diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -35,16 +35,16 @@ class DDIMSchedulerOutput(BaseOutput):
35
35
  Output class for the scheduler's `step` function output.
36
36
 
37
37
  Args:
38
- prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
38
+ prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
39
39
  Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
40
40
  denoising loop.
41
- pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
41
+ pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
42
42
  The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
43
43
  `pred_original_sample` can be used to preview progress or for guidance.
44
44
  """
45
45
 
46
- prev_sample: torch.FloatTensor
47
- pred_original_sample: Optional[torch.FloatTensor] = None
46
+ prev_sample: torch.Tensor
47
+ pred_original_sample: Optional[torch.Tensor] = None
48
48
 
49
49
 
50
50
  # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
@@ -82,7 +82,7 @@ def betas_for_alpha_bar(
82
82
  return math.exp(t * -12.0)
83
83
 
84
84
  else:
85
- raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
85
+ raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
86
86
 
87
87
  betas = []
88
88
  for i in range(num_diffusion_timesteps):
@@ -98,11 +98,11 @@ def rescale_zero_terminal_snr(betas):
98
98
 
99
99
 
100
100
  Args:
101
- betas (`torch.FloatTensor`):
101
+ betas (`torch.Tensor`):
102
102
  the betas that the scheduler is being initialized with.
103
103
 
104
104
  Returns:
105
- `torch.FloatTensor`: rescaled betas with zero terminal SNR
105
+ `torch.Tensor`: rescaled betas with zero terminal SNR
106
106
  """
107
107
  # Convert betas to alphas_bar_sqrt
108
108
  alphas = 1.0 - betas
@@ -211,7 +211,7 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin):
211
211
  # Glide cosine schedule
212
212
  self.betas = betas_for_alpha_bar(num_train_timesteps)
213
213
  else:
214
- raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
214
+ raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
215
215
 
216
216
  # Rescale for zero SNR
217
217
  if rescale_betas_zero_snr:
@@ -233,19 +233,19 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin):
233
233
  self.num_inference_steps = None
234
234
  self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
235
235
 
236
- def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
236
+ def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
237
237
  """
238
238
  Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
239
239
  current timestep.
240
240
 
241
241
  Args:
242
- sample (`torch.FloatTensor`):
242
+ sample (`torch.Tensor`):
243
243
  The input sample.
244
244
  timestep (`int`, *optional*):
245
245
  The current timestep in the diffusion chain.
246
246
 
247
247
  Returns:
248
- `torch.FloatTensor`:
248
+ `torch.Tensor`:
249
249
  A scaled input sample.
250
250
  """
251
251
  return sample
@@ -261,7 +261,7 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin):
261
261
  return variance
262
262
 
263
263
  # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
264
- def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
264
+ def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
265
265
  """
266
266
  "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
267
267
  prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
@@ -341,13 +341,13 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin):
341
341
 
342
342
  def step(
343
343
  self,
344
- model_output: torch.FloatTensor,
344
+ model_output: torch.Tensor,
345
345
  timestep: int,
346
- sample: torch.FloatTensor,
346
+ sample: torch.Tensor,
347
347
  eta: float = 0.0,
348
348
  use_clipped_model_output: bool = False,
349
349
  generator=None,
350
- variance_noise: Optional[torch.FloatTensor] = None,
350
+ variance_noise: Optional[torch.Tensor] = None,
351
351
  return_dict: bool = True,
352
352
  ) -> Union[DDIMSchedulerOutput, Tuple]:
353
353
  """
@@ -355,11 +355,11 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin):
355
355
  process from the learned model outputs (most often the predicted noise).
356
356
 
357
357
  Args:
358
- model_output (`torch.FloatTensor`):
358
+ model_output (`torch.Tensor`):
359
359
  The direct output from learned diffusion model.
360
360
  timestep (`float`):
361
361
  The current discrete timestep in the diffusion chain.
362
- sample (`torch.FloatTensor`):
362
+ sample (`torch.Tensor`):
363
363
  A current instance of a sample created by the diffusion process.
364
364
  eta (`float`):
365
365
  The weight of noise for added noise in diffusion step.
@@ -370,14 +370,14 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin):
370
370
  `use_clipped_model_output` has no effect.
371
371
  generator (`torch.Generator`, *optional*):
372
372
  A random number generator.
373
- variance_noise (`torch.FloatTensor`):
373
+ variance_noise (`torch.Tensor`):
374
374
  Alternative to generating noise with `generator` by directly providing the noise for the variance
375
375
  itself. Useful for methods such as [`CycleDiffusion`].
376
376
  return_dict (`bool`, *optional*, defaults to `True`):
377
377
  Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`.
378
378
 
379
379
  Returns:
380
- [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`:
380
+ [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`:
381
381
  If return_dict is `True`, [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] is returned, otherwise a
382
382
  tuple is returned where the first element is the sample tensor.
383
383
 
@@ -463,17 +463,20 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin):
463
463
  prev_sample = prev_sample + variance
464
464
 
465
465
  if not return_dict:
466
- return (prev_sample,)
466
+ return (
467
+ prev_sample,
468
+ pred_original_sample,
469
+ )
467
470
 
468
471
  return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
469
472
 
470
473
  # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
471
474
  def add_noise(
472
475
  self,
473
- original_samples: torch.FloatTensor,
474
- noise: torch.FloatTensor,
476
+ original_samples: torch.Tensor,
477
+ noise: torch.Tensor,
475
478
  timesteps: torch.IntTensor,
476
- ) -> torch.FloatTensor:
479
+ ) -> torch.Tensor:
477
480
  # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
478
481
  # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
479
482
  # for the subsequent add_noise calls
@@ -495,9 +498,7 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin):
495
498
  return noisy_samples
496
499
 
497
500
  # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
498
- def get_velocity(
499
- self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
500
- ) -> torch.FloatTensor:
501
+ def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
501
502
  # Make sure alphas_cumprod and timestep have same device and dtype as sample
502
503
  self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
503
504
  alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
@@ -0,0 +1,452 @@
1
+ # Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
2
+ # All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
17
+ # and https://github.com/hojonathanho/diffusion
18
+
19
+ import math
20
+ from dataclasses import dataclass
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import numpy as np
24
+ import torch
25
+
26
+ from ..configuration_utils import ConfigMixin, register_to_config
27
+ from ..utils import BaseOutput
28
+ from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
29
+
30
+
31
+ @dataclass
32
+ # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
33
+ class DDIMSchedulerOutput(BaseOutput):
34
+ """
35
+ Output class for the scheduler's `step` function output.
36
+
37
+ Args:
38
+ prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
39
+ Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
40
+ denoising loop.
41
+ pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
42
+ The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
43
+ `pred_original_sample` can be used to preview progress or for guidance.
44
+ """
45
+
46
+ prev_sample: torch.Tensor
47
+ pred_original_sample: Optional[torch.Tensor] = None
48
+
49
+
50
+ # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
51
+ def betas_for_alpha_bar(
52
+ num_diffusion_timesteps,
53
+ max_beta=0.999,
54
+ alpha_transform_type="cosine",
55
+ ):
56
+ """
57
+ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
58
+ (1-beta) over time from t = [0,1].
59
+
60
+ Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
61
+ to that part of the diffusion process.
62
+
63
+
64
+ Args:
65
+ num_diffusion_timesteps (`int`): the number of betas to produce.
66
+ max_beta (`float`): the maximum beta to use; use values lower than 1 to
67
+ prevent singularities.
68
+ alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
69
+ Choose from `cosine` or `exp`
70
+
71
+ Returns:
72
+ betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
73
+ """
74
+ if alpha_transform_type == "cosine":
75
+
76
+ def alpha_bar_fn(t):
77
+ return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
78
+
79
+ elif alpha_transform_type == "exp":
80
+
81
+ def alpha_bar_fn(t):
82
+ return math.exp(t * -12.0)
83
+
84
+ else:
85
+ raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
86
+
87
+ betas = []
88
+ for i in range(num_diffusion_timesteps):
89
+ t1 = i / num_diffusion_timesteps
90
+ t2 = (i + 1) / num_diffusion_timesteps
91
+ betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
92
+ return torch.tensor(betas, dtype=torch.float32)
93
+
94
+
95
+ def rescale_zero_terminal_snr(alphas_cumprod):
96
+ """
97
+ Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)
98
+
99
+
100
+ Args:
101
+ betas (`torch.Tensor`):
102
+ the betas that the scheduler is being initialized with.
103
+
104
+ Returns:
105
+ `torch.Tensor`: rescaled betas with zero terminal SNR
106
+ """
107
+
108
+ alphas_bar_sqrt = alphas_cumprod.sqrt()
109
+
110
+ # Store old values.
111
+ alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
112
+ alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
113
+
114
+ # Shift so the last timestep is zero.
115
+ alphas_bar_sqrt -= alphas_bar_sqrt_T
116
+
117
+ # Scale so the first timestep is back to the old value.
118
+ alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
119
+
120
+ # Convert alphas_bar_sqrt to betas
121
+ alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
122
+
123
+ return alphas_bar
124
+
125
+
126
+ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
127
+ """
128
+ `DDIMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
129
+ non-Markovian guidance.
130
+
131
+ This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
132
+ methods the library implements for all schedulers such as loading and saving.
133
+
134
+ Args:
135
+ num_train_timesteps (`int`, defaults to 1000):
136
+ The number of diffusion steps to train the model.
137
+ beta_start (`float`, defaults to 0.0001):
138
+ The starting `beta` value of inference.
139
+ beta_end (`float`, defaults to 0.02):
140
+ The final `beta` value.
141
+ beta_schedule (`str`, defaults to `"linear"`):
142
+ The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
143
+ `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
144
+ trained_betas (`np.ndarray`, *optional*):
145
+ Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
146
+ clip_sample (`bool`, defaults to `True`):
147
+ Clip the predicted sample for numerical stability.
148
+ clip_sample_range (`float`, defaults to 1.0):
149
+ The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
150
+ set_alpha_to_one (`bool`, defaults to `True`):
151
+ Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
152
+ there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
153
+ otherwise it uses the alpha value at step 0.
154
+ steps_offset (`int`, defaults to 0):
155
+ An offset added to the inference steps, as required by some model families.
156
+ prediction_type (`str`, defaults to `epsilon`, *optional*):
157
+ Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
158
+ `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
159
+ Video](https://imagen.research.google/video/paper.pdf) paper).
160
+ thresholding (`bool`, defaults to `False`):
161
+ Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
162
+ as Stable Diffusion.
163
+ dynamic_thresholding_ratio (`float`, defaults to 0.995):
164
+ The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
165
+ sample_max_value (`float`, defaults to 1.0):
166
+ The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
167
+ timestep_spacing (`str`, defaults to `"leading"`):
168
+ The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
169
+ Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
170
+ rescale_betas_zero_snr (`bool`, defaults to `False`):
171
+ Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
172
+ dark samples instead of limiting it to samples with medium brightness. Loosely related to
173
+ [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
174
+ """
175
+
176
+ _compatibles = [e.name for e in KarrasDiffusionSchedulers]
177
+ order = 1
178
+
179
+ @register_to_config
180
+ def __init__(
181
+ self,
182
+ num_train_timesteps: int = 1000,
183
+ beta_start: float = 0.00085,
184
+ beta_end: float = 0.0120,
185
+ beta_schedule: str = "scaled_linear",
186
+ trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
187
+ clip_sample: bool = True,
188
+ set_alpha_to_one: bool = True,
189
+ steps_offset: int = 0,
190
+ prediction_type: str = "epsilon",
191
+ clip_sample_range: float = 1.0,
192
+ sample_max_value: float = 1.0,
193
+ timestep_spacing: str = "leading",
194
+ rescale_betas_zero_snr: bool = False,
195
+ snr_shift_scale: float = 3.0,
196
+ ):
197
+ if trained_betas is not None:
198
+ self.betas = torch.tensor(trained_betas, dtype=torch.float32)
199
+ elif beta_schedule == "linear":
200
+ self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
201
+ elif beta_schedule == "scaled_linear":
202
+ # this schedule is very specific to the latent diffusion model.
203
+ self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float64) ** 2
204
+ elif beta_schedule == "squaredcos_cap_v2":
205
+ # Glide cosine schedule
206
+ self.betas = betas_for_alpha_bar(num_train_timesteps)
207
+ else:
208
+ raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
209
+
210
+ self.alphas = 1.0 - self.betas
211
+ self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
212
+
213
+ # Modify: SNR shift following SD3
214
+ self.alphas_cumprod = self.alphas_cumprod / (snr_shift_scale + (1 - snr_shift_scale) * self.alphas_cumprod)
215
+
216
+ # Rescale for zero SNR
217
+ if rescale_betas_zero_snr:
218
+ self.alphas_cumprod = rescale_zero_terminal_snr(self.alphas_cumprod)
219
+
220
+ # At every step in ddim, we are looking into the previous alphas_cumprod
221
+ # For the final step, there is no previous alphas_cumprod because we are already at 0
222
+ # `set_alpha_to_one` decides whether we set this parameter simply to one or
223
+ # whether we use the final alpha of the "non-previous" one.
224
+ self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
225
+
226
+ # standard deviation of the initial noise distribution
227
+ self.init_noise_sigma = 1.0
228
+
229
+ # setable values
230
+ self.num_inference_steps = None
231
+ self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
232
+
233
+ def _get_variance(self, timestep, prev_timestep):
234
+ alpha_prod_t = self.alphas_cumprod[timestep]
235
+ alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
236
+ beta_prod_t = 1 - alpha_prod_t
237
+ beta_prod_t_prev = 1 - alpha_prod_t_prev
238
+
239
+ variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
240
+
241
+ return variance
242
+
243
+ def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
244
+ """
245
+ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
246
+ current timestep.
247
+
248
+ Args:
249
+ sample (`torch.Tensor`):
250
+ The input sample.
251
+ timestep (`int`, *optional*):
252
+ The current timestep in the diffusion chain.
253
+
254
+ Returns:
255
+ `torch.Tensor`:
256
+ A scaled input sample.
257
+ """
258
+ return sample
259
+
260
+ def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
261
+ """
262
+ Sets the discrete timesteps used for the diffusion chain (to be run before inference).
263
+
264
+ Args:
265
+ num_inference_steps (`int`):
266
+ The number of diffusion steps used when generating samples with a pre-trained model.
267
+ """
268
+
269
+ if num_inference_steps > self.config.num_train_timesteps:
270
+ raise ValueError(
271
+ f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
272
+ f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
273
+ f" maximal {self.config.num_train_timesteps} timesteps."
274
+ )
275
+
276
+ self.num_inference_steps = num_inference_steps
277
+
278
+ # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
279
+ if self.config.timestep_spacing == "linspace":
280
+ timesteps = (
281
+ np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
282
+ .round()[::-1]
283
+ .copy()
284
+ .astype(np.int64)
285
+ )
286
+ elif self.config.timestep_spacing == "leading":
287
+ step_ratio = self.config.num_train_timesteps // self.num_inference_steps
288
+ # creates integer timesteps by multiplying by ratio
289
+ # casting to int to avoid issues when num_inference_step is power of 3
290
+ timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
291
+ timesteps += self.config.steps_offset
292
+ elif self.config.timestep_spacing == "trailing":
293
+ step_ratio = self.config.num_train_timesteps / self.num_inference_steps
294
+ # creates integer timesteps by multiplying by ratio
295
+ # casting to int to avoid issues when num_inference_step is power of 3
296
+ timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
297
+ timesteps -= 1
298
+ else:
299
+ raise ValueError(
300
+ f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'."
301
+ )
302
+
303
+ self.timesteps = torch.from_numpy(timesteps).to(device)
304
+
305
+ def step(
306
+ self,
307
+ model_output: torch.Tensor,
308
+ timestep: int,
309
+ sample: torch.Tensor,
310
+ eta: float = 0.0,
311
+ use_clipped_model_output: bool = False,
312
+ generator=None,
313
+ variance_noise: Optional[torch.Tensor] = None,
314
+ return_dict: bool = True,
315
+ ) -> Union[DDIMSchedulerOutput, Tuple]:
316
+ """
317
+ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
318
+ process from the learned model outputs (most often the predicted noise).
319
+
320
+ Args:
321
+ model_output (`torch.Tensor`):
322
+ The direct output from learned diffusion model.
323
+ timestep (`float`):
324
+ The current discrete timestep in the diffusion chain.
325
+ sample (`torch.Tensor`):
326
+ A current instance of a sample created by the diffusion process.
327
+ eta (`float`):
328
+ The weight of noise for added noise in diffusion step.
329
+ use_clipped_model_output (`bool`, defaults to `False`):
330
+ If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
331
+ because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
332
+ clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
333
+ `use_clipped_model_output` has no effect.
334
+ generator (`torch.Generator`, *optional*):
335
+ A random number generator.
336
+ variance_noise (`torch.Tensor`):
337
+ Alternative to generating noise with `generator` by directly providing the noise for the variance
338
+ itself. Useful for methods such as [`CycleDiffusion`].
339
+ return_dict (`bool`, *optional*, defaults to `True`):
340
+ Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`.
341
+
342
+ Returns:
343
+ [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`:
344
+ If return_dict is `True`, [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] is returned, otherwise a
345
+ tuple is returned where the first element is the sample tensor.
346
+
347
+ """
348
+ if self.num_inference_steps is None:
349
+ raise ValueError(
350
+ "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
351
+ )
352
+
353
+ # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
354
+ # Ideally, read DDIM paper in-detail understanding
355
+
356
+ # Notation (<variable name> -> <name in paper>
357
+ # - pred_noise_t -> e_theta(x_t, t)
358
+ # - pred_original_sample -> f_theta(x_t, t) or x_0
359
+ # - std_dev_t -> sigma_t
360
+ # - eta -> η
361
+ # - pred_sample_direction -> "direction pointing to x_t"
362
+ # - pred_prev_sample -> "x_t-1"
363
+
364
+ # 1. get previous step value (=t-1)
365
+ prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
366
+
367
+ # 2. compute alphas, betas
368
+ alpha_prod_t = self.alphas_cumprod[timestep]
369
+ alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
370
+
371
+ beta_prod_t = 1 - alpha_prod_t
372
+
373
+ # 3. compute predicted original sample from predicted noise also called
374
+ # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
375
+ # To make style tests pass, commented out `pred_epsilon` as it is an unused variable
376
+ if self.config.prediction_type == "epsilon":
377
+ pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
378
+ # pred_epsilon = model_output
379
+ elif self.config.prediction_type == "sample":
380
+ pred_original_sample = model_output
381
+ # pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
382
+ elif self.config.prediction_type == "v_prediction":
383
+ pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
384
+ # pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
385
+ else:
386
+ raise ValueError(
387
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
388
+ " `v_prediction`"
389
+ )
390
+
391
+ a_t = ((1 - alpha_prod_t_prev) / (1 - alpha_prod_t)) ** 0.5
392
+ b_t = alpha_prod_t_prev**0.5 - alpha_prod_t**0.5 * a_t
393
+
394
+ prev_sample = a_t * sample + b_t * pred_original_sample
395
+
396
+ if not return_dict:
397
+ return (
398
+ prev_sample,
399
+ pred_original_sample,
400
+ )
401
+
402
+ return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
403
+
404
+ # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
405
+ def add_noise(
406
+ self,
407
+ original_samples: torch.Tensor,
408
+ noise: torch.Tensor,
409
+ timesteps: torch.IntTensor,
410
+ ) -> torch.Tensor:
411
+ # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
412
+ # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
413
+ # for the subsequent add_noise calls
414
+ self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
415
+ alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
416
+ timesteps = timesteps.to(original_samples.device)
417
+
418
+ sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
419
+ sqrt_alpha_prod = sqrt_alpha_prod.flatten()
420
+ while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
421
+ sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
422
+
423
+ sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
424
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
425
+ while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
426
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
427
+
428
+ noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
429
+ return noisy_samples
430
+
431
+ # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
432
+ def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
433
+ # Make sure alphas_cumprod and timestep have same device and dtype as sample
434
+ self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
435
+ alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
436
+ timesteps = timesteps.to(sample.device)
437
+
438
+ sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
439
+ sqrt_alpha_prod = sqrt_alpha_prod.flatten()
440
+ while len(sqrt_alpha_prod.shape) < len(sample.shape):
441
+ sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
442
+
443
+ sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
444
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
445
+ while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
446
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
447
+
448
+ velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
449
+ return velocity
450
+
451
+ def __len__(self):
452
+ return self.config.num_train_timesteps
@@ -85,7 +85,8 @@ class FlaxDDIMScheduler(FlaxSchedulerMixin, ConfigMixin):
85
85
  trained_betas (`jnp.ndarray`, optional):
86
86
  option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
87
87
  clip_sample (`bool`, default `True`):
88
- option to clip predicted sample between for numerical stability. The clip range is determined by `clip_sample_range`.
88
+ option to clip predicted sample between for numerical stability. The clip range is determined by
89
+ `clip_sample_range`.
89
90
  clip_sample_range (`float`, default `1.0`):
90
91
  the maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
91
92
  set_alpha_to_one (`bool`, default `True`):