base_add_time_proj",
850
+ "base_add_embedding",
851
+ "base_conv_in",
852
+ "base_conv_norm_out",
853
+ "base_conv_act",
854
+ "base_conv_out",
855
+ ]
856
+ base_parts = [getattr(self, part) for part in base_parts if getattr(self, part) is not None]
857
+ for part in base_parts:
858
+ for param in part.parameters():
859
+ param.requires_grad = False
860
+
861
+ for d in self.down_blocks:
862
+ d.freeze_base_params()
863
+ self.mid_block.freeze_base_params()
864
+ for u in self.up_blocks:
865
+ u.freeze_base_params()
866
+
867
+ def _set_gradient_checkpointing(self, module, value=False):
868
+ if hasattr(module, "gradient_checkpointing"):
869
+ module.gradient_checkpointing = value
870
+
871
+ @property
872
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
873
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
874
+ r"""
875
+ Returns:
876
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
877
+ indexed by its weight name.
878
+ """
879
+ # set recursively
880
+ processors = {}
881
+
882
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
883
+ if hasattr(module, "get_processor"):
884
+ processors[f"{name}.processor"] = module.get_processor()
885
+
886
+ for sub_name, child in module.named_children():
887
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
888
+
889
+ return processors
890
+
891
+ for name, module in self.named_children():
892
+ fn_recursive_add_processors(name, module, processors)
893
+
894
+ return processors
895
+
896
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
897
+ def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
898
+ r"""
899
+ Sets the attention processor to use to compute attention.
900
+
901
+ Parameters:
902
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
903
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
904
+ for **all** `Attention` layers.
905
+
906
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
907
+ processor. This is strongly recommended when setting trainable attention processors.
908
+
909
+ """
910
+ count = len(self.attn_processors.keys())
911
+
912
+ if isinstance(processor, dict) and len(processor) != count:
913
+ raise ValueError(
914
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
915
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
916
+ )
917
+
918
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
919
+ if hasattr(module, "set_processor"):
920
+ if not isinstance(processor, dict):
921
+ module.set_processor(processor)
922
+ else:
923
+ module.set_processor(processor.pop(f"{name}.processor"))
924
+
925
+ for sub_name, child in module.named_children():
926
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
927
+
928
+ for name, module in self.named_children():
929
+ fn_recursive_attn_processor(name, module, processor)
930
+
931
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
932
+ def set_default_attn_processor(self):
933
+ """
934
+ Disables custom attention processors and sets the default attention implementation.
935
+ """
936
+ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
937
+ processor = AttnAddedKVProcessor()
938
+ elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
939
+ processor = AttnProcessor()
940
+ else:
941
+ raise ValueError(
942
+ f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
943
+ )
944
+
945
+ self.set_attn_processor(processor)
946
+
947
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.enable_freeu
948
+ def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
949
+ r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
950
+
951
+ The suffixes after the scaling factors represent the stage blocks where they are being applied.
952
+
953
+ Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
954
+ are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
955
+
956
+ Args:
957
+ s1 (`float`):
958
+ Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
959
+ mitigate the "oversmoothing effect" in the enhanced denoising process.
960
+ s2 (`float`):
961
+ Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
962
+ mitigate the "oversmoothing effect" in the enhanced denoising process.
963
+ b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
964
+ b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
965
+ """
966
+ for i, upsample_block in enumerate(self.up_blocks):
967
+ setattr(upsample_block, "s1", s1)
968
+ setattr(upsample_block, "s2", s2)
969
+ setattr(upsample_block, "b1", b1)
970
+ setattr(upsample_block, "b2", b2)
971
+
972
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.disable_freeu
973
+ def disable_freeu(self):
974
+ """Disables the FreeU mechanism."""
975
+ freeu_keys = {"s1", "s2", "b1", "b2"}
976
+ for i, upsample_block in enumerate(self.up_blocks):
977
+ for k in freeu_keys:
978
+ if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
979
+ setattr(upsample_block, k, None)
980
+
981
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
982
+ def fuse_qkv_projections(self):
983
+ """
984
+ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
985
+ are fused. For cross-attention modules, key and value projection matrices are fused.
986
+
987
+ <Tip warning={true}>
988
+
989
+ This API is 🧪 experimental.
990
+
991
+ </Tip>
992
+ """
993
+ self.original_attn_processors = None
994
+
995
+ for _, attn_processor in self.attn_processors.items():
996
+ if "Added" in str(attn_processor.__class__.__name__):
997
+ raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
998
+
999
+ self.original_attn_processors = self.attn_processors
1000
+
1001
+ for module in self.modules():
1002
+ if isinstance(module, Attention):
1003
+ module.fuse_projections(fuse=True)
1004
+
1005
+ self.set_attn_processor(FusedAttnProcessor2_0())
1006
+
1007
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
1008
+ def unfuse_qkv_projections(self):
1009
+ """Disables the fused QKV projection if enabled.
1010
+
1011
+ <Tip warning={true}>
1012
+
1013
+ This API is 🧪 experimental.
1014
+
1015
+ </Tip>
1016
+
1017
+ """
1018
+ if self.original_attn_processors is not None:
1019
+ self.set_attn_processor(self.original_attn_processors)
1020
+
1021
+ def forward(
1022
+ self,
1023
+ sample: Tensor,
1024
+ timestep: Union[torch.Tensor, float, int],
1025
+ encoder_hidden_states: torch.Tensor,
1026
+ controlnet_cond: Optional[torch.Tensor] = None,
1027
+ conditioning_scale: Optional[float] = 1.0,
1028
+ class_labels: Optional[torch.Tensor] = None,
1029
+ timestep_cond: Optional[torch.Tensor] = None,
1030
+ attention_mask: Optional[torch.Tensor] = None,
1031
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
1032
+ added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
1033
+ return_dict: bool = True,
1034
+ apply_control: bool = True,
1035
+ ) -> Union[ControlNetXSOutput, Tuple]:
1036
+ """
1037
+ The [`ControlNetXSModel`] forward method.
1038
+
1039
+ Args:
1040
+ sample (`Tensor`):
1041
+ The noisy input tensor.
1042
+ timestep (`Union[torch.Tensor, float, int]`):
1043
+ The number of timesteps to denoise an input.
1044
+ encoder_hidden_states (`torch.Tensor`):
1045
+ The encoder hidden states.
1046
+ controlnet_cond (`Tensor`):
1047
+ The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
1048
+ conditioning_scale (`float`, defaults to `1.0`):
1049
+ How much the control model affects the base model outputs.
1050
+ class_labels (`torch.Tensor`, *optional*, defaults to `None`):
1051
+ Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
1052
+ timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
1053
+ Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
1054
+ timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
1055
+ embeddings.
1056
+ attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
1057
+ An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
1058
+ is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
1059
+ negative values to the attention scores corresponding to "discard" tokens.
1060
+ cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
1061
+ A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
1062
+ added_cond_kwargs (`dict`):
1063
+ Additional conditions for the Stable Diffusion XL UNet.
1064
+ return_dict (`bool`, defaults to `True`):
1065
+ Whether or not to return a [`~models.controlnets.controlnet.ControlNetOutput`] instead of a plain
1066
+ tuple.
1067
+ apply_control (`bool`, defaults to `True`):
1068
+ If `False`, the input is run only through the base model.
1069
+
1070
+ Returns:
1071
+ [`~models.controlnetxs.ControlNetXSOutput`] **or** `tuple`:
1072
+ If `return_dict` is `True`, a [`~models.controlnetxs.ControlNetXSOutput`] is returned, otherwise a
1073
+ tuple is returned where the first element is the sample tensor.
1074
+ """
1075
+
1076
+ # check channel order
1077
+ if self.config.ctrl_conditioning_channel_order == "bgr":
1078
+ controlnet_cond = torch.flip(controlnet_cond, dims=[1])
1079
+
1080
+ # prepare attention_mask
1081
+ if attention_mask is not None:
1082
+ attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
1083
+ attention_mask = attention_mask.unsqueeze(1)
1084
+
1085
+ # 1. time
1086
+ timesteps = timestep
1087
+ if not torch.is_tensor(timesteps):
1088
+ # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
1089
+ # This would be a good case for the `match` statement (Python 3.10+)
1090
+ is_mps = sample.device.type == "mps"
1091
+ if isinstance(timestep, float):
1092
+ dtype = torch.float32 if is_mps else torch.float64
1093
+ else:
1094
+ dtype = torch.int32 if is_mps else torch.int64
1095
+ timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
1096
+ elif len(timesteps.shape) == 0:
1097
+ timesteps = timesteps[None].to(sample.device)
1098
+
1099
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
1100
+ timesteps = timesteps.expand(sample.shape[0])
1101
+
1102
+ t_emb = self.base_time_proj(timesteps)
1103
+
1104
+ # timesteps does not contain any weights and will always return f32 tensors
1105
+ # but time_embedding might actually be running in fp16. so we need to cast here.
1106
+ # there might be better ways to encapsulate this.
1107
+ t_emb = t_emb.to(dtype=sample.dtype)
1108
+
1109
+ if self.config.ctrl_learn_time_embedding and apply_control:
1110
+ ctrl_temb = self.ctrl_time_embedding(t_emb, timestep_cond)
1111
+ base_temb = self.base_time_embedding(t_emb, timestep_cond)
1112
+ interpolation_param = self.config.time_embedding_mix**0.3
1113
+
1114
+ temb = ctrl_temb * interpolation_param + base_temb * (1 - interpolation_param)
1115
+ else:
1116
+ temb = self.base_time_embedding(t_emb)
1117
+
1118
+ # added time & text embeddings
1119
+ aug_emb = None
1120
+
1121
+ if self.config.addition_embed_type is None:
1122
+ pass
1123
+ elif self.config.addition_embed_type == "text_time":
1124
+ # SDXL - style
1125
+ if "text_embeds" not in added_cond_kwargs:
1126
+ raise ValueError(
1127
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
1128
+ )
1129
+ text_embeds = added_cond_kwargs.get("text_embeds")
1130
+ if "time_ids" not in added_cond_kwargs:
1131
+ raise ValueError(
1132
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
1133
+ )
1134
+ time_ids = added_cond_kwargs.get("time_ids")
1135
+ time_embeds = self.base_add_time_proj(time_ids.flatten())
1136
+ time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
1137
+ add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
1138
+ add_embeds = add_embeds.to(temb.dtype)
1139
+ aug_emb = self.base_add_embedding(add_embeds)
1140
+ else:
1141
+ raise ValueError(
1142
+ f"ControlNet-XS currently only supports StableDiffusion and StableDiffusion-XL, so addition_embed_type = {self.config.addition_embed_type} is currently not supported."
1143
+ )
1144
+
1145
+ temb = temb + aug_emb if aug_emb is not None else temb
1146
+
1147
+ # text embeddings
1148
+ cemb = encoder_hidden_states
1149
+
1150
+ # Preparation
1151
+ h_ctrl = h_base = sample
1152
+ hs_base, hs_ctrl = [], []
1153
+
1154
+ # Cross Control
1155
+ guided_hint = self.controlnet_cond_embedding(controlnet_cond)
1156
+
1157
+ # 1 - conv in & down
1158
+
1159
+ h_base = self.base_conv_in(h_base)
1160
+ h_ctrl = self.ctrl_conv_in(h_ctrl)
1161
+ if guided_hint is not None:
1162
+ h_ctrl += guided_hint
1163
+ if apply_control:
1164
+ h_base = h_base + self.control_to_base_for_conv_in(h_ctrl) * conditioning_scale # add ctrl -> base
1165
+
1166
+ hs_base.append(h_base)
1167
+ hs_ctrl.append(h_ctrl)
1168
+
1169
+ for down in self.down_blocks:
1170
+ h_base, h_ctrl, residual_hb, residual_hc = down(
1171
+ hidden_states_base=h_base,
1172
+ hidden_states_ctrl=h_ctrl,
1173
+ temb=temb,
1174
+ encoder_hidden_states=cemb,
1175
+ conditioning_scale=conditioning_scale,
1176
+ cross_attention_kwargs=cross_attention_kwargs,
1177
+ attention_mask=attention_mask,
1178
+ apply_control=apply_control,
1179
+ )
1180
+ hs_base.extend(residual_hb)
1181
+ hs_ctrl.extend(residual_hc)
1182
+
1183
+ # 2 - mid
1184
+ h_base, h_ctrl = self.mid_block(
1185
+ hidden_states_base=h_base,
1186
+ hidden_states_ctrl=h_ctrl,
1187
+ temb=temb,
1188
+ encoder_hidden_states=cemb,
1189
+ conditioning_scale=conditioning_scale,
1190
+ cross_attention_kwargs=cross_attention_kwargs,
1191
+ attention_mask=attention_mask,
1192
+ apply_control=apply_control,
1193
+ )
1194
+
1195
+ # 3 - up
1196
+ for up in self.up_blocks:
1197
+ n_resnets = len(up.resnets)
1198
+ skips_hb = hs_base[-n_resnets:]
1199
+ skips_hc = hs_ctrl[-n_resnets:]
1200
+ hs_base = hs_base[:-n_resnets]
1201
+ hs_ctrl = hs_ctrl[:-n_resnets]
1202
+ h_base = up(
1203
+ hidden_states=h_base,
1204
+ res_hidden_states_tuple_base=skips_hb,
1205
+ res_hidden_states_tuple_ctrl=skips_hc,
1206
+ temb=temb,
1207
+ encoder_hidden_states=cemb,
1208
+ conditioning_scale=conditioning_scale,
1209
+ cross_attention_kwargs=cross_attention_kwargs,
1210
+ attention_mask=attention_mask,
1211
+ apply_control=apply_control,
1212
+ )
1213
+
1214
+ # 4 - conv out
1215
+ h_base = self.base_conv_norm_out(h_base)
1216
+ h_base = self.base_conv_act(h_base)
1217
+ h_base = self.base_conv_out(h_base)
1218
+
1219
+ if not return_dict:
1220
+ return (h_base,)
1221
+
1222
+ return ControlNetXSOutput(sample=h_base)
1223
+
1224
+
1225
+ class ControlNetXSCrossAttnDownBlock2D(nn.Module):
1226
+ def __init__(
1227
+ self,
1228
+ base_in_channels: int,
1229
+ base_out_channels: int,
1230
+ ctrl_in_channels: int,
1231
+ ctrl_out_channels: int,
1232
+ temb_channels: int,
1233
+ norm_num_groups: int = 32,
1234
+ ctrl_max_norm_num_groups: int = 32,
1235
+ has_crossattn=True,
1236
+ transformer_layers_per_block: Optional[Union[int, Tuple[int]]] = 1,
1237
+ base_num_attention_heads: Optional[int] = 1,
1238
+ ctrl_num_attention_heads: Optional[int] = 1,
1239
+ cross_attention_dim: Optional[int] = 1024,
1240
+ add_downsample: bool = True,
1241
+ upcast_attention: Optional[bool] = False,
1242
+ use_linear_projection: Optional[bool] = True,
1243
+ ):
1244
+ super().__init__()
1245
+ base_resnets = []
1246
+ base_attentions = []
1247
+ ctrl_resnets = []
1248
+ ctrl_attentions = []
1249
+ ctrl_to_base = []
1250
+ base_to_ctrl = []
1251
+
1252
+ num_layers = 2 # only support sd + sdxl
1253
+
1254
+ if isinstance(transformer_layers_per_block, int):
1255
+ transformer_layers_per_block = [transformer_layers_per_block] * num_layers
1256
+
1257
+ for i in range(num_layers):
1258
+ base_in_channels = base_in_channels if i == 0 else base_out_channels
1259
+ ctrl_in_channels = ctrl_in_channels if i == 0 else ctrl_out_channels
1260
+
1261
+ # Before the resnet/attention application, information is concatted from base to control.
1262
+ # Concat doesn't require change in number of channels
1263
+ base_to_ctrl.append(make_zero_conv(base_in_channels, base_in_channels))
1264
+
1265
+ base_resnets.append(
1266
+ ResnetBlock2D(
1267
+ in_channels=base_in_channels,
1268
+ out_channels=base_out_channels,
1269
+ temb_channels=temb_channels,
1270
+ groups=norm_num_groups,
1271
+ )
1272
+ )
1273
+ ctrl_resnets.append(
1274
+ ResnetBlock2D(
1275
+ in_channels=ctrl_in_channels + base_in_channels, # information from base is concatted to ctrl
1276
+ out_channels=ctrl_out_channels,
1277
+ temb_channels=temb_channels,
1278
+ groups=find_largest_factor(
1279
+ ctrl_in_channels + base_in_channels, max_factor=ctrl_max_norm_num_groups
1280
+ ),
1281
+ groups_out=find_largest_factor(ctrl_out_channels, max_factor=ctrl_max_norm_num_groups),
1282
+ eps=1e-5,
1283
+ )
1284
+ )
1285
+
1286
+ if has_crossattn:
1287
+ base_attentions.append(
1288
+ Transformer2DModel(
1289
+ base_num_attention_heads,
1290
+ base_out_channels // base_num_attention_heads,
1291
+ in_channels=base_out_channels,
1292
+ num_layers=transformer_layers_per_block[i],
1293
+ cross_attention_dim=cross_attention_dim,
1294
+ use_linear_projection=use_linear_projection,
1295
+ upcast_attention=upcast_attention,
1296
+ norm_num_groups=norm_num_groups,
1297
+ )
1298
+ )
1299
+ ctrl_attentions.append(
1300
+ Transformer2DModel(
1301
+ ctrl_num_attention_heads,
1302
+ ctrl_out_channels // ctrl_num_attention_heads,
1303
+ in_channels=ctrl_out_channels,
1304
+ num_layers=transformer_layers_per_block[i],
1305
+ cross_attention_dim=cross_attention_dim,
1306
+ use_linear_projection=use_linear_projection,
1307
+ upcast_attention=upcast_attention,
1308
+ norm_num_groups=find_largest_factor(ctrl_out_channels, max_factor=ctrl_max_norm_num_groups),
1309
+ )
1310
+ )
1311
+
1312
+ # After the resnet/attention application, information is added from control to base
1313
+ # Addition requires change in number of channels
1314
+ ctrl_to_base.append(make_zero_conv(ctrl_out_channels, base_out_channels))
1315
+
1316
+ if add_downsample:
1317
+ # Before the downsampler application, information is concatted from base to control
1318
+ # Concat doesn't require change in number of channels
1319
+ base_to_ctrl.append(make_zero_conv(base_out_channels, base_out_channels))
1320
+
1321
+ self.base_downsamplers = Downsample2D(
1322
+ base_out_channels, use_conv=True, out_channels=base_out_channels, name="op"
1323
+ )
1324
+ self.ctrl_downsamplers = Downsample2D(
1325
+ ctrl_out_channels + base_out_channels, use_conv=True, out_channels=ctrl_out_channels, name="op"
1326
+ )
1327
+
1328
+ # After the downsampler application, information is added from control to base
1329
+ # Addition requires change in number of channels
1330
+ ctrl_to_base.append(make_zero_conv(ctrl_out_channels, base_out_channels))
1331
+ else:
1332
+ self.base_downsamplers = None
1333
+ self.ctrl_downsamplers = None
1334
+
1335
+ self.base_resnets = nn.ModuleList(base_resnets)
1336
+ self.ctrl_resnets = nn.ModuleList(ctrl_resnets)
1337
+ self.base_attentions = nn.ModuleList(base_attentions) if has_crossattn else [None] * num_layers
1338
+ self.ctrl_attentions = nn.ModuleList(ctrl_attentions) if has_crossattn else [None] * num_layers
1339
+ self.base_to_ctrl = nn.ModuleList(base_to_ctrl)
1340
+ self.ctrl_to_base = nn.ModuleList(ctrl_to_base)
1341
+
1342
+ self.gradient_checkpointing = False
1343
+
1344
+ @classmethod
1345
+ def from_modules(cls, base_downblock: CrossAttnDownBlock2D, ctrl_downblock: DownBlockControlNetXSAdapter):
1346
+ # get params
1347
+ def get_first_cross_attention(block):
1348
+ return block.attentions[0].transformer_blocks[0].attn2
1349
+
1350
+ base_in_channels = base_downblock.resnets[0].in_channels
1351
+ base_out_channels = base_downblock.resnets[0].out_channels
1352
+ ctrl_in_channels = (
1353
+ ctrl_downblock.resnets[0].in_channels - base_in_channels
1354
+ ) # base channels are concatted to ctrl channels in init
1355
+ ctrl_out_channels = ctrl_downblock.resnets[0].out_channels
1356
+ temb_channels = base_downblock.resnets[0].time_emb_proj.in_features
1357
+ num_groups = base_downblock.resnets[0].norm1.num_groups
1358
+ ctrl_num_groups = ctrl_downblock.resnets[0].norm1.num_groups
1359
+ if hasattr(base_downblock, "attentions"):
1360
+ has_crossattn = True
1361
+ transformer_layers_per_block = len(base_downblock.attentions[0].transformer_blocks)
1362
+ base_num_attention_heads = get_first_cross_attention(base_downblock).heads
1363
+ ctrl_num_attention_heads = get_first_cross_attention(ctrl_downblock).heads
1364
+ cross_attention_dim = get_first_cross_attention(base_downblock).cross_attention_dim
1365
+ upcast_attention = get_first_cross_attention(base_downblock).upcast_attention
1366
+ use_linear_projection = base_downblock.attentions[0].use_linear_projection
1367
+ else:
1368
+ has_crossattn = False
1369
+ transformer_layers_per_block = None
1370
+ base_num_attention_heads = None
1371
+ ctrl_num_attention_heads = None
1372
+ cross_attention_dim = None
1373
+ upcast_attention = None
1374
+ use_linear_projection = None
1375
+ add_downsample = base_downblock.downsamplers is not None
1376
+
1377
+ # create model
1378
+ model = cls(
1379
+ base_in_channels=base_in_channels,
1380
+ base_out_channels=base_out_channels,
1381
+ ctrl_in_channels=ctrl_in_channels,
1382
+ ctrl_out_channels=ctrl_out_channels,
1383
+ temb_channels=temb_channels,
1384
+ norm_num_groups=num_groups,
1385
+ ctrl_max_norm_num_groups=ctrl_num_groups,
1386
+ has_crossattn=has_crossattn,
1387
+ transformer_layers_per_block=transformer_layers_per_block,
1388
+ base_num_attention_heads=base_num_attention_heads,
1389
+ ctrl_num_attention_heads=ctrl_num_attention_heads,
1390
+ cross_attention_dim=cross_attention_dim,
1391
+ add_downsample=add_downsample,
1392
+ upcast_attention=upcast_attention,
1393
+ use_linear_projection=use_linear_projection,
1394
+ )
1395
+
1396
+ # # load weights
1397
+ model.base_resnets.load_state_dict(base_downblock.resnets.state_dict())
1398
+ model.ctrl_resnets.load_state_dict(ctrl_downblock.resnets.state_dict())
1399
+ if has_crossattn:
1400
+ model.base_attentions.load_state_dict(base_downblock.attentions.state_dict())
1401
+ model.ctrl_attentions.load_state_dict(ctrl_downblock.attentions.state_dict())
1402
+ if add_downsample:
1403
+ model.base_downsamplers.load_state_dict(base_downblock.downsamplers[0].state_dict())
1404
+ model.ctrl_downsamplers.load_state_dict(ctrl_downblock.downsamplers.state_dict())
1405
+ model.base_to_ctrl.load_state_dict(ctrl_downblock.base_to_ctrl.state_dict())
1406
+ model.ctrl_to_base.load_state_dict(ctrl_downblock.ctrl_to_base.state_dict())
1407
+
1408
+ return model
1409
+
1410
+ def freeze_base_params(self) -> None:
1411
+ """Freeze the weights of the parts belonging to the base UNet2DConditionModel, and leave everything else unfrozen for fine
1412
+ tuning."""
1413
+ # Unfreeze everything
1414
+ for param in self.parameters():
1415
+ param.requires_grad = True
1416
+
1417
+ # Freeze base part
1418
+ base_parts = [self.base_resnets]
1419
+ if isinstance(self.base_attentions, nn.ModuleList): # attentions can be a list of Nones
1420
+ base_parts.append(self.base_attentions)
1421
+ if self.base_downsamplers is not None:
1422
+ base_parts.append(self.base_downsamplers)
1423
+ for part in base_parts:
1424
+ for param in part.parameters():
1425
+ param.requires_grad = False
1426
+
1427
+ def forward(
1428
+ self,
1429
+ hidden_states_base: Tensor,
1430
+ temb: Tensor,
1431
+ encoder_hidden_states: Optional[Tensor] = None,
1432
+ hidden_states_ctrl: Optional[Tensor] = None,
1433
+ conditioning_scale: Optional[float] = 1.0,
1434
+ attention_mask: Optional[Tensor] = None,
1435
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
1436
+ encoder_attention_mask: Optional[Tensor] = None,
1437
+ apply_control: bool = True,
1438
+ ) -> Tuple[Tensor, Tensor, Tuple[Tensor, ...], Tuple[Tensor, ...]]:
1439
+ if cross_attention_kwargs is not None:
1440
+ if cross_attention_kwargs.get("scale", None) is not None:
1441
+ logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
1442
+
1443
+ h_base = hidden_states_base
1444
+ h_ctrl = hidden_states_ctrl
1445
+
1446
+ base_output_states = ()
1447
+ ctrl_output_states = ()
1448
+
1449
+ base_blocks = list(zip(self.base_resnets, self.base_attentions))
1450
+ ctrl_blocks = list(zip(self.ctrl_resnets, self.ctrl_attentions))
1451
+
1452
+ def create_custom_forward(module, return_dict=None):
1453
+ def custom_forward(*inputs):
1454
+ if return_dict is not None:
1455
+ return module(*inputs, return_dict=return_dict)
1456
+ else:
1457
+ return module(*inputs)
1458
+
1459
+ return custom_forward
1460
+
1461
+ for (b_res, b_attn), (c_res, c_attn), b2c, c2b in zip(
1462
+ base_blocks, ctrl_blocks, self.base_to_ctrl, self.ctrl_to_base
1463
+ ):
1464
+ # concat base -> ctrl
1465
+ if apply_control:
1466
+ h_ctrl = torch.cat([h_ctrl, b2c(h_base)], dim=1)
1467
+
1468
+ # apply base subblock
1469
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
1470
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
1471
+ h_base = torch.utils.checkpoint.checkpoint(
1472
+ create_custom_forward(b_res),
1473
+ h_base,
1474
+ temb,
1475
+ **ckpt_kwargs,
1476
+ )
1477
+ else:
1478
+ h_base = b_res(h_base, temb)
1479
+
1480
+ if b_attn is not None:
1481
+ h_base = b_attn(
1482
+ h_base,
1483
+ encoder_hidden_states=encoder_hidden_states,
1484
+ cross_attention_kwargs=cross_attention_kwargs,
1485
+ attention_mask=attention_mask,
1486
+ encoder_attention_mask=encoder_attention_mask,
1487
+ return_dict=False,
1488
+ )[0]
1489
+
1490
+ # apply ctrl subblock
1491
+ if apply_control:
1492
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
1493
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
1494
+ h_ctrl = torch.utils.checkpoint.checkpoint(
1495
+ create_custom_forward(c_res),
1496
+ h_ctrl,
1497
+ temb,
1498
+ **ckpt_kwargs,
1499
+ )
1500
+ else:
1501
+ h_ctrl = c_res(h_ctrl, temb)
1502
+ if c_attn is not None:
1503
+ h_ctrl = c_attn(
1504
+ h_ctrl,
1505
+ encoder_hidden_states=encoder_hidden_states,
1506
+ cross_attention_kwargs=cross_attention_kwargs,
1507
+ attention_mask=attention_mask,
1508
+ encoder_attention_mask=encoder_attention_mask,
1509
+ return_dict=False,
1510
+ )[0]
1511
+
1512
+ # add ctrl -> base
1513
+ if apply_control:
1514
+ h_base = h_base + c2b(h_ctrl) * conditioning_scale
1515
+
1516
+ base_output_states = base_output_states + (h_base,)
1517
+ ctrl_output_states = ctrl_output_states + (h_ctrl,)
1518
+
1519
+ if self.base_downsamplers is not None: # if we have a base_downsampler, then also a ctrl_downsampler
1520
+ b2c = self.base_to_ctrl[-1]
1521
+ c2b = self.ctrl_to_base[-1]
1522
+
1523
+ # concat base -> ctrl
1524
+ if apply_control:
1525
+ h_ctrl = torch.cat([h_ctrl, b2c(h_base)], dim=1)
1526
+ # apply base subblock
1527
+ h_base = self.base_downsamplers(h_base)
1528
+ # apply ctrl subblock
1529
+ if apply_control:
1530
+ h_ctrl = self.ctrl_downsamplers(h_ctrl)
1531
+ # add ctrl -> base
1532
+ if apply_control:
1533
+ h_base = h_base + c2b(h_ctrl) * conditioning_scale
1534
+
1535
+ base_output_states = base_output_states + (h_base,)
1536
+ ctrl_output_states = ctrl_output_states + (h_ctrl,)
1537
+
1538
+ return h_base, h_ctrl, base_output_states, ctrl_output_states
1539
+
1540
+
1541
+ class ControlNetXSCrossAttnMidBlock2D(nn.Module):
1542
+ def __init__(
1543
+ self,
1544
+ base_channels: int,
1545
+ ctrl_channels: int,
1546
+ temb_channels: Optional[int] = None,
1547
+ norm_num_groups: int = 32,
1548
+ ctrl_max_norm_num_groups: int = 32,
1549
+ transformer_layers_per_block: int = 1,
1550
+ base_num_attention_heads: Optional[int] = 1,
1551
+ ctrl_num_attention_heads: Optional[int] = 1,
1552
+ cross_attention_dim: Optional[int] = 1024,
1553
+ upcast_attention: bool = False,
1554
+ use_linear_projection: Optional[bool] = True,
1555
+ ):
1556
+ super().__init__()
1557
+
1558
+ # Before the midblock application, information is concatted from base to control.
1559
+ # Concat doesn't require change in number of channels
1560
+ self.base_to_ctrl = make_zero_conv(base_channels, base_channels)
1561
+
1562
+ self.base_midblock = UNetMidBlock2DCrossAttn(
1563
+ transformer_layers_per_block=transformer_layers_per_block,
1564
+ in_channels=base_channels,
1565
+ temb_channels=temb_channels,
1566
+ resnet_groups=norm_num_groups,
1567
+ cross_attention_dim=cross_attention_dim,
1568
+ num_attention_heads=base_num_attention_heads,
1569
+ use_linear_projection=use_linear_projection,
1570
+ upcast_attention=upcast_attention,
1571
+ )
1572
+
1573
+ self.ctrl_midblock = UNetMidBlock2DCrossAttn(
1574
+ transformer_layers_per_block=transformer_layers_per_block,
1575
+ in_channels=ctrl_channels + base_channels,
1576
+ out_channels=ctrl_channels,
1577
+ temb_channels=temb_channels,
1578
+ # number or norm groups must divide both in_channels and out_channels
1579
+ resnet_groups=find_largest_factor(
1580
+ gcd(ctrl_channels, ctrl_channels + base_channels), ctrl_max_norm_num_groups
1581
+ ),
1582
+ cross_attention_dim=cross_attention_dim,
1583
+ num_attention_heads=ctrl_num_attention_heads,
1584
+ use_linear_projection=use_linear_projection,
1585
+ upcast_attention=upcast_attention,
1586
+ )
1587
+
1588
+ # After the midblock application, information is added from control to base
1589
+ # Addition requires change in number of channels
1590
+ self.ctrl_to_base = make_zero_conv(ctrl_channels, base_channels)
1591
+
1592
+ self.gradient_checkpointing = False
1593
+
1594
+ @classmethod
1595
+ def from_modules(
1596
+ cls,
1597
+ base_midblock: UNetMidBlock2DCrossAttn,
1598
+ ctrl_midblock: MidBlockControlNetXSAdapter,
1599
+ ):
1600
+ base_to_ctrl = ctrl_midblock.base_to_ctrl
1601
+ ctrl_to_base = ctrl_midblock.ctrl_to_base
1602
+ ctrl_midblock = ctrl_midblock.midblock
1603
+
1604
+ # get params
1605
+ def get_first_cross_attention(midblock):
1606
+ return midblock.attentions[0].transformer_blocks[0].attn2
1607
+
1608
+ base_channels = ctrl_to_base.out_channels
1609
+ ctrl_channels = ctrl_to_base.in_channels
1610
+ transformer_layers_per_block = len(base_midblock.attentions[0].transformer_blocks)
1611
+ temb_channels = base_midblock.resnets[0].time_emb_proj.in_features
1612
+ num_groups = base_midblock.resnets[0].norm1.num_groups
1613
+ ctrl_num_groups = ctrl_midblock.resnets[0].norm1.num_groups
1614
+ base_num_attention_heads = get_first_cross_attention(base_midblock).heads
1615
+ ctrl_num_attention_heads = get_first_cross_attention(ctrl_midblock).heads
1616
+ cross_attention_dim = get_first_cross_attention(base_midblock).cross_attention_dim
1617
+ upcast_attention = get_first_cross_attention(base_midblock).upcast_attention
1618
+ use_linear_projection = base_midblock.attentions[0].use_linear_projection
1619
+
1620
+ # create model
1621
+ model = cls(
1622
+ base_channels=base_channels,
1623
+ ctrl_channels=ctrl_channels,
1624
+ temb_channels=temb_channels,
1625
+ norm_num_groups=num_groups,
1626
+ ctrl_max_norm_num_groups=ctrl_num_groups,
1627
+ transformer_layers_per_block=transformer_layers_per_block,
1628
+ base_num_attention_heads=base_num_attention_heads,
1629
+ ctrl_num_attention_heads=ctrl_num_attention_heads,
1630
+ cross_attention_dim=cross_attention_dim,
1631
+ upcast_attention=upcast_attention,
1632
+ use_linear_projection=use_linear_projection,
1633
+ )
1634
+
1635
+ # load weights
1636
+ model.base_to_ctrl.load_state_dict(base_to_ctrl.state_dict())
1637
+ model.base_midblock.load_state_dict(base_midblock.state_dict())
1638
+ model.ctrl_midblock.load_state_dict(ctrl_midblock.state_dict())
1639
+ model.ctrl_to_base.load_state_dict(ctrl_to_base.state_dict())
1640
+
1641
+ return model
1642
+
1643
+ def freeze_base_params(self) -> None:
1644
+ """Freeze the weights of the parts belonging to the base UNet2DConditionModel, and leave everything else unfrozen for fine
1645
+ tuning."""
1646
+ # Unfreeze everything
1647
+ for param in self.parameters():
1648
+ param.requires_grad = True
1649
+
1650
+ # Freeze base part
1651
+ for param in self.base_midblock.parameters():
1652
+ param.requires_grad = False
1653
+
1654
+ def forward(
1655
+ self,
1656
+ hidden_states_base: Tensor,
1657
+ temb: Tensor,
1658
+ encoder_hidden_states: Tensor,
1659
+ hidden_states_ctrl: Optional[Tensor] = None,
1660
+ conditioning_scale: Optional[float] = 1.0,
1661
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
1662
+ attention_mask: Optional[Tensor] = None,
1663
+ encoder_attention_mask: Optional[Tensor] = None,
1664
+ apply_control: bool = True,
1665
+ ) -> Tuple[Tensor, Tensor]:
1666
+ if cross_attention_kwargs is not None:
1667
+ if cross_attention_kwargs.get("scale", None) is not None:
1668
+ logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
1669
+
1670
+ h_base = hidden_states_base
1671
+ h_ctrl = hidden_states_ctrl
1672
+
1673
+ joint_args = {
1674
+ "temb": temb,
1675
+ "encoder_hidden_states": encoder_hidden_states,
1676
+ "attention_mask": attention_mask,
1677
+ "cross_attention_kwargs": cross_attention_kwargs,
1678
+ "encoder_attention_mask": encoder_attention_mask,
1679
+ }
1680
+
1681
+ if apply_control:
1682
+ h_ctrl = torch.cat([h_ctrl, self.base_to_ctrl(h_base)], dim=1) # concat base -> ctrl
1683
+ h_base = self.base_midblock(h_base, **joint_args) # apply base mid block
1684
+ if apply_control:
1685
+ h_ctrl = self.ctrl_midblock(h_ctrl, **joint_args) # apply ctrl mid block
1686
+ h_base = h_base + self.ctrl_to_base(h_ctrl) * conditioning_scale # add ctrl -> base
1687
+
1688
+ return h_base, h_ctrl
1689
+
1690
+
1691
+ class ControlNetXSCrossAttnUpBlock2D(nn.Module):
1692
+ def __init__(
1693
+ self,
1694
+ in_channels: int,
1695
+ out_channels: int,
1696
+ prev_output_channel: int,
1697
+ ctrl_skip_channels: List[int],
1698
+ temb_channels: int,
1699
+ norm_num_groups: int = 32,
1700
+ resolution_idx: Optional[int] = None,
1701
+ has_crossattn=True,
1702
+ transformer_layers_per_block: int = 1,
1703
+ num_attention_heads: int = 1,
1704
+ cross_attention_dim: int = 1024,
1705
+ add_upsample: bool = True,
1706
+ upcast_attention: bool = False,
1707
+ use_linear_projection: Optional[bool] = True,
1708
+ ):
1709
+ super().__init__()
1710
+ resnets = []
1711
+ attentions = []
1712
+ ctrl_to_base = []
1713
+
1714
+ num_layers = 3 # only support sd + sdxl
1715
+
1716
+ self.has_cross_attention = has_crossattn
1717
+ self.num_attention_heads = num_attention_heads
1718
+
1719
+ if isinstance(transformer_layers_per_block, int):
1720
+ transformer_layers_per_block = [transformer_layers_per_block] * num_layers
1721
+
1722
+ for i in range(num_layers):
1723
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
1724
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
1725
+
1726
+ ctrl_to_base.append(make_zero_conv(ctrl_skip_channels[i], resnet_in_channels))
1727
+
1728
+ resnets.append(
1729
+ ResnetBlock2D(
1730
+ in_channels=resnet_in_channels + res_skip_channels,
1731
+ out_channels=out_channels,
1732
+ temb_channels=temb_channels,
1733
+ groups=norm_num_groups,
1734
+ )
1735
+ )
1736
+
1737
+ if has_crossattn:
1738
+ attentions.append(
1739
+ Transformer2DModel(
1740
+ num_attention_heads,
1741
+ out_channels // num_attention_heads,
1742
+ in_channels=out_channels,
1743
+ num_layers=transformer_layers_per_block[i],
1744
+ cross_attention_dim=cross_attention_dim,
1745
+ use_linear_projection=use_linear_projection,
1746
+ upcast_attention=upcast_attention,
1747
+ norm_num_groups=norm_num_groups,
1748
+ )
1749
+ )
1750
+
1751
+ self.resnets = nn.ModuleList(resnets)
1752
+ self.attentions = nn.ModuleList(attentions) if has_crossattn else [None] * num_layers
1753
+ self.ctrl_to_base = nn.ModuleList(ctrl_to_base)
1754
+
1755
+ if add_upsample:
1756
+ self.upsamplers = Upsample2D(out_channels, use_conv=True, out_channels=out_channels)
1757
+ else:
1758
+ self.upsamplers = None
1759
+
1760
+ self.gradient_checkpointing = False
1761
+ self.resolution_idx = resolution_idx
1762
+
1763
+ @classmethod
1764
+ def from_modules(cls, base_upblock: CrossAttnUpBlock2D, ctrl_upblock: UpBlockControlNetXSAdapter):
1765
+ ctrl_to_base_skip_connections = ctrl_upblock.ctrl_to_base
1766
+
1767
+ # get params
1768
+ def get_first_cross_attention(block):
1769
+ return block.attentions[0].transformer_blocks[0].attn2
1770
+
1771
+ out_channels = base_upblock.resnets[0].out_channels
1772
+ in_channels = base_upblock.resnets[-1].in_channels - out_channels
1773
+ prev_output_channels = base_upblock.resnets[0].in_channels - out_channels
1774
+ ctrl_skip_channelss = [c.in_channels for c in ctrl_to_base_skip_connections]
1775
+ temb_channels = base_upblock.resnets[0].time_emb_proj.in_features
1776
+ num_groups = base_upblock.resnets[0].norm1.num_groups
1777
+ resolution_idx = base_upblock.resolution_idx
1778
+ if hasattr(base_upblock, "attentions"):
1779
+ has_crossattn = True
1780
+ transformer_layers_per_block = len(base_upblock.attentions[0].transformer_blocks)
1781
+ num_attention_heads = get_first_cross_attention(base_upblock).heads
1782
+ cross_attention_dim = get_first_cross_attention(base_upblock).cross_attention_dim
1783
+ upcast_attention = get_first_cross_attention(base_upblock).upcast_attention
1784
+ use_linear_projection = base_upblock.attentions[0].use_linear_projection
1785
+ else:
1786
+ has_crossattn = False
1787
+ transformer_layers_per_block = None
1788
+ num_attention_heads = None
1789
+ cross_attention_dim = None
1790
+ upcast_attention = None
1791
+ use_linear_projection = None
1792
+ add_upsample = base_upblock.upsamplers is not None
1793
+
1794
+ # create model
1795
+ model = cls(
1796
+ in_channels=in_channels,
1797
+ out_channels=out_channels,
1798
+ prev_output_channel=prev_output_channels,
1799
+ ctrl_skip_channels=ctrl_skip_channelss,
1800
+ temb_channels=temb_channels,
1801
+ norm_num_groups=num_groups,
1802
+ resolution_idx=resolution_idx,
1803
+ has_crossattn=has_crossattn,
1804
+ transformer_layers_per_block=transformer_layers_per_block,
1805
+ num_attention_heads=num_attention_heads,
1806
+ cross_attention_dim=cross_attention_dim,
1807
+ add_upsample=add_upsample,
1808
+ upcast_attention=upcast_attention,
1809
+ use_linear_projection=use_linear_projection,
1810
+ )
1811
+
1812
+ # load weights
1813
+ model.resnets.load_state_dict(base_upblock.resnets.state_dict())
1814
+ if has_crossattn:
1815
+ model.attentions.load_state_dict(base_upblock.attentions.state_dict())
1816
+ if add_upsample:
1817
+ model.upsamplers.load_state_dict(base_upblock.upsamplers[0].state_dict())
1818
+ model.ctrl_to_base.load_state_dict(ctrl_to_base_skip_connections.state_dict())
1819
+
1820
+ return model
1821
+
1822
+ def freeze_base_params(self) -> None:
1823
+ """Freeze the weights of the parts belonging to the base UNet2DConditionModel, and leave everything else unfrozen for fine
1824
+ tuning."""
1825
+ # Unfreeze everything
1826
+ for param in self.parameters():
1827
+ param.requires_grad = True
1828
+
1829
+ # Freeze base part
1830
+ base_parts = [self.resnets]
1831
+ if isinstance(self.attentions, nn.ModuleList): # attentions can be a list of Nones
1832
+ base_parts.append(self.attentions)
1833
+ if self.upsamplers is not None:
1834
+ base_parts.append(self.upsamplers)
1835
+ for part in base_parts:
1836
+ for param in part.parameters():
1837
+ param.requires_grad = False
1838
+
1839
+ def forward(
1840
+ self,
1841
+ hidden_states: Tensor,
1842
+ res_hidden_states_tuple_base: Tuple[Tensor, ...],
1843
+ res_hidden_states_tuple_ctrl: Tuple[Tensor, ...],
1844
+ temb: Tensor,
1845
+ encoder_hidden_states: Optional[Tensor] = None,
1846
+ conditioning_scale: Optional[float] = 1.0,
1847
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
1848
+ attention_mask: Optional[Tensor] = None,
1849
+ upsample_size: Optional[int] = None,
1850
+ encoder_attention_mask: Optional[Tensor] = None,
1851
+ apply_control: bool = True,
1852
+ ) -> Tensor:
1853
+ if cross_attention_kwargs is not None:
1854
+ if cross_attention_kwargs.get("scale", None) is not None:
1855
+ logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
1856
+
1857
+ is_freeu_enabled = (
1858
+ getattr(self, "s1", None)
1859
+ and getattr(self, "s2", None)
1860
+ and getattr(self, "b1", None)
1861
+ and getattr(self, "b2", None)
1862
+ )
1863
+
1864
+ def create_custom_forward(module, return_dict=None):
1865
+ def custom_forward(*inputs):
1866
+ if return_dict is not None:
1867
+ return module(*inputs, return_dict=return_dict)
1868
+ else:
1869
+ return module(*inputs)
1870
+
1871
+ return custom_forward
1872
+
1873
+ def maybe_apply_freeu_to_subblock(hidden_states, res_h_base):
1874
+ # FreeU: Only operate on the first two stages
1875
+ if is_freeu_enabled:
1876
+ return apply_freeu(
1877
+ self.resolution_idx,
1878
+ hidden_states,
1879
+ res_h_base,
1880
+ s1=self.s1,
1881
+ s2=self.s2,
1882
+ b1=self.b1,
1883
+ b2=self.b2,
1884
+ )
1885
+ else:
1886
+ return hidden_states, res_h_base
1887
+
1888
+ for resnet, attn, c2b, res_h_base, res_h_ctrl in zip(
1889
+ self.resnets,
1890
+ self.attentions,
1891
+ self.ctrl_to_base,
1892
+ reversed(res_hidden_states_tuple_base),
1893
+ reversed(res_hidden_states_tuple_ctrl),
1894
+ ):
1895
+ if apply_control:
1896
+ hidden_states += c2b(res_h_ctrl) * conditioning_scale
1897
+
1898
+ hidden_states, res_h_base = maybe_apply_freeu_to_subblock(hidden_states, res_h_base)
1899
+ hidden_states = torch.cat([hidden_states, res_h_base], dim=1)
1900
+
1901
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
1902
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
1903
+ hidden_states = torch.utils.checkpoint.checkpoint(
1904
+ create_custom_forward(resnet),
1905
+ hidden_states,
1906
+ temb,
1907
+ **ckpt_kwargs,
1908
+ )
1909
+ else:
1910
+ hidden_states = resnet(hidden_states, temb)
1911
+
1912
+ if attn is not None:
1913
+ hidden_states = attn(
1914
+ hidden_states,
1915
+ encoder_hidden_states=encoder_hidden_states,
1916
+ cross_attention_kwargs=cross_attention_kwargs,
1917
+ attention_mask=attention_mask,
1918
+ encoder_attention_mask=encoder_attention_mask,
1919
+ return_dict=False,
1920
+ )[0]
1921
+
1922
+ if self.upsamplers is not None:
1923
+ hidden_states = self.upsamplers(hidden_states, upsample_size)
1924
+
1925
+ return hidden_states
1926
+
1927
+
1928
+ def make_zero_conv(in_channels, out_channels=None):
1929
+ return zero_module(nn.Conv2d(in_channels, out_channels, 1, padding=0))
1930
+
1931
+
1932
+ def zero_module(module):
1933
+ for p in module.parameters():
1934
+ nn.init.zeros_(p)
1935
+ return module
1936
+
1937
+
1938
+ def find_largest_factor(number, max_factor):
1939
+ factor = max_factor
1940
+ if factor >= number:
1941
+ return number
1942
+ while factor != 0:
1943
+ residual = number % factor
1944
+ if residual == 0:
1945
+ return factor
1946
+ factor -= 1