diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +50 -53
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.0.dist-info/RECORD +0 -399
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,458 @@
|
|
1
|
+
# Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
|
16
|
+
from typing import Any, Dict, Optional, Union
|
17
|
+
|
18
|
+
import numpy as np
|
19
|
+
import torch
|
20
|
+
import torch.nn as nn
|
21
|
+
import torch.utils.checkpoint
|
22
|
+
|
23
|
+
from ...configuration_utils import ConfigMixin, register_to_config
|
24
|
+
from ...models.attention import FeedForward
|
25
|
+
from ...models.attention_processor import (
|
26
|
+
Attention,
|
27
|
+
AttentionProcessor,
|
28
|
+
StableAudioAttnProcessor2_0,
|
29
|
+
)
|
30
|
+
from ...models.modeling_utils import ModelMixin
|
31
|
+
from ...models.transformers.transformer_2d import Transformer2DModelOutput
|
32
|
+
from ...utils import is_torch_version, logging
|
33
|
+
from ...utils.torch_utils import maybe_allow_in_graph
|
34
|
+
|
35
|
+
|
36
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
37
|
+
|
38
|
+
|
39
|
+
class StableAudioGaussianFourierProjection(nn.Module):
|
40
|
+
"""Gaussian Fourier embeddings for noise levels."""
|
41
|
+
|
42
|
+
# Copied from diffusers.models.embeddings.GaussianFourierProjection.__init__
|
43
|
+
def __init__(
|
44
|
+
self, embedding_size: int = 256, scale: float = 1.0, set_W_to_weight=True, log=True, flip_sin_to_cos=False
|
45
|
+
):
|
46
|
+
super().__init__()
|
47
|
+
self.weight = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
|
48
|
+
self.log = log
|
49
|
+
self.flip_sin_to_cos = flip_sin_to_cos
|
50
|
+
|
51
|
+
if set_W_to_weight:
|
52
|
+
# to delete later
|
53
|
+
del self.weight
|
54
|
+
self.W = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
|
55
|
+
self.weight = self.W
|
56
|
+
del self.W
|
57
|
+
|
58
|
+
def forward(self, x):
|
59
|
+
if self.log:
|
60
|
+
x = torch.log(x)
|
61
|
+
|
62
|
+
x_proj = 2 * np.pi * x[:, None] @ self.weight[None, :]
|
63
|
+
|
64
|
+
if self.flip_sin_to_cos:
|
65
|
+
out = torch.cat([torch.cos(x_proj), torch.sin(x_proj)], dim=-1)
|
66
|
+
else:
|
67
|
+
out = torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1)
|
68
|
+
return out
|
69
|
+
|
70
|
+
|
71
|
+
@maybe_allow_in_graph
|
72
|
+
class StableAudioDiTBlock(nn.Module):
|
73
|
+
r"""
|
74
|
+
Transformer block used in Stable Audio model (https://github.com/Stability-AI/stable-audio-tools). Allow skip
|
75
|
+
connection and QKNorm
|
76
|
+
|
77
|
+
Parameters:
|
78
|
+
dim (`int`): The number of channels in the input and output.
|
79
|
+
num_attention_heads (`int`): The number of heads to use for the query states.
|
80
|
+
num_key_value_attention_heads (`int`): The number of heads to use for the key and value states.
|
81
|
+
attention_head_dim (`int`): The number of channels in each head.
|
82
|
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
83
|
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
84
|
+
upcast_attention (`bool`, *optional*):
|
85
|
+
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
86
|
+
"""
|
87
|
+
|
88
|
+
def __init__(
|
89
|
+
self,
|
90
|
+
dim: int,
|
91
|
+
num_attention_heads: int,
|
92
|
+
num_key_value_attention_heads: int,
|
93
|
+
attention_head_dim: int,
|
94
|
+
dropout=0.0,
|
95
|
+
cross_attention_dim: Optional[int] = None,
|
96
|
+
upcast_attention: bool = False,
|
97
|
+
norm_eps: float = 1e-5,
|
98
|
+
ff_inner_dim: Optional[int] = None,
|
99
|
+
):
|
100
|
+
super().__init__()
|
101
|
+
# Define 3 blocks. Each block has its own normalization layer.
|
102
|
+
# 1. Self-Attn
|
103
|
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=True, eps=norm_eps)
|
104
|
+
self.attn1 = Attention(
|
105
|
+
query_dim=dim,
|
106
|
+
heads=num_attention_heads,
|
107
|
+
dim_head=attention_head_dim,
|
108
|
+
dropout=dropout,
|
109
|
+
bias=False,
|
110
|
+
upcast_attention=upcast_attention,
|
111
|
+
out_bias=False,
|
112
|
+
processor=StableAudioAttnProcessor2_0(),
|
113
|
+
)
|
114
|
+
|
115
|
+
# 2. Cross-Attn
|
116
|
+
self.norm2 = nn.LayerNorm(dim, norm_eps, True)
|
117
|
+
|
118
|
+
self.attn2 = Attention(
|
119
|
+
query_dim=dim,
|
120
|
+
cross_attention_dim=cross_attention_dim,
|
121
|
+
heads=num_attention_heads,
|
122
|
+
dim_head=attention_head_dim,
|
123
|
+
kv_heads=num_key_value_attention_heads,
|
124
|
+
dropout=dropout,
|
125
|
+
bias=False,
|
126
|
+
upcast_attention=upcast_attention,
|
127
|
+
out_bias=False,
|
128
|
+
processor=StableAudioAttnProcessor2_0(),
|
129
|
+
) # is self-attn if encoder_hidden_states is none
|
130
|
+
|
131
|
+
# 3. Feed-forward
|
132
|
+
self.norm3 = nn.LayerNorm(dim, norm_eps, True)
|
133
|
+
self.ff = FeedForward(
|
134
|
+
dim,
|
135
|
+
dropout=dropout,
|
136
|
+
activation_fn="swiglu",
|
137
|
+
final_dropout=False,
|
138
|
+
inner_dim=ff_inner_dim,
|
139
|
+
bias=True,
|
140
|
+
)
|
141
|
+
|
142
|
+
# let chunk size default to None
|
143
|
+
self._chunk_size = None
|
144
|
+
self._chunk_dim = 0
|
145
|
+
|
146
|
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
147
|
+
# Sets chunk feed-forward
|
148
|
+
self._chunk_size = chunk_size
|
149
|
+
self._chunk_dim = dim
|
150
|
+
|
151
|
+
def forward(
|
152
|
+
self,
|
153
|
+
hidden_states: torch.Tensor,
|
154
|
+
attention_mask: Optional[torch.Tensor] = None,
|
155
|
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
156
|
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
157
|
+
rotary_embedding: Optional[torch.FloatTensor] = None,
|
158
|
+
) -> torch.Tensor:
|
159
|
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
160
|
+
# 0. Self-Attention
|
161
|
+
norm_hidden_states = self.norm1(hidden_states)
|
162
|
+
|
163
|
+
attn_output = self.attn1(
|
164
|
+
norm_hidden_states,
|
165
|
+
attention_mask=attention_mask,
|
166
|
+
rotary_emb=rotary_embedding,
|
167
|
+
)
|
168
|
+
|
169
|
+
hidden_states = attn_output + hidden_states
|
170
|
+
|
171
|
+
# 2. Cross-Attention
|
172
|
+
norm_hidden_states = self.norm2(hidden_states)
|
173
|
+
|
174
|
+
attn_output = self.attn2(
|
175
|
+
norm_hidden_states,
|
176
|
+
encoder_hidden_states=encoder_hidden_states,
|
177
|
+
attention_mask=encoder_attention_mask,
|
178
|
+
)
|
179
|
+
hidden_states = attn_output + hidden_states
|
180
|
+
|
181
|
+
# 3. Feed-forward
|
182
|
+
norm_hidden_states = self.norm3(hidden_states)
|
183
|
+
ff_output = self.ff(norm_hidden_states)
|
184
|
+
|
185
|
+
hidden_states = ff_output + hidden_states
|
186
|
+
|
187
|
+
return hidden_states
|
188
|
+
|
189
|
+
|
190
|
+
class StableAudioDiTModel(ModelMixin, ConfigMixin):
|
191
|
+
"""
|
192
|
+
The Diffusion Transformer model introduced in Stable Audio.
|
193
|
+
|
194
|
+
Reference: https://github.com/Stability-AI/stable-audio-tools
|
195
|
+
|
196
|
+
Parameters:
|
197
|
+
sample_size ( `int`, *optional*, defaults to 1024): The size of the input sample.
|
198
|
+
in_channels (`int`, *optional*, defaults to 64): The number of channels in the input.
|
199
|
+
num_layers (`int`, *optional*, defaults to 24): The number of layers of Transformer blocks to use.
|
200
|
+
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
|
201
|
+
num_attention_heads (`int`, *optional*, defaults to 24): The number of heads to use for the query states.
|
202
|
+
num_key_value_attention_heads (`int`, *optional*, defaults to 12):
|
203
|
+
The number of heads to use for the key and value states.
|
204
|
+
out_channels (`int`, defaults to 64): Number of output channels.
|
205
|
+
cross_attention_dim ( `int`, *optional*, defaults to 768): Dimension of the cross-attention projection.
|
206
|
+
time_proj_dim ( `int`, *optional*, defaults to 256): Dimension of the timestep inner projection.
|
207
|
+
global_states_input_dim ( `int`, *optional*, defaults to 1536):
|
208
|
+
Input dimension of the global hidden states projection.
|
209
|
+
cross_attention_input_dim ( `int`, *optional*, defaults to 768):
|
210
|
+
Input dimension of the cross-attention projection
|
211
|
+
"""
|
212
|
+
|
213
|
+
_supports_gradient_checkpointing = True
|
214
|
+
|
215
|
+
@register_to_config
|
216
|
+
def __init__(
|
217
|
+
self,
|
218
|
+
sample_size: int = 1024,
|
219
|
+
in_channels: int = 64,
|
220
|
+
num_layers: int = 24,
|
221
|
+
attention_head_dim: int = 64,
|
222
|
+
num_attention_heads: int = 24,
|
223
|
+
num_key_value_attention_heads: int = 12,
|
224
|
+
out_channels: int = 64,
|
225
|
+
cross_attention_dim: int = 768,
|
226
|
+
time_proj_dim: int = 256,
|
227
|
+
global_states_input_dim: int = 1536,
|
228
|
+
cross_attention_input_dim: int = 768,
|
229
|
+
):
|
230
|
+
super().__init__()
|
231
|
+
self.sample_size = sample_size
|
232
|
+
self.out_channels = out_channels
|
233
|
+
self.inner_dim = num_attention_heads * attention_head_dim
|
234
|
+
|
235
|
+
self.time_proj = StableAudioGaussianFourierProjection(
|
236
|
+
embedding_size=time_proj_dim // 2,
|
237
|
+
flip_sin_to_cos=True,
|
238
|
+
log=False,
|
239
|
+
set_W_to_weight=False,
|
240
|
+
)
|
241
|
+
|
242
|
+
self.timestep_proj = nn.Sequential(
|
243
|
+
nn.Linear(time_proj_dim, self.inner_dim, bias=True),
|
244
|
+
nn.SiLU(),
|
245
|
+
nn.Linear(self.inner_dim, self.inner_dim, bias=True),
|
246
|
+
)
|
247
|
+
|
248
|
+
self.global_proj = nn.Sequential(
|
249
|
+
nn.Linear(global_states_input_dim, self.inner_dim, bias=False),
|
250
|
+
nn.SiLU(),
|
251
|
+
nn.Linear(self.inner_dim, self.inner_dim, bias=False),
|
252
|
+
)
|
253
|
+
|
254
|
+
self.cross_attention_proj = nn.Sequential(
|
255
|
+
nn.Linear(cross_attention_input_dim, cross_attention_dim, bias=False),
|
256
|
+
nn.SiLU(),
|
257
|
+
nn.Linear(cross_attention_dim, cross_attention_dim, bias=False),
|
258
|
+
)
|
259
|
+
|
260
|
+
self.preprocess_conv = nn.Conv1d(in_channels, in_channels, 1, bias=False)
|
261
|
+
self.proj_in = nn.Linear(in_channels, self.inner_dim, bias=False)
|
262
|
+
|
263
|
+
self.transformer_blocks = nn.ModuleList(
|
264
|
+
[
|
265
|
+
StableAudioDiTBlock(
|
266
|
+
dim=self.inner_dim,
|
267
|
+
num_attention_heads=num_attention_heads,
|
268
|
+
num_key_value_attention_heads=num_key_value_attention_heads,
|
269
|
+
attention_head_dim=attention_head_dim,
|
270
|
+
cross_attention_dim=cross_attention_dim,
|
271
|
+
)
|
272
|
+
for i in range(num_layers)
|
273
|
+
]
|
274
|
+
)
|
275
|
+
|
276
|
+
self.proj_out = nn.Linear(self.inner_dim, self.out_channels, bias=False)
|
277
|
+
self.postprocess_conv = nn.Conv1d(self.out_channels, self.out_channels, 1, bias=False)
|
278
|
+
|
279
|
+
self.gradient_checkpointing = False
|
280
|
+
|
281
|
+
@property
|
282
|
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
283
|
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
284
|
+
r"""
|
285
|
+
Returns:
|
286
|
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
287
|
+
indexed by its weight name.
|
288
|
+
"""
|
289
|
+
# set recursively
|
290
|
+
processors = {}
|
291
|
+
|
292
|
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
293
|
+
if hasattr(module, "get_processor"):
|
294
|
+
processors[f"{name}.processor"] = module.get_processor()
|
295
|
+
|
296
|
+
for sub_name, child in module.named_children():
|
297
|
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
298
|
+
|
299
|
+
return processors
|
300
|
+
|
301
|
+
for name, module in self.named_children():
|
302
|
+
fn_recursive_add_processors(name, module, processors)
|
303
|
+
|
304
|
+
return processors
|
305
|
+
|
306
|
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
307
|
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
308
|
+
r"""
|
309
|
+
Sets the attention processor to use to compute attention.
|
310
|
+
|
311
|
+
Parameters:
|
312
|
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
313
|
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
314
|
+
for **all** `Attention` layers.
|
315
|
+
|
316
|
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
317
|
+
processor. This is strongly recommended when setting trainable attention processors.
|
318
|
+
|
319
|
+
"""
|
320
|
+
count = len(self.attn_processors.keys())
|
321
|
+
|
322
|
+
if isinstance(processor, dict) and len(processor) != count:
|
323
|
+
raise ValueError(
|
324
|
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
325
|
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
326
|
+
)
|
327
|
+
|
328
|
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
329
|
+
if hasattr(module, "set_processor"):
|
330
|
+
if not isinstance(processor, dict):
|
331
|
+
module.set_processor(processor)
|
332
|
+
else:
|
333
|
+
module.set_processor(processor.pop(f"{name}.processor"))
|
334
|
+
|
335
|
+
for sub_name, child in module.named_children():
|
336
|
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
337
|
+
|
338
|
+
for name, module in self.named_children():
|
339
|
+
fn_recursive_attn_processor(name, module, processor)
|
340
|
+
|
341
|
+
# Copied from diffusers.models.transformers.hunyuan_transformer_2d.HunyuanDiT2DModel.set_default_attn_processor with Hunyuan->StableAudio
|
342
|
+
def set_default_attn_processor(self):
|
343
|
+
"""
|
344
|
+
Disables custom attention processors and sets the default attention implementation.
|
345
|
+
"""
|
346
|
+
self.set_attn_processor(StableAudioAttnProcessor2_0())
|
347
|
+
|
348
|
+
def _set_gradient_checkpointing(self, module, value=False):
|
349
|
+
if hasattr(module, "gradient_checkpointing"):
|
350
|
+
module.gradient_checkpointing = value
|
351
|
+
|
352
|
+
def forward(
|
353
|
+
self,
|
354
|
+
hidden_states: torch.FloatTensor,
|
355
|
+
timestep: torch.LongTensor = None,
|
356
|
+
encoder_hidden_states: torch.FloatTensor = None,
|
357
|
+
global_hidden_states: torch.FloatTensor = None,
|
358
|
+
rotary_embedding: torch.FloatTensor = None,
|
359
|
+
return_dict: bool = True,
|
360
|
+
attention_mask: Optional[torch.LongTensor] = None,
|
361
|
+
encoder_attention_mask: Optional[torch.LongTensor] = None,
|
362
|
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
363
|
+
"""
|
364
|
+
The [`StableAudioDiTModel`] forward method.
|
365
|
+
|
366
|
+
Args:
|
367
|
+
hidden_states (`torch.FloatTensor` of shape `(batch size, in_channels, sequence_len)`):
|
368
|
+
Input `hidden_states`.
|
369
|
+
timestep ( `torch.LongTensor`):
|
370
|
+
Used to indicate denoising step.
|
371
|
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, encoder_sequence_len, cross_attention_input_dim)`):
|
372
|
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
373
|
+
global_hidden_states (`torch.FloatTensor` of shape `(batch size, global_sequence_len, global_states_input_dim)`):
|
374
|
+
Global embeddings that will be prepended to the hidden states.
|
375
|
+
rotary_embedding (`torch.Tensor`):
|
376
|
+
The rotary embeddings to apply on query and key tensors during attention calculation.
|
377
|
+
return_dict (`bool`, *optional*, defaults to `True`):
|
378
|
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
379
|
+
tuple.
|
380
|
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_len)`, *optional*):
|
381
|
+
Mask to avoid performing attention on padding token indices, formed by concatenating the attention
|
382
|
+
masks
|
383
|
+
for the two text encoders together. Mask values selected in `[0, 1]`:
|
384
|
+
|
385
|
+
- 1 for tokens that are **not masked**,
|
386
|
+
- 0 for tokens that are **masked**.
|
387
|
+
encoder_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_len)`, *optional*):
|
388
|
+
Mask to avoid performing attention on padding token cross-attention indices, formed by concatenating
|
389
|
+
the attention masks
|
390
|
+
for the two text encoders together. Mask values selected in `[0, 1]`:
|
391
|
+
|
392
|
+
- 1 for tokens that are **not masked**,
|
393
|
+
- 0 for tokens that are **masked**.
|
394
|
+
Returns:
|
395
|
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
396
|
+
`tuple` where the first element is the sample tensor.
|
397
|
+
"""
|
398
|
+
cross_attention_hidden_states = self.cross_attention_proj(encoder_hidden_states)
|
399
|
+
global_hidden_states = self.global_proj(global_hidden_states)
|
400
|
+
time_hidden_states = self.timestep_proj(self.time_proj(timestep.to(self.dtype)))
|
401
|
+
|
402
|
+
global_hidden_states = global_hidden_states + time_hidden_states.unsqueeze(1)
|
403
|
+
|
404
|
+
hidden_states = self.preprocess_conv(hidden_states) + hidden_states
|
405
|
+
# (batch_size, dim, sequence_length) -> (batch_size, sequence_length, dim)
|
406
|
+
hidden_states = hidden_states.transpose(1, 2)
|
407
|
+
|
408
|
+
hidden_states = self.proj_in(hidden_states)
|
409
|
+
|
410
|
+
# prepend global states to hidden states
|
411
|
+
hidden_states = torch.cat([global_hidden_states, hidden_states], dim=-2)
|
412
|
+
if attention_mask is not None:
|
413
|
+
prepend_mask = torch.ones((hidden_states.shape[0], 1), device=hidden_states.device, dtype=torch.bool)
|
414
|
+
attention_mask = torch.cat([prepend_mask, attention_mask], dim=-1)
|
415
|
+
|
416
|
+
for block in self.transformer_blocks:
|
417
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
418
|
+
|
419
|
+
def create_custom_forward(module, return_dict=None):
|
420
|
+
def custom_forward(*inputs):
|
421
|
+
if return_dict is not None:
|
422
|
+
return module(*inputs, return_dict=return_dict)
|
423
|
+
else:
|
424
|
+
return module(*inputs)
|
425
|
+
|
426
|
+
return custom_forward
|
427
|
+
|
428
|
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
429
|
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
430
|
+
create_custom_forward(block),
|
431
|
+
hidden_states,
|
432
|
+
attention_mask,
|
433
|
+
cross_attention_hidden_states,
|
434
|
+
encoder_attention_mask,
|
435
|
+
rotary_embedding,
|
436
|
+
**ckpt_kwargs,
|
437
|
+
)
|
438
|
+
|
439
|
+
else:
|
440
|
+
hidden_states = block(
|
441
|
+
hidden_states=hidden_states,
|
442
|
+
attention_mask=attention_mask,
|
443
|
+
encoder_hidden_states=cross_attention_hidden_states,
|
444
|
+
encoder_attention_mask=encoder_attention_mask,
|
445
|
+
rotary_embedding=rotary_embedding,
|
446
|
+
)
|
447
|
+
|
448
|
+
hidden_states = self.proj_out(hidden_states)
|
449
|
+
|
450
|
+
# (batch_size, sequence_length, dim) -> (batch_size, dim, sequence_length)
|
451
|
+
# remove prepend length that has been added by global hidden states
|
452
|
+
hidden_states = hidden_states.transpose(1, 2)[:, :, 1:]
|
453
|
+
hidden_states = self.postprocess_conv(hidden_states) + hidden_states
|
454
|
+
|
455
|
+
if not return_dict:
|
456
|
+
return (hidden_states,)
|
457
|
+
|
458
|
+
return Transformer2DModelOutput(sample=hidden_states)
|
@@ -86,7 +86,7 @@ class T5FilmDecoder(ModelMixin, ConfigMixin):
|
|
86
86
|
self.post_dropout = nn.Dropout(p=dropout_rate)
|
87
87
|
self.spec_out = nn.Linear(d_model, input_dims, bias=False)
|
88
88
|
|
89
|
-
def encoder_decoder_mask(self, query_input: torch.
|
89
|
+
def encoder_decoder_mask(self, query_input: torch.Tensor, key_input: torch.Tensor) -> torch.Tensor:
|
90
90
|
mask = torch.mul(query_input.unsqueeze(-1), key_input.unsqueeze(-2))
|
91
91
|
return mask.unsqueeze(-3)
|
92
92
|
|
@@ -195,13 +195,13 @@ class DecoderLayer(nn.Module):
|
|
195
195
|
|
196
196
|
def forward(
|
197
197
|
self,
|
198
|
-
hidden_states: torch.
|
199
|
-
conditioning_emb: Optional[torch.
|
200
|
-
attention_mask: Optional[torch.
|
198
|
+
hidden_states: torch.Tensor,
|
199
|
+
conditioning_emb: Optional[torch.Tensor] = None,
|
200
|
+
attention_mask: Optional[torch.Tensor] = None,
|
201
201
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
202
202
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
203
203
|
encoder_decoder_position_bias=None,
|
204
|
-
) -> Tuple[torch.
|
204
|
+
) -> Tuple[torch.Tensor]:
|
205
205
|
hidden_states = self.layer[0](
|
206
206
|
hidden_states,
|
207
207
|
conditioning_emb=conditioning_emb,
|
@@ -249,10 +249,10 @@ class T5LayerSelfAttentionCond(nn.Module):
|
|
249
249
|
|
250
250
|
def forward(
|
251
251
|
self,
|
252
|
-
hidden_states: torch.
|
253
|
-
conditioning_emb: Optional[torch.
|
254
|
-
attention_mask: Optional[torch.
|
255
|
-
) -> torch.
|
252
|
+
hidden_states: torch.Tensor,
|
253
|
+
conditioning_emb: Optional[torch.Tensor] = None,
|
254
|
+
attention_mask: Optional[torch.Tensor] = None,
|
255
|
+
) -> torch.Tensor:
|
256
256
|
# pre_self_attention_layer_norm
|
257
257
|
normed_hidden_states = self.layer_norm(hidden_states)
|
258
258
|
|
@@ -292,10 +292,10 @@ class T5LayerCrossAttention(nn.Module):
|
|
292
292
|
|
293
293
|
def forward(
|
294
294
|
self,
|
295
|
-
hidden_states: torch.
|
296
|
-
key_value_states: Optional[torch.
|
297
|
-
attention_mask: Optional[torch.
|
298
|
-
) -> torch.
|
295
|
+
hidden_states: torch.Tensor,
|
296
|
+
key_value_states: Optional[torch.Tensor] = None,
|
297
|
+
attention_mask: Optional[torch.Tensor] = None,
|
298
|
+
) -> torch.Tensor:
|
299
299
|
normed_hidden_states = self.layer_norm(hidden_states)
|
300
300
|
attention_output = self.attention(
|
301
301
|
normed_hidden_states,
|
@@ -328,9 +328,7 @@ class T5LayerFFCond(nn.Module):
|
|
328
328
|
self.layer_norm = T5LayerNorm(d_model, eps=layer_norm_epsilon)
|
329
329
|
self.dropout = nn.Dropout(dropout_rate)
|
330
330
|
|
331
|
-
def forward(
|
332
|
-
self, hidden_states: torch.FloatTensor, conditioning_emb: Optional[torch.FloatTensor] = None
|
333
|
-
) -> torch.FloatTensor:
|
331
|
+
def forward(self, hidden_states: torch.Tensor, conditioning_emb: Optional[torch.Tensor] = None) -> torch.Tensor:
|
334
332
|
forwarded_states = self.layer_norm(hidden_states)
|
335
333
|
if conditioning_emb is not None:
|
336
334
|
forwarded_states = self.film(forwarded_states, conditioning_emb)
|
@@ -361,7 +359,7 @@ class T5DenseGatedActDense(nn.Module):
|
|
361
359
|
self.dropout = nn.Dropout(dropout_rate)
|
362
360
|
self.act = NewGELUActivation()
|
363
361
|
|
364
|
-
def forward(self, hidden_states: torch.
|
362
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
365
363
|
hidden_gelu = self.act(self.wi_0(hidden_states))
|
366
364
|
hidden_linear = self.wi_1(hidden_states)
|
367
365
|
hidden_states = hidden_gelu * hidden_linear
|
@@ -390,7 +388,7 @@ class T5LayerNorm(nn.Module):
|
|
390
388
|
self.weight = nn.Parameter(torch.ones(hidden_size))
|
391
389
|
self.variance_epsilon = eps
|
392
390
|
|
393
|
-
def forward(self, hidden_states: torch.
|
391
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
394
392
|
# T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
|
395
393
|
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated
|
396
394
|
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
|
@@ -431,7 +429,7 @@ class T5FiLMLayer(nn.Module):
|
|
431
429
|
super().__init__()
|
432
430
|
self.scale_bias = nn.Linear(in_features, out_features * 2, bias=False)
|
433
431
|
|
434
|
-
def forward(self, x: torch.
|
432
|
+
def forward(self, x: torch.Tensor, conditioning_emb: torch.Tensor) -> torch.Tensor:
|
435
433
|
emb = self.scale_bias(conditioning_emb)
|
436
434
|
scale, shift = torch.chunk(emb, 2, -1)
|
437
435
|
x = x * (1 + scale) + shift
|