diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -21,11 +21,15 @@ import numpy as np
21
21
  import torch
22
22
 
23
23
  from ..configuration_utils import ConfigMixin, register_to_config
24
- from ..utils import deprecate
24
+ from ..utils import deprecate, is_scipy_available
25
25
  from ..utils.torch_utils import randn_tensor
26
26
  from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
27
27
 
28
28
 
29
+ if is_scipy_available():
30
+ import scipy.stats
31
+
32
+
29
33
  # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
30
34
  def betas_for_alpha_bar(
31
35
  num_diffusion_timesteps,
@@ -61,7 +65,7 @@ def betas_for_alpha_bar(
61
65
  return math.exp(t * -12.0)
62
66
 
63
67
  else:
64
- raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
68
+ raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
65
69
 
66
70
  betas = []
67
71
  for i in range(num_diffusion_timesteps):
@@ -124,6 +128,11 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
124
128
  use_karras_sigmas (`bool`, *optional*, defaults to `False`):
125
129
  Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
126
130
  the sigmas are determined according to a sequence of noise levels {σi}.
131
+ use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
132
+ Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
133
+ use_beta_sigmas (`bool`, *optional*, defaults to `False`):
134
+ Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
135
+ Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
127
136
  lambda_min_clipped (`float`, defaults to `-inf`):
128
137
  Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
129
138
  cosine (`squaredcos_cap_v2`) noise schedule.
@@ -158,11 +167,21 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
158
167
  lower_order_final: bool = True,
159
168
  euler_at_final: bool = False,
160
169
  use_karras_sigmas: Optional[bool] = False,
170
+ use_exponential_sigmas: Optional[bool] = False,
171
+ use_beta_sigmas: Optional[bool] = False,
172
+ use_flow_sigmas: Optional[bool] = False,
173
+ flow_shift: Optional[float] = 1.0,
161
174
  lambda_min_clipped: float = -float("inf"),
162
175
  variance_type: Optional[str] = None,
163
176
  timestep_spacing: str = "linspace",
164
177
  steps_offset: int = 0,
165
178
  ):
179
+ if self.config.use_beta_sigmas and not is_scipy_available():
180
+ raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
181
+ if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
182
+ raise ValueError(
183
+ "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
184
+ )
166
185
  if algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
167
186
  deprecation_message = f"algorithm_type {algorithm_type} is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
168
187
  deprecate("algorithm_types dpmsolver and sde-dpmsolver", "1.0.0", deprecation_message)
@@ -178,7 +197,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
178
197
  # Glide cosine schedule
179
198
  self.betas = betas_for_alpha_bar(num_train_timesteps)
180
199
  else:
181
- raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
200
+ raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
182
201
 
183
202
  self.alphas = 1.0 - self.betas
184
203
  self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
@@ -196,13 +215,13 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
196
215
  if algorithm_type == "deis":
197
216
  self.register_to_config(algorithm_type="dpmsolver++")
198
217
  else:
199
- raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}")
218
+ raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
200
219
 
201
220
  if solver_type not in ["midpoint", "heun"]:
202
221
  if solver_type in ["logrho", "bh1", "bh2"]:
203
222
  self.register_to_config(solver_type="midpoint")
204
223
  else:
205
- raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}")
224
+ raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
206
225
 
207
226
  # setable values
208
227
  self.num_inference_steps = None
@@ -213,11 +232,13 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
213
232
  self._step_index = None
214
233
  self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
215
234
  self.use_karras_sigmas = use_karras_sigmas
235
+ self.use_exponential_sigmas = use_exponential_sigmas
236
+ self.use_beta_sigmas = use_beta_sigmas
216
237
 
217
238
  @property
218
239
  def step_index(self):
219
240
  """
220
- The index counter for current timestep. It will increae 1 after each scheduler step.
241
+ The index counter for current timestep. It will increase 1 after each scheduler step.
221
242
  """
222
243
  return self._step_index
223
244
 
@@ -233,7 +254,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
233
254
  """
234
255
  # Clipping the minimum of all lambda(t) for numerical stability.
235
256
  # This is critical for cosine (squaredcos_cap_v2) noise schedule.
236
- clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.lambda_min_clipped).item()
257
+ clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped).item()
237
258
  self.noisiest_timestep = self.config.num_train_timesteps - 1 - clipped_idx
238
259
 
239
260
  # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
@@ -267,6 +288,20 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
267
288
  timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
268
289
  timesteps = timesteps.copy().astype(np.int64)
269
290
  sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
291
+ elif self.config.use_exponential_sigmas:
292
+ sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
293
+ timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
294
+ sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
295
+ elif self.config.use_beta_sigmas:
296
+ sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
297
+ timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
298
+ sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
299
+ elif self.config.use_flow_sigmas:
300
+ alphas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1)
301
+ sigmas = 1.0 - alphas
302
+ sigmas = np.flip(self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas))[:-1].copy()
303
+ timesteps = (sigmas * self.config.num_train_timesteps).copy()
304
+ sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
270
305
  else:
271
306
  sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
272
307
  sigma_max = (
@@ -295,7 +330,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
295
330
  self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
296
331
 
297
332
  # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
298
- def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
333
+ def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
299
334
  """
300
335
  "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
301
336
  prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
@@ -354,13 +389,17 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
354
389
 
355
390
  # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
356
391
  def _sigma_to_alpha_sigma_t(self, sigma):
357
- alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
358
- sigma_t = sigma * alpha_t
392
+ if self.config.use_flow_sigmas:
393
+ alpha_t = 1 - sigma
394
+ sigma_t = sigma
395
+ else:
396
+ alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
397
+ sigma_t = sigma * alpha_t
359
398
 
360
399
  return alpha_t, sigma_t
361
400
 
362
401
  # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
363
- def _convert_to_karras(self, in_sigmas: torch.FloatTensor, num_inference_steps) -> torch.FloatTensor:
402
+ def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
364
403
  """Constructs the noise schedule of Karras et al. (2022)."""
365
404
 
366
405
  # Hack to make sure that other schedulers which copy this function don't break
@@ -385,14 +424,68 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
385
424
  sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
386
425
  return sigmas
387
426
 
427
+ # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
428
+ def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
429
+ """Constructs an exponential noise schedule."""
430
+
431
+ # Hack to make sure that other schedulers which copy this function don't break
432
+ # TODO: Add this logic to the other schedulers
433
+ if hasattr(self.config, "sigma_min"):
434
+ sigma_min = self.config.sigma_min
435
+ else:
436
+ sigma_min = None
437
+
438
+ if hasattr(self.config, "sigma_max"):
439
+ sigma_max = self.config.sigma_max
440
+ else:
441
+ sigma_max = None
442
+
443
+ sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
444
+ sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
445
+
446
+ sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
447
+ return sigmas
448
+
449
+ # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
450
+ def _convert_to_beta(
451
+ self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
452
+ ) -> torch.Tensor:
453
+ """From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""
454
+
455
+ # Hack to make sure that other schedulers which copy this function don't break
456
+ # TODO: Add this logic to the other schedulers
457
+ if hasattr(self.config, "sigma_min"):
458
+ sigma_min = self.config.sigma_min
459
+ else:
460
+ sigma_min = None
461
+
462
+ if hasattr(self.config, "sigma_max"):
463
+ sigma_max = self.config.sigma_max
464
+ else:
465
+ sigma_max = None
466
+
467
+ sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
468
+ sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
469
+
470
+ sigmas = np.array(
471
+ [
472
+ sigma_min + (ppf * (sigma_max - sigma_min))
473
+ for ppf in [
474
+ scipy.stats.beta.ppf(timestep, alpha, beta)
475
+ for timestep in 1 - np.linspace(0, 1, num_inference_steps)
476
+ ]
477
+ ]
478
+ )
479
+ return sigmas
480
+
388
481
  # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.convert_model_output
389
482
  def convert_model_output(
390
483
  self,
391
- model_output: torch.FloatTensor,
484
+ model_output: torch.Tensor,
392
485
  *args,
393
- sample: torch.FloatTensor = None,
486
+ sample: torch.Tensor = None,
394
487
  **kwargs,
395
- ) -> torch.FloatTensor:
488
+ ) -> torch.Tensor:
396
489
  """
397
490
  Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
398
491
  designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
@@ -406,13 +499,13 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
406
499
  </Tip>
407
500
 
408
501
  Args:
409
- model_output (`torch.FloatTensor`):
502
+ model_output (`torch.Tensor`):
410
503
  The direct output from the learned diffusion model.
411
- sample (`torch.FloatTensor`):
504
+ sample (`torch.Tensor`):
412
505
  A current instance of a sample created by the diffusion process.
413
506
 
414
507
  Returns:
415
- `torch.FloatTensor`:
508
+ `torch.Tensor`:
416
509
  The converted model output.
417
510
  """
418
511
  timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
@@ -443,10 +536,13 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
443
536
  sigma = self.sigmas[self.step_index]
444
537
  alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
445
538
  x0_pred = alpha_t * sample - sigma_t * model_output
539
+ elif self.config.prediction_type == "flow_prediction":
540
+ sigma_t = self.sigmas[self.step_index]
541
+ x0_pred = sample - sigma_t * model_output
446
542
  else:
447
543
  raise ValueError(
448
- f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
449
- " `v_prediction` for the DPMSolverMultistepScheduler."
544
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
545
+ "`v_prediction`, or `flow_prediction` for the DPMSolverMultistepScheduler."
450
546
  )
451
547
 
452
548
  if self.config.thresholding:
@@ -488,23 +584,23 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
488
584
  # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.dpm_solver_first_order_update
489
585
  def dpm_solver_first_order_update(
490
586
  self,
491
- model_output: torch.FloatTensor,
587
+ model_output: torch.Tensor,
492
588
  *args,
493
- sample: torch.FloatTensor = None,
494
- noise: Optional[torch.FloatTensor] = None,
589
+ sample: torch.Tensor = None,
590
+ noise: Optional[torch.Tensor] = None,
495
591
  **kwargs,
496
- ) -> torch.FloatTensor:
592
+ ) -> torch.Tensor:
497
593
  """
498
594
  One step for the first-order DPMSolver (equivalent to DDIM).
499
595
 
500
596
  Args:
501
- model_output (`torch.FloatTensor`):
597
+ model_output (`torch.Tensor`):
502
598
  The direct output from the learned diffusion model.
503
- sample (`torch.FloatTensor`):
599
+ sample (`torch.Tensor`):
504
600
  A current instance of a sample created by the diffusion process.
505
601
 
506
602
  Returns:
507
- `torch.FloatTensor`:
603
+ `torch.Tensor`:
508
604
  The sample tensor at the previous timestep.
509
605
  """
510
606
  timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
@@ -558,23 +654,23 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
558
654
  # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.multistep_dpm_solver_second_order_update
559
655
  def multistep_dpm_solver_second_order_update(
560
656
  self,
561
- model_output_list: List[torch.FloatTensor],
657
+ model_output_list: List[torch.Tensor],
562
658
  *args,
563
- sample: torch.FloatTensor = None,
564
- noise: Optional[torch.FloatTensor] = None,
659
+ sample: torch.Tensor = None,
660
+ noise: Optional[torch.Tensor] = None,
565
661
  **kwargs,
566
- ) -> torch.FloatTensor:
662
+ ) -> torch.Tensor:
567
663
  """
568
664
  One step for the second-order multistep DPMSolver.
569
665
 
570
666
  Args:
571
- model_output_list (`List[torch.FloatTensor]`):
667
+ model_output_list (`List[torch.Tensor]`):
572
668
  The direct outputs from learned diffusion model at current and latter timesteps.
573
- sample (`torch.FloatTensor`):
669
+ sample (`torch.Tensor`):
574
670
  A current instance of a sample created by the diffusion process.
575
671
 
576
672
  Returns:
577
- `torch.FloatTensor`:
673
+ `torch.Tensor`:
578
674
  The sample tensor at the previous timestep.
579
675
  """
580
676
  timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
@@ -682,22 +778,23 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
682
778
  # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.multistep_dpm_solver_third_order_update
683
779
  def multistep_dpm_solver_third_order_update(
684
780
  self,
685
- model_output_list: List[torch.FloatTensor],
781
+ model_output_list: List[torch.Tensor],
686
782
  *args,
687
- sample: torch.FloatTensor = None,
783
+ sample: torch.Tensor = None,
784
+ noise: Optional[torch.Tensor] = None,
688
785
  **kwargs,
689
- ) -> torch.FloatTensor:
786
+ ) -> torch.Tensor:
690
787
  """
691
788
  One step for the third-order multistep DPMSolver.
692
789
 
693
790
  Args:
694
- model_output_list (`List[torch.FloatTensor]`):
791
+ model_output_list (`List[torch.Tensor]`):
695
792
  The direct outputs from learned diffusion model at current and latter timesteps.
696
- sample (`torch.FloatTensor`):
793
+ sample (`torch.Tensor`):
697
794
  A current instance of a sample created by diffusion process.
698
795
 
699
796
  Returns:
700
- `torch.FloatTensor`:
797
+ `torch.Tensor`:
701
798
  The sample tensor at the previous timestep.
702
799
  """
703
800
 
@@ -763,6 +860,15 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
763
860
  - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
764
861
  - (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2
765
862
  )
863
+ elif self.config.algorithm_type == "sde-dpmsolver++":
864
+ assert noise is not None
865
+ x_t = (
866
+ (sigma_t / sigma_s0 * torch.exp(-h)) * sample
867
+ + (alpha_t * (1.0 - torch.exp(-2.0 * h))) * D0
868
+ + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
869
+ + (alpha_t * ((1.0 - torch.exp(-2.0 * h) - 2.0 * h) / (2.0 * h) ** 2 - 0.5)) * D2
870
+ + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
871
+ )
766
872
  return x_t
767
873
 
768
874
  def _init_step_index(self, timestep):
@@ -786,11 +892,11 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
786
892
 
787
893
  def step(
788
894
  self,
789
- model_output: torch.FloatTensor,
790
- timestep: int,
791
- sample: torch.FloatTensor,
895
+ model_output: torch.Tensor,
896
+ timestep: Union[int, torch.Tensor],
897
+ sample: torch.Tensor,
792
898
  generator=None,
793
- variance_noise: Optional[torch.FloatTensor] = None,
899
+ variance_noise: Optional[torch.Tensor] = None,
794
900
  return_dict: bool = True,
795
901
  ) -> Union[SchedulerOutput, Tuple]:
796
902
  """
@@ -798,15 +904,15 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
798
904
  the multistep DPMSolver.
799
905
 
800
906
  Args:
801
- model_output (`torch.FloatTensor`):
907
+ model_output (`torch.Tensor`):
802
908
  The direct output from learned diffusion model.
803
909
  timestep (`int`):
804
910
  The current discrete timestep in the diffusion chain.
805
- sample (`torch.FloatTensor`):
911
+ sample (`torch.Tensor`):
806
912
  A current instance of a sample created by the diffusion process.
807
913
  generator (`torch.Generator`, *optional*):
808
914
  A random number generator.
809
- variance_noise (`torch.FloatTensor`):
915
+ variance_noise (`torch.Tensor`):
810
916
  Alternative to generating noise with `generator` by directly providing the noise for the variance
811
917
  itself. Useful for methods such as [`CycleDiffusion`].
812
918
  return_dict (`bool`):
@@ -867,27 +973,27 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
867
973
  return SchedulerOutput(prev_sample=prev_sample)
868
974
 
869
975
  # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.scale_model_input
870
- def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
976
+ def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
871
977
  """
872
978
  Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
873
979
  current timestep.
874
980
 
875
981
  Args:
876
- sample (`torch.FloatTensor`):
982
+ sample (`torch.Tensor`):
877
983
  The input sample.
878
984
 
879
985
  Returns:
880
- `torch.FloatTensor`:
986
+ `torch.Tensor`:
881
987
  A scaled input sample.
882
988
  """
883
989
  return sample
884
990
 
885
991
  def add_noise(
886
992
  self,
887
- original_samples: torch.FloatTensor,
888
- noise: torch.FloatTensor,
993
+ original_samples: torch.Tensor,
994
+ noise: torch.Tensor,
889
995
  timesteps: torch.IntTensor,
890
- ) -> torch.FloatTensor:
996
+ ) -> torch.Tensor:
891
997
  # Make sure sigmas and timesteps have the same device and dtype as original_samples
892
998
  sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
893
999
  if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):