diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1106 @@
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
17
+
18
+ import torch
19
+ import torch.nn.functional as F
20
+ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
21
+
22
+ from ...image_processor import PipelineImageInput
23
+ from ...loaders import IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
24
+ from ...models import (
25
+ AutoencoderKL,
26
+ ControlNetModel,
27
+ ImageProjection,
28
+ MultiControlNetModel,
29
+ UNet2DConditionModel,
30
+ UNetMotionModel,
31
+ )
32
+ from ...models.lora import adjust_lora_scale_text_encoder
33
+ from ...models.unets.unet_motion_model import MotionAdapter
34
+ from ...schedulers import KarrasDiffusionSchedulers
35
+ from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
36
+ from ...utils.torch_utils import is_compiled_module, randn_tensor
37
+ from ...video_processor import VideoProcessor
38
+ from ..free_init_utils import FreeInitMixin
39
+ from ..free_noise_utils import AnimateDiffFreeNoiseMixin
40
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
41
+ from .pipeline_output import AnimateDiffPipelineOutput
42
+
43
+
44
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
45
+
46
+ EXAMPLE_DOC_STRING = """
47
+ Examples:
48
+ ```py
49
+ >>> import torch
50
+ >>> from diffusers import (
51
+ ... AnimateDiffControlNetPipeline,
52
+ ... AutoencoderKL,
53
+ ... ControlNetModel,
54
+ ... MotionAdapter,
55
+ ... LCMScheduler,
56
+ ... )
57
+ >>> from diffusers.utils import export_to_gif, load_video
58
+
59
+ >>> # Additionally, you will need a preprocess videos before they can be used with the ControlNet
60
+ >>> # HF maintains just the right package for it: `pip install controlnet_aux`
61
+ >>> from controlnet_aux.processor import ZoeDetector
62
+
63
+ >>> # Download controlnets from https://huggingface.co/lllyasviel/ControlNet-v1-1 to use .from_single_file
64
+ >>> # Download Diffusers-format controlnets, such as https://huggingface.co/lllyasviel/sd-controlnet-depth, to use .from_pretrained()
65
+ >>> controlnet = ControlNetModel.from_single_file("control_v11f1p_sd15_depth.pth", torch_dtype=torch.float16)
66
+
67
+ >>> # We use AnimateLCM for this example but one can use the original motion adapters as well (for example, https://huggingface.co/guoyww/animatediff-motion-adapter-v1-5-3)
68
+ >>> motion_adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM")
69
+
70
+ >>> vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
71
+ >>> pipe: AnimateDiffControlNetPipeline = AnimateDiffControlNetPipeline.from_pretrained(
72
+ ... "SG161222/Realistic_Vision_V5.1_noVAE",
73
+ ... motion_adapter=motion_adapter,
74
+ ... controlnet=controlnet,
75
+ ... vae=vae,
76
+ ... ).to(device="cuda", dtype=torch.float16)
77
+ >>> pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear")
78
+ >>> pipe.load_lora_weights(
79
+ ... "wangfuyun/AnimateLCM", weight_name="AnimateLCM_sd15_t2v_lora.safetensors", adapter_name="lcm-lora"
80
+ ... )
81
+ >>> pipe.set_adapters(["lcm-lora"], [0.8])
82
+
83
+ >>> depth_detector = ZoeDetector.from_pretrained("lllyasviel/Annotators").to("cuda")
84
+ >>> video = load_video(
85
+ ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-vid2vid-input-1.gif"
86
+ ... )
87
+ >>> conditioning_frames = []
88
+
89
+ >>> with pipe.progress_bar(total=len(video)) as progress_bar:
90
+ ... for frame in video:
91
+ ... conditioning_frames.append(depth_detector(frame))
92
+ ... progress_bar.update()
93
+
94
+ >>> prompt = "a panda, playing a guitar, sitting in a pink boat, in the ocean, mountains in background, realistic, high quality"
95
+ >>> negative_prompt = "bad quality, worst quality"
96
+
97
+ >>> video = pipe(
98
+ ... prompt=prompt,
99
+ ... negative_prompt=negative_prompt,
100
+ ... num_frames=len(video),
101
+ ... num_inference_steps=10,
102
+ ... guidance_scale=2.0,
103
+ ... conditioning_frames=conditioning_frames,
104
+ ... generator=torch.Generator().manual_seed(42),
105
+ ... ).frames[0]
106
+
107
+ >>> export_to_gif(video, "animatediff_controlnet.gif", fps=8)
108
+ ```
109
+ """
110
+
111
+
112
+ class AnimateDiffControlNetPipeline(
113
+ DiffusionPipeline,
114
+ StableDiffusionMixin,
115
+ TextualInversionLoaderMixin,
116
+ IPAdapterMixin,
117
+ StableDiffusionLoraLoaderMixin,
118
+ FreeInitMixin,
119
+ AnimateDiffFreeNoiseMixin,
120
+ ):
121
+ r"""
122
+ Pipeline for text-to-video generation with ControlNet guidance.
123
+
124
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
125
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
126
+
127
+ The pipeline also inherits the following loading methods:
128
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
129
+ - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
130
+ - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
131
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
132
+
133
+ Args:
134
+ vae ([`AutoencoderKL`]):
135
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
136
+ text_encoder ([`CLIPTextModel`]):
137
+ Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
138
+ tokenizer (`CLIPTokenizer`):
139
+ A [`~transformers.CLIPTokenizer`] to tokenize text.
140
+ unet ([`UNet2DConditionModel`]):
141
+ A [`UNet2DConditionModel`] used to create a UNetMotionModel to denoise the encoded video latents.
142
+ motion_adapter ([`MotionAdapter`]):
143
+ A [`MotionAdapter`] to be used in combination with `unet` to denoise the encoded video latents.
144
+ scheduler ([`SchedulerMixin`]):
145
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
146
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
147
+ """
148
+
149
+ model_cpu_offload_seq = "text_encoder->unet->vae"
150
+ _optional_components = ["feature_extractor", "image_encoder"]
151
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
152
+
153
+ def __init__(
154
+ self,
155
+ vae: AutoencoderKL,
156
+ text_encoder: CLIPTextModel,
157
+ tokenizer: CLIPTokenizer,
158
+ unet: Union[UNet2DConditionModel, UNetMotionModel],
159
+ motion_adapter: MotionAdapter,
160
+ controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
161
+ scheduler: KarrasDiffusionSchedulers,
162
+ feature_extractor: Optional[CLIPImageProcessor] = None,
163
+ image_encoder: Optional[CLIPVisionModelWithProjection] = None,
164
+ ):
165
+ super().__init__()
166
+ if isinstance(unet, UNet2DConditionModel):
167
+ unet = UNetMotionModel.from_unet2d(unet, motion_adapter)
168
+
169
+ if isinstance(controlnet, (list, tuple)):
170
+ controlnet = MultiControlNetModel(controlnet)
171
+
172
+ self.register_modules(
173
+ vae=vae,
174
+ text_encoder=text_encoder,
175
+ tokenizer=tokenizer,
176
+ unet=unet,
177
+ motion_adapter=motion_adapter,
178
+ controlnet=controlnet,
179
+ scheduler=scheduler,
180
+ feature_extractor=feature_extractor,
181
+ image_encoder=image_encoder,
182
+ )
183
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
184
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor)
185
+ self.control_video_processor = VideoProcessor(
186
+ vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
187
+ )
188
+
189
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt with num_images_per_prompt -> num_videos_per_prompt
190
+ def encode_prompt(
191
+ self,
192
+ prompt,
193
+ device,
194
+ num_images_per_prompt,
195
+ do_classifier_free_guidance,
196
+ negative_prompt=None,
197
+ prompt_embeds: Optional[torch.Tensor] = None,
198
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
199
+ lora_scale: Optional[float] = None,
200
+ clip_skip: Optional[int] = None,
201
+ ):
202
+ r"""
203
+ Encodes the prompt into text encoder hidden states.
204
+
205
+ Args:
206
+ prompt (`str` or `List[str]`, *optional*):
207
+ prompt to be encoded
208
+ device: (`torch.device`):
209
+ torch device
210
+ num_images_per_prompt (`int`):
211
+ number of images that should be generated per prompt
212
+ do_classifier_free_guidance (`bool`):
213
+ whether to use classifier free guidance or not
214
+ negative_prompt (`str` or `List[str]`, *optional*):
215
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
216
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
217
+ less than `1`).
218
+ prompt_embeds (`torch.Tensor`, *optional*):
219
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
220
+ provided, text embeddings will be generated from `prompt` input argument.
221
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
222
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
223
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
224
+ argument.
225
+ lora_scale (`float`, *optional*):
226
+ A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
227
+ clip_skip (`int`, *optional*):
228
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
229
+ the output of the pre-final layer will be used for computing the prompt embeddings.
230
+ """
231
+ # set lora scale so that monkey patched LoRA
232
+ # function of text encoder can correctly access it
233
+ if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
234
+ self._lora_scale = lora_scale
235
+
236
+ # dynamically adjust the LoRA scale
237
+ if not USE_PEFT_BACKEND:
238
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
239
+ else:
240
+ scale_lora_layers(self.text_encoder, lora_scale)
241
+
242
+ if prompt is not None and isinstance(prompt, str):
243
+ batch_size = 1
244
+ elif prompt is not None and isinstance(prompt, list):
245
+ batch_size = len(prompt)
246
+ else:
247
+ batch_size = prompt_embeds.shape[0]
248
+
249
+ if prompt_embeds is None:
250
+ # textual inversion: process multi-vector tokens if necessary
251
+ if isinstance(self, TextualInversionLoaderMixin):
252
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
253
+
254
+ text_inputs = self.tokenizer(
255
+ prompt,
256
+ padding="max_length",
257
+ max_length=self.tokenizer.model_max_length,
258
+ truncation=True,
259
+ return_tensors="pt",
260
+ )
261
+ text_input_ids = text_inputs.input_ids
262
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
263
+
264
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
265
+ text_input_ids, untruncated_ids
266
+ ):
267
+ removed_text = self.tokenizer.batch_decode(
268
+ untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
269
+ )
270
+ logger.warning(
271
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
272
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
273
+ )
274
+
275
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
276
+ attention_mask = text_inputs.attention_mask.to(device)
277
+ else:
278
+ attention_mask = None
279
+
280
+ if clip_skip is None:
281
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
282
+ prompt_embeds = prompt_embeds[0]
283
+ else:
284
+ prompt_embeds = self.text_encoder(
285
+ text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
286
+ )
287
+ # Access the `hidden_states` first, that contains a tuple of
288
+ # all the hidden states from the encoder layers. Then index into
289
+ # the tuple to access the hidden states from the desired layer.
290
+ prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
291
+ # We also need to apply the final LayerNorm here to not mess with the
292
+ # representations. The `last_hidden_states` that we typically use for
293
+ # obtaining the final prompt representations passes through the LayerNorm
294
+ # layer.
295
+ prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
296
+
297
+ if self.text_encoder is not None:
298
+ prompt_embeds_dtype = self.text_encoder.dtype
299
+ elif self.unet is not None:
300
+ prompt_embeds_dtype = self.unet.dtype
301
+ else:
302
+ prompt_embeds_dtype = prompt_embeds.dtype
303
+
304
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
305
+
306
+ bs_embed, seq_len, _ = prompt_embeds.shape
307
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
308
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
309
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
310
+
311
+ # get unconditional embeddings for classifier free guidance
312
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
313
+ uncond_tokens: List[str]
314
+ if negative_prompt is None:
315
+ uncond_tokens = [""] * batch_size
316
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
317
+ raise TypeError(
318
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
319
+ f" {type(prompt)}."
320
+ )
321
+ elif isinstance(negative_prompt, str):
322
+ uncond_tokens = [negative_prompt]
323
+ elif batch_size != len(negative_prompt):
324
+ raise ValueError(
325
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
326
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
327
+ " the batch size of `prompt`."
328
+ )
329
+ else:
330
+ uncond_tokens = negative_prompt
331
+
332
+ # textual inversion: process multi-vector tokens if necessary
333
+ if isinstance(self, TextualInversionLoaderMixin):
334
+ uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
335
+
336
+ max_length = prompt_embeds.shape[1]
337
+ uncond_input = self.tokenizer(
338
+ uncond_tokens,
339
+ padding="max_length",
340
+ max_length=max_length,
341
+ truncation=True,
342
+ return_tensors="pt",
343
+ )
344
+
345
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
346
+ attention_mask = uncond_input.attention_mask.to(device)
347
+ else:
348
+ attention_mask = None
349
+
350
+ negative_prompt_embeds = self.text_encoder(
351
+ uncond_input.input_ids.to(device),
352
+ attention_mask=attention_mask,
353
+ )
354
+ negative_prompt_embeds = negative_prompt_embeds[0]
355
+
356
+ if do_classifier_free_guidance:
357
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
358
+ seq_len = negative_prompt_embeds.shape[1]
359
+
360
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
361
+
362
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
363
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
364
+
365
+ if self.text_encoder is not None:
366
+ if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
367
+ # Retrieve the original scale by scaling back the LoRA layers
368
+ unscale_lora_layers(self.text_encoder, lora_scale)
369
+
370
+ return prompt_embeds, negative_prompt_embeds
371
+
372
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
373
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
374
+ dtype = next(self.image_encoder.parameters()).dtype
375
+
376
+ if not isinstance(image, torch.Tensor):
377
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
378
+
379
+ image = image.to(device=device, dtype=dtype)
380
+ if output_hidden_states:
381
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
382
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
383
+ uncond_image_enc_hidden_states = self.image_encoder(
384
+ torch.zeros_like(image), output_hidden_states=True
385
+ ).hidden_states[-2]
386
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
387
+ num_images_per_prompt, dim=0
388
+ )
389
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
390
+ else:
391
+ image_embeds = self.image_encoder(image).image_embeds
392
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
393
+ uncond_image_embeds = torch.zeros_like(image_embeds)
394
+
395
+ return image_embeds, uncond_image_embeds
396
+
397
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
398
+ def prepare_ip_adapter_image_embeds(
399
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
400
+ ):
401
+ image_embeds = []
402
+ if do_classifier_free_guidance:
403
+ negative_image_embeds = []
404
+ if ip_adapter_image_embeds is None:
405
+ if not isinstance(ip_adapter_image, list):
406
+ ip_adapter_image = [ip_adapter_image]
407
+
408
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
409
+ raise ValueError(
410
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
411
+ )
412
+
413
+ for single_ip_adapter_image, image_proj_layer in zip(
414
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
415
+ ):
416
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
417
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
418
+ single_ip_adapter_image, device, 1, output_hidden_state
419
+ )
420
+
421
+ image_embeds.append(single_image_embeds[None, :])
422
+ if do_classifier_free_guidance:
423
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
424
+ else:
425
+ for single_image_embeds in ip_adapter_image_embeds:
426
+ if do_classifier_free_guidance:
427
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
428
+ negative_image_embeds.append(single_negative_image_embeds)
429
+ image_embeds.append(single_image_embeds)
430
+
431
+ ip_adapter_image_embeds = []
432
+ for i, single_image_embeds in enumerate(image_embeds):
433
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
434
+ if do_classifier_free_guidance:
435
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
436
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
437
+
438
+ single_image_embeds = single_image_embeds.to(device=device)
439
+ ip_adapter_image_embeds.append(single_image_embeds)
440
+
441
+ return ip_adapter_image_embeds
442
+
443
+ # Copied from diffusers.pipelines.animatediff.pipeline_animatediff.AnimateDiffPipeline.decode_latents
444
+ def decode_latents(self, latents, decode_chunk_size: int = 16):
445
+ latents = 1 / self.vae.config.scaling_factor * latents
446
+
447
+ batch_size, channels, num_frames, height, width = latents.shape
448
+ latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)
449
+
450
+ video = []
451
+ for i in range(0, latents.shape[0], decode_chunk_size):
452
+ batch_latents = latents[i : i + decode_chunk_size]
453
+ batch_latents = self.vae.decode(batch_latents).sample
454
+ video.append(batch_latents)
455
+
456
+ video = torch.cat(video)
457
+ video = video[None, :].reshape((batch_size, num_frames, -1) + video.shape[2:]).permute(0, 2, 1, 3, 4)
458
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
459
+ video = video.float()
460
+ return video
461
+
462
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
463
+ def prepare_extra_step_kwargs(self, generator, eta):
464
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
465
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
466
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
467
+ # and should be between [0, 1]
468
+
469
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
470
+ extra_step_kwargs = {}
471
+ if accepts_eta:
472
+ extra_step_kwargs["eta"] = eta
473
+
474
+ # check if the scheduler accepts generator
475
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
476
+ if accepts_generator:
477
+ extra_step_kwargs["generator"] = generator
478
+ return extra_step_kwargs
479
+
480
+ def check_inputs(
481
+ self,
482
+ prompt,
483
+ height,
484
+ width,
485
+ num_frames,
486
+ negative_prompt=None,
487
+ prompt_embeds=None,
488
+ negative_prompt_embeds=None,
489
+ callback_on_step_end_tensor_inputs=None,
490
+ video=None,
491
+ controlnet_conditioning_scale=1.0,
492
+ control_guidance_start=0.0,
493
+ control_guidance_end=1.0,
494
+ ):
495
+ if height % 8 != 0 or width % 8 != 0:
496
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
497
+
498
+ if callback_on_step_end_tensor_inputs is not None and not all(
499
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
500
+ ):
501
+ raise ValueError(
502
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
503
+ )
504
+
505
+ if prompt is not None and prompt_embeds is not None:
506
+ raise ValueError(
507
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
508
+ " only forward one of the two."
509
+ )
510
+ elif prompt is None and prompt_embeds is None:
511
+ raise ValueError(
512
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
513
+ )
514
+ elif prompt is not None and not isinstance(prompt, (str, list, dict)):
515
+ raise ValueError(f"`prompt` has to be of type `str`, `list` or `dict` but is {type(prompt)}")
516
+
517
+ if negative_prompt is not None and negative_prompt_embeds is not None:
518
+ raise ValueError(
519
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
520
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
521
+ )
522
+
523
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
524
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
525
+ raise ValueError(
526
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
527
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
528
+ f" {negative_prompt_embeds.shape}."
529
+ )
530
+
531
+ # `prompt` needs more sophisticated handling when there are multiple
532
+ # conditionings.
533
+ if isinstance(self.controlnet, MultiControlNetModel):
534
+ if isinstance(prompt, list):
535
+ logger.warning(
536
+ f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
537
+ " prompts. The conditionings will be fixed across the prompts."
538
+ )
539
+
540
+ # Check `image`
541
+ is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
542
+ self.controlnet, torch._dynamo.eval_frame.OptimizedModule
543
+ )
544
+ if (
545
+ isinstance(self.controlnet, ControlNetModel)
546
+ or is_compiled
547
+ and isinstance(self.controlnet._orig_mod, ControlNetModel)
548
+ ):
549
+ if not isinstance(video, list):
550
+ raise TypeError(f"For single controlnet, `image` must be of type `list` but got {type(video)}")
551
+ if len(video) != num_frames:
552
+ raise ValueError(f"Excepted image to have length {num_frames} but got {len(video)=}")
553
+ elif (
554
+ isinstance(self.controlnet, MultiControlNetModel)
555
+ or is_compiled
556
+ and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
557
+ ):
558
+ if not isinstance(video, list) or not isinstance(video[0], list):
559
+ raise TypeError(f"For multiple controlnets: `image` must be type list of lists but got {type(video)=}")
560
+ if len(video[0]) != num_frames:
561
+ raise ValueError(f"Expected length of image sublist as {num_frames} but got {len(video[0])=}")
562
+ if any(len(img) != len(video[0]) for img in video):
563
+ raise ValueError("All conditioning frame batches for multicontrolnet must be same size")
564
+ else:
565
+ assert False
566
+
567
+ # Check `controlnet_conditioning_scale`
568
+ if (
569
+ isinstance(self.controlnet, ControlNetModel)
570
+ or is_compiled
571
+ and isinstance(self.controlnet._orig_mod, ControlNetModel)
572
+ ):
573
+ if not isinstance(controlnet_conditioning_scale, float):
574
+ raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
575
+ elif (
576
+ isinstance(self.controlnet, MultiControlNetModel)
577
+ or is_compiled
578
+ and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
579
+ ):
580
+ if isinstance(controlnet_conditioning_scale, list):
581
+ if any(isinstance(i, list) for i in controlnet_conditioning_scale):
582
+ raise ValueError("A single batch of multiple conditionings are supported at the moment.")
583
+ elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
584
+ self.controlnet.nets
585
+ ):
586
+ raise ValueError(
587
+ "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
588
+ " the same length as the number of controlnets"
589
+ )
590
+ else:
591
+ assert False
592
+
593
+ if not isinstance(control_guidance_start, (tuple, list)):
594
+ control_guidance_start = [control_guidance_start]
595
+
596
+ if not isinstance(control_guidance_end, (tuple, list)):
597
+ control_guidance_end = [control_guidance_end]
598
+
599
+ if len(control_guidance_start) != len(control_guidance_end):
600
+ raise ValueError(
601
+ f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
602
+ )
603
+
604
+ if isinstance(self.controlnet, MultiControlNetModel):
605
+ if len(control_guidance_start) != len(self.controlnet.nets):
606
+ raise ValueError(
607
+ f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
608
+ )
609
+
610
+ for start, end in zip(control_guidance_start, control_guidance_end):
611
+ if start >= end:
612
+ raise ValueError(
613
+ f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
614
+ )
615
+ if start < 0.0:
616
+ raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
617
+ if end > 1.0:
618
+ raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
619
+
620
+ # Copied from diffusers.pipelines.animatediff.pipeline_animatediff.AnimateDiffPipeline.prepare_latents
621
+ def prepare_latents(
622
+ self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
623
+ ):
624
+ # If FreeNoise is enabled, generate latents as described in Equation (7) of [FreeNoise](https://arxiv.org/abs/2310.15169)
625
+ if self.free_noise_enabled:
626
+ latents = self._prepare_latents_free_noise(
627
+ batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents
628
+ )
629
+
630
+ if isinstance(generator, list) and len(generator) != batch_size:
631
+ raise ValueError(
632
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
633
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
634
+ )
635
+
636
+ shape = (
637
+ batch_size,
638
+ num_channels_latents,
639
+ num_frames,
640
+ height // self.vae_scale_factor,
641
+ width // self.vae_scale_factor,
642
+ )
643
+
644
+ if latents is None:
645
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
646
+ else:
647
+ latents = latents.to(device)
648
+
649
+ # scale the initial noise by the standard deviation required by the scheduler
650
+ latents = latents * self.scheduler.init_noise_sigma
651
+ return latents
652
+
653
+ def prepare_video(
654
+ self,
655
+ video,
656
+ width,
657
+ height,
658
+ batch_size,
659
+ num_videos_per_prompt,
660
+ device,
661
+ dtype,
662
+ do_classifier_free_guidance=False,
663
+ guess_mode=False,
664
+ ):
665
+ video = self.control_video_processor.preprocess_video(video, height=height, width=width).to(
666
+ dtype=torch.float32
667
+ )
668
+ video = video.permute(0, 2, 1, 3, 4).flatten(0, 1)
669
+ video_batch_size = video.shape[0]
670
+
671
+ if video_batch_size == 1:
672
+ repeat_by = batch_size
673
+ else:
674
+ # image batch size is the same as prompt batch size
675
+ repeat_by = num_videos_per_prompt
676
+
677
+ video = video.repeat_interleave(repeat_by, dim=0)
678
+ video = video.to(device=device, dtype=dtype)
679
+
680
+ if do_classifier_free_guidance and not guess_mode:
681
+ video = torch.cat([video] * 2)
682
+
683
+ return video
684
+
685
+ @property
686
+ def guidance_scale(self):
687
+ return self._guidance_scale
688
+
689
+ @property
690
+ def clip_skip(self):
691
+ return self._clip_skip
692
+
693
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
694
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
695
+ # corresponds to doing no classifier free guidance.
696
+ @property
697
+ def do_classifier_free_guidance(self):
698
+ return self._guidance_scale > 1
699
+
700
+ @property
701
+ def cross_attention_kwargs(self):
702
+ return self._cross_attention_kwargs
703
+
704
+ @property
705
+ def num_timesteps(self):
706
+ return self._num_timesteps
707
+
708
+ @property
709
+ def interrupt(self):
710
+ return self._interrupt
711
+
712
+ @torch.no_grad()
713
+ def __call__(
714
+ self,
715
+ prompt: Union[str, List[str]] = None,
716
+ num_frames: Optional[int] = 16,
717
+ height: Optional[int] = None,
718
+ width: Optional[int] = None,
719
+ num_inference_steps: int = 50,
720
+ guidance_scale: float = 7.5,
721
+ negative_prompt: Optional[Union[str, List[str]]] = None,
722
+ num_videos_per_prompt: Optional[int] = 1,
723
+ eta: float = 0.0,
724
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
725
+ latents: Optional[torch.Tensor] = None,
726
+ prompt_embeds: Optional[torch.Tensor] = None,
727
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
728
+ ip_adapter_image: Optional[PipelineImageInput] = None,
729
+ ip_adapter_image_embeds: Optional[PipelineImageInput] = None,
730
+ conditioning_frames: Optional[List[PipelineImageInput]] = None,
731
+ output_type: Optional[str] = "pil",
732
+ return_dict: bool = True,
733
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
734
+ controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
735
+ guess_mode: bool = False,
736
+ control_guidance_start: Union[float, List[float]] = 0.0,
737
+ control_guidance_end: Union[float, List[float]] = 1.0,
738
+ clip_skip: Optional[int] = None,
739
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
740
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
741
+ decode_chunk_size: int = 16,
742
+ ):
743
+ r"""
744
+ The call function to the pipeline for generation.
745
+
746
+ Args:
747
+ prompt (`str` or `List[str]`, *optional*):
748
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
749
+ height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
750
+ The height in pixels of the generated video.
751
+ width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
752
+ The width in pixels of the generated video.
753
+ num_frames (`int`, *optional*, defaults to 16):
754
+ The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
755
+ amounts to 2 seconds of video.
756
+ num_inference_steps (`int`, *optional*, defaults to 50):
757
+ The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
758
+ expense of slower inference.
759
+ guidance_scale (`float`, *optional*, defaults to 7.5):
760
+ A higher guidance scale value encourages the model to generate images closely linked to the text
761
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
762
+ negative_prompt (`str` or `List[str]`, *optional*):
763
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
764
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
765
+ eta (`float`, *optional*, defaults to 0.0):
766
+ Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
767
+ to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
768
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
769
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
770
+ generation deterministic.
771
+ latents (`torch.Tensor`, *optional*):
772
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
773
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
774
+ tensor is generated by sampling using the supplied random `generator`. Latents should be of shape
775
+ `(batch_size, num_channel, num_frames, height, width)`.
776
+ prompt_embeds (`torch.Tensor`, *optional*):
777
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
778
+ provided, text embeddings are generated from the `prompt` input argument.
779
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
780
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
781
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
782
+ ip_adapter_image (`PipelineImageInput`, *optional*):
783
+ Optional image input to work with IP Adapters.
784
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
785
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
786
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
787
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
788
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
789
+ conditioning_frames (`List[PipelineImageInput]`, *optional*):
790
+ The ControlNet input condition to provide guidance to the `unet` for generation. If multiple
791
+ ControlNets are specified, images must be passed as a list such that each element of the list can be
792
+ correctly batched for input to a single ControlNet.
793
+ output_type (`str`, *optional*, defaults to `"pil"`):
794
+ The output format of the generated video. Choose between `torch.Tensor`, `PIL.Image` or `np.array`.
795
+ return_dict (`bool`, *optional*, defaults to `True`):
796
+ Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead
797
+ of a plain tuple.
798
+ cross_attention_kwargs (`dict`, *optional*):
799
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
800
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
801
+ controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
802
+ The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
803
+ to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
804
+ the corresponding scale as a list.
805
+ guess_mode (`bool`, *optional*, defaults to `False`):
806
+ The ControlNet encoder tries to recognize the content of the input image even if you remove all
807
+ prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
808
+ control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
809
+ The percentage of total steps at which the ControlNet starts applying.
810
+ control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
811
+ The percentage of total steps at which the ControlNet stops applying.
812
+ clip_skip (`int`, *optional*):
813
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
814
+ the output of the pre-final layer will be used for computing the prompt embeddings.
815
+ callback_on_step_end (`Callable`, *optional*):
816
+ A function that calls at the end of each denoising steps during the inference. The function is called
817
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
818
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
819
+ `callback_on_step_end_tensor_inputs`.
820
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
821
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
822
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
823
+ `._callback_tensor_inputs` attribute of your pipeline class.
824
+
825
+ Examples:
826
+
827
+ Returns:
828
+ [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] or `tuple`:
829
+ If `return_dict` is `True`, [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] is
830
+ returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
831
+ """
832
+ controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
833
+
834
+ # align format for control guidance
835
+ if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
836
+ control_guidance_start = len(control_guidance_end) * [control_guidance_start]
837
+ elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
838
+ control_guidance_end = len(control_guidance_start) * [control_guidance_end]
839
+ elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
840
+ mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
841
+ control_guidance_start, control_guidance_end = (
842
+ mult * [control_guidance_start],
843
+ mult * [control_guidance_end],
844
+ )
845
+
846
+ # 0. Default height and width to unet
847
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
848
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
849
+
850
+ num_videos_per_prompt = 1
851
+
852
+ # 1. Check inputs. Raise error if not correct
853
+ self.check_inputs(
854
+ prompt=prompt,
855
+ height=height,
856
+ width=width,
857
+ num_frames=num_frames,
858
+ negative_prompt=negative_prompt,
859
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
860
+ prompt_embeds=prompt_embeds,
861
+ negative_prompt_embeds=negative_prompt_embeds,
862
+ video=conditioning_frames,
863
+ controlnet_conditioning_scale=controlnet_conditioning_scale,
864
+ control_guidance_start=control_guidance_start,
865
+ control_guidance_end=control_guidance_end,
866
+ )
867
+
868
+ self._guidance_scale = guidance_scale
869
+ self._clip_skip = clip_skip
870
+ self._cross_attention_kwargs = cross_attention_kwargs
871
+ self._interrupt = False
872
+
873
+ # 2. Define call parameters
874
+ if prompt is not None and isinstance(prompt, (str, dict)):
875
+ batch_size = 1
876
+ elif prompt is not None and isinstance(prompt, list):
877
+ batch_size = len(prompt)
878
+ else:
879
+ batch_size = prompt_embeds.shape[0]
880
+
881
+ device = self._execution_device
882
+
883
+ if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
884
+ controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
885
+
886
+ global_pool_conditions = (
887
+ controlnet.config.global_pool_conditions
888
+ if isinstance(controlnet, ControlNetModel)
889
+ else controlnet.nets[0].config.global_pool_conditions
890
+ )
891
+ guess_mode = guess_mode or global_pool_conditions
892
+
893
+ # 3. Encode input prompt
894
+ text_encoder_lora_scale = (
895
+ cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
896
+ )
897
+ if self.free_noise_enabled:
898
+ prompt_embeds, negative_prompt_embeds = self._encode_prompt_free_noise(
899
+ prompt=prompt,
900
+ num_frames=num_frames,
901
+ device=device,
902
+ num_videos_per_prompt=num_videos_per_prompt,
903
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
904
+ negative_prompt=negative_prompt,
905
+ prompt_embeds=prompt_embeds,
906
+ negative_prompt_embeds=negative_prompt_embeds,
907
+ lora_scale=text_encoder_lora_scale,
908
+ clip_skip=self.clip_skip,
909
+ )
910
+ else:
911
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
912
+ prompt,
913
+ device,
914
+ num_videos_per_prompt,
915
+ self.do_classifier_free_guidance,
916
+ negative_prompt,
917
+ prompt_embeds=prompt_embeds,
918
+ negative_prompt_embeds=negative_prompt_embeds,
919
+ lora_scale=text_encoder_lora_scale,
920
+ clip_skip=self.clip_skip,
921
+ )
922
+
923
+ # For classifier free guidance, we need to do two forward passes.
924
+ # Here we concatenate the unconditional and text embeddings into a single batch
925
+ # to avoid doing two forward passes
926
+ if self.do_classifier_free_guidance:
927
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
928
+
929
+ prompt_embeds = prompt_embeds.repeat_interleave(repeats=num_frames, dim=0)
930
+
931
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
932
+ image_embeds = self.prepare_ip_adapter_image_embeds(
933
+ ip_adapter_image,
934
+ ip_adapter_image_embeds,
935
+ device,
936
+ batch_size * num_videos_per_prompt,
937
+ self.do_classifier_free_guidance,
938
+ )
939
+
940
+ if isinstance(controlnet, ControlNetModel):
941
+ conditioning_frames = self.prepare_video(
942
+ video=conditioning_frames,
943
+ width=width,
944
+ height=height,
945
+ batch_size=batch_size * num_videos_per_prompt * num_frames,
946
+ num_videos_per_prompt=num_videos_per_prompt,
947
+ device=device,
948
+ dtype=controlnet.dtype,
949
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
950
+ guess_mode=guess_mode,
951
+ )
952
+ elif isinstance(controlnet, MultiControlNetModel):
953
+ cond_prepared_videos = []
954
+ for frame_ in conditioning_frames:
955
+ prepared_video = self.prepare_video(
956
+ video=frame_,
957
+ width=width,
958
+ height=height,
959
+ batch_size=batch_size * num_videos_per_prompt * num_frames,
960
+ num_videos_per_prompt=num_videos_per_prompt,
961
+ device=device,
962
+ dtype=controlnet.dtype,
963
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
964
+ guess_mode=guess_mode,
965
+ )
966
+ cond_prepared_videos.append(prepared_video)
967
+ conditioning_frames = cond_prepared_videos
968
+ else:
969
+ assert False
970
+
971
+ # 4. Prepare timesteps
972
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
973
+ timesteps = self.scheduler.timesteps
974
+
975
+ # 5. Prepare latent variables
976
+ num_channels_latents = self.unet.config.in_channels
977
+ latents = self.prepare_latents(
978
+ batch_size * num_videos_per_prompt,
979
+ num_channels_latents,
980
+ num_frames,
981
+ height,
982
+ width,
983
+ prompt_embeds.dtype,
984
+ device,
985
+ generator,
986
+ latents,
987
+ )
988
+
989
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
990
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
991
+
992
+ # 7. Add image embeds for IP-Adapter
993
+ added_cond_kwargs = (
994
+ {"image_embeds": image_embeds}
995
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None
996
+ else None
997
+ )
998
+
999
+ # 7.1 Create tensor stating which controlnets to keep
1000
+ controlnet_keep = []
1001
+ for i in range(len(timesteps)):
1002
+ keeps = [
1003
+ 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
1004
+ for s, e in zip(control_guidance_start, control_guidance_end)
1005
+ ]
1006
+ controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
1007
+
1008
+ num_free_init_iters = self._free_init_num_iters if self.free_init_enabled else 1
1009
+ for free_init_iter in range(num_free_init_iters):
1010
+ if self.free_init_enabled:
1011
+ latents, timesteps = self._apply_free_init(
1012
+ latents, free_init_iter, num_inference_steps, device, latents.dtype, generator
1013
+ )
1014
+
1015
+ self._num_timesteps = len(timesteps)
1016
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
1017
+
1018
+ # 8. Denoising loop
1019
+ with self.progress_bar(total=self._num_timesteps) as progress_bar:
1020
+ for i, t in enumerate(timesteps):
1021
+ if self.interrupt:
1022
+ continue
1023
+
1024
+ # expand the latents if we are doing classifier free guidance
1025
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1026
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1027
+
1028
+ if guess_mode and self.do_classifier_free_guidance:
1029
+ # Infer ControlNet only for the conditional batch.
1030
+ control_model_input = latents
1031
+ control_model_input = self.scheduler.scale_model_input(control_model_input, t)
1032
+ controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
1033
+ else:
1034
+ control_model_input = latent_model_input
1035
+ controlnet_prompt_embeds = prompt_embeds
1036
+
1037
+ if isinstance(controlnet_keep[i], list):
1038
+ cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
1039
+ else:
1040
+ controlnet_cond_scale = controlnet_conditioning_scale
1041
+ if isinstance(controlnet_cond_scale, list):
1042
+ controlnet_cond_scale = controlnet_cond_scale[0]
1043
+ cond_scale = controlnet_cond_scale * controlnet_keep[i]
1044
+
1045
+ control_model_input = torch.transpose(control_model_input, 1, 2)
1046
+ control_model_input = control_model_input.reshape(
1047
+ (-1, control_model_input.shape[2], control_model_input.shape[3], control_model_input.shape[4])
1048
+ )
1049
+
1050
+ down_block_res_samples, mid_block_res_sample = self.controlnet(
1051
+ control_model_input,
1052
+ t,
1053
+ encoder_hidden_states=controlnet_prompt_embeds,
1054
+ controlnet_cond=conditioning_frames,
1055
+ conditioning_scale=cond_scale,
1056
+ guess_mode=guess_mode,
1057
+ return_dict=False,
1058
+ )
1059
+
1060
+ # predict the noise residual
1061
+ noise_pred = self.unet(
1062
+ latent_model_input,
1063
+ t,
1064
+ encoder_hidden_states=prompt_embeds,
1065
+ cross_attention_kwargs=self.cross_attention_kwargs,
1066
+ added_cond_kwargs=added_cond_kwargs,
1067
+ down_block_additional_residuals=down_block_res_samples,
1068
+ mid_block_additional_residual=mid_block_res_sample,
1069
+ ).sample
1070
+
1071
+ # perform guidance
1072
+ if self.do_classifier_free_guidance:
1073
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1074
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
1075
+
1076
+ # compute the previous noisy sample x_t -> x_t-1
1077
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
1078
+
1079
+ if callback_on_step_end is not None:
1080
+ callback_kwargs = {}
1081
+ for k in callback_on_step_end_tensor_inputs:
1082
+ callback_kwargs[k] = locals()[k]
1083
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1084
+
1085
+ latents = callback_outputs.pop("latents", latents)
1086
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1087
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1088
+
1089
+ # call the callback, if provided
1090
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1091
+ progress_bar.update()
1092
+
1093
+ # 9. Post processing
1094
+ if output_type == "latent":
1095
+ video = latents
1096
+ else:
1097
+ video_tensor = self.decode_latents(latents, decode_chunk_size)
1098
+ video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type)
1099
+
1100
+ # 10. Offload all models
1101
+ self.maybe_free_model_hooks()
1102
+
1103
+ if not return_dict:
1104
+ return (video,)
1105
+
1106
+ return AnimateDiffPipelineOutput(frames=video)