diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,916 @@
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import numpy as np
19
+ import PIL.Image
20
+ import torch
21
+ import torch.nn.functional as F
22
+ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
23
+
24
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
25
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
26
+ from ...loaders import FromSingleFileMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
27
+ from ...models import AutoencoderKL, ControlNetXSAdapter, UNet2DConditionModel, UNetControlNetXSModel
28
+ from ...models.lora import adjust_lora_scale_text_encoder
29
+ from ...schedulers import KarrasDiffusionSchedulers
30
+ from ...utils import (
31
+ USE_PEFT_BACKEND,
32
+ deprecate,
33
+ logging,
34
+ replace_example_docstring,
35
+ scale_lora_layers,
36
+ unscale_lora_layers,
37
+ )
38
+ from ...utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
39
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
40
+ from ..stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
41
+ from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
42
+
43
+
44
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
45
+
46
+
47
+ EXAMPLE_DOC_STRING = """
48
+ Examples:
49
+ ```py
50
+ >>> # !pip install opencv-python transformers accelerate
51
+ >>> from diffusers import StableDiffusionControlNetXSPipeline, ControlNetXSAdapter
52
+ >>> from diffusers.utils import load_image
53
+ >>> import numpy as np
54
+ >>> import torch
55
+
56
+ >>> import cv2
57
+ >>> from PIL import Image
58
+
59
+ >>> prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting"
60
+ >>> negative_prompt = "low quality, bad quality, sketches"
61
+
62
+ >>> # download an image
63
+ >>> image = load_image(
64
+ ... "https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"
65
+ ... )
66
+
67
+ >>> # initialize the models and pipeline
68
+ >>> controlnet_conditioning_scale = 0.5
69
+
70
+ >>> controlnet = ControlNetXSAdapter.from_pretrained(
71
+ ... "UmerHA/Testing-ConrolNetXS-SD2.1-canny", torch_dtype=torch.float16
72
+ ... )
73
+ >>> pipe = StableDiffusionControlNetXSPipeline.from_pretrained(
74
+ ... "stabilityai/stable-diffusion-2-1-base", controlnet=controlnet, torch_dtype=torch.float16
75
+ ... )
76
+ >>> pipe.enable_model_cpu_offload()
77
+
78
+ >>> # get canny image
79
+ >>> image = np.array(image)
80
+ >>> image = cv2.Canny(image, 100, 200)
81
+ >>> image = image[:, :, None]
82
+ >>> image = np.concatenate([image, image, image], axis=2)
83
+ >>> canny_image = Image.fromarray(image)
84
+ >>> # generate image
85
+ >>> image = pipe(
86
+ ... prompt, controlnet_conditioning_scale=controlnet_conditioning_scale, image=canny_image
87
+ ... ).images[0]
88
+ ```
89
+ """
90
+
91
+
92
+ class StableDiffusionControlNetXSPipeline(
93
+ DiffusionPipeline,
94
+ StableDiffusionMixin,
95
+ TextualInversionLoaderMixin,
96
+ StableDiffusionLoraLoaderMixin,
97
+ FromSingleFileMixin,
98
+ ):
99
+ r"""
100
+ Pipeline for text-to-image generation using Stable Diffusion with ControlNet-XS guidance.
101
+
102
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
103
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
104
+
105
+ The pipeline also inherits the following loading methods:
106
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
107
+ - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
108
+ - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
109
+ - [`loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
110
+
111
+ Args:
112
+ vae ([`AutoencoderKL`]):
113
+ Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
114
+ text_encoder ([`~transformers.CLIPTextModel`]):
115
+ Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
116
+ tokenizer ([`~transformers.CLIPTokenizer`]):
117
+ A `CLIPTokenizer` to tokenize text.
118
+ unet ([`UNet2DConditionModel`]):
119
+ A [`UNet2DConditionModel`] used to create a UNetControlNetXSModel to denoise the encoded image latents.
120
+ controlnet ([`ControlNetXSAdapter`]):
121
+ A [`ControlNetXSAdapter`] to be used in combination with `unet` to denoise the encoded image latents.
122
+ scheduler ([`SchedulerMixin`]):
123
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
124
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
125
+ safety_checker ([`StableDiffusionSafetyChecker`]):
126
+ Classification module that estimates whether generated images could be considered offensive or harmful.
127
+ Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
128
+ about a model's potential harms.
129
+ feature_extractor ([`~transformers.CLIPImageProcessor`]):
130
+ A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
131
+ """
132
+
133
+ model_cpu_offload_seq = "text_encoder->unet->vae"
134
+ _optional_components = ["safety_checker", "feature_extractor"]
135
+ _exclude_from_cpu_offload = ["safety_checker"]
136
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
137
+
138
+ def __init__(
139
+ self,
140
+ vae: AutoencoderKL,
141
+ text_encoder: CLIPTextModel,
142
+ tokenizer: CLIPTokenizer,
143
+ unet: Union[UNet2DConditionModel, UNetControlNetXSModel],
144
+ controlnet: ControlNetXSAdapter,
145
+ scheduler: KarrasDiffusionSchedulers,
146
+ safety_checker: StableDiffusionSafetyChecker,
147
+ feature_extractor: CLIPImageProcessor,
148
+ requires_safety_checker: bool = True,
149
+ ):
150
+ super().__init__()
151
+
152
+ if isinstance(unet, UNet2DConditionModel):
153
+ unet = UNetControlNetXSModel.from_unet(unet, controlnet)
154
+
155
+ if safety_checker is None and requires_safety_checker:
156
+ logger.warning(
157
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
158
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
159
+ " results in services or applications open to the public. Both the diffusers team and Hugging Face"
160
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
161
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
162
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
163
+ )
164
+
165
+ if safety_checker is not None and feature_extractor is None:
166
+ raise ValueError(
167
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
168
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
169
+ )
170
+
171
+ self.register_modules(
172
+ vae=vae,
173
+ text_encoder=text_encoder,
174
+ tokenizer=tokenizer,
175
+ unet=unet,
176
+ controlnet=controlnet,
177
+ scheduler=scheduler,
178
+ safety_checker=safety_checker,
179
+ feature_extractor=feature_extractor,
180
+ )
181
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
182
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
183
+ self.control_image_processor = VaeImageProcessor(
184
+ vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
185
+ )
186
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
187
+
188
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
189
+ def _encode_prompt(
190
+ self,
191
+ prompt,
192
+ device,
193
+ num_images_per_prompt,
194
+ do_classifier_free_guidance,
195
+ negative_prompt=None,
196
+ prompt_embeds: Optional[torch.Tensor] = None,
197
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
198
+ lora_scale: Optional[float] = None,
199
+ **kwargs,
200
+ ):
201
+ deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
202
+ deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
203
+
204
+ prompt_embeds_tuple = self.encode_prompt(
205
+ prompt=prompt,
206
+ device=device,
207
+ num_images_per_prompt=num_images_per_prompt,
208
+ do_classifier_free_guidance=do_classifier_free_guidance,
209
+ negative_prompt=negative_prompt,
210
+ prompt_embeds=prompt_embeds,
211
+ negative_prompt_embeds=negative_prompt_embeds,
212
+ lora_scale=lora_scale,
213
+ **kwargs,
214
+ )
215
+
216
+ # concatenate for backwards comp
217
+ prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
218
+
219
+ return prompt_embeds
220
+
221
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
222
+ def encode_prompt(
223
+ self,
224
+ prompt,
225
+ device,
226
+ num_images_per_prompt,
227
+ do_classifier_free_guidance,
228
+ negative_prompt=None,
229
+ prompt_embeds: Optional[torch.Tensor] = None,
230
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
231
+ lora_scale: Optional[float] = None,
232
+ clip_skip: Optional[int] = None,
233
+ ):
234
+ r"""
235
+ Encodes the prompt into text encoder hidden states.
236
+
237
+ Args:
238
+ prompt (`str` or `List[str]`, *optional*):
239
+ prompt to be encoded
240
+ device: (`torch.device`):
241
+ torch device
242
+ num_images_per_prompt (`int`):
243
+ number of images that should be generated per prompt
244
+ do_classifier_free_guidance (`bool`):
245
+ whether to use classifier free guidance or not
246
+ negative_prompt (`str` or `List[str]`, *optional*):
247
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
248
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
249
+ less than `1`).
250
+ prompt_embeds (`torch.Tensor`, *optional*):
251
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
252
+ provided, text embeddings will be generated from `prompt` input argument.
253
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
254
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
255
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
256
+ argument.
257
+ lora_scale (`float`, *optional*):
258
+ A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
259
+ clip_skip (`int`, *optional*):
260
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
261
+ the output of the pre-final layer will be used for computing the prompt embeddings.
262
+ """
263
+ # set lora scale so that monkey patched LoRA
264
+ # function of text encoder can correctly access it
265
+ if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
266
+ self._lora_scale = lora_scale
267
+
268
+ # dynamically adjust the LoRA scale
269
+ if not USE_PEFT_BACKEND:
270
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
271
+ else:
272
+ scale_lora_layers(self.text_encoder, lora_scale)
273
+
274
+ if prompt is not None and isinstance(prompt, str):
275
+ batch_size = 1
276
+ elif prompt is not None and isinstance(prompt, list):
277
+ batch_size = len(prompt)
278
+ else:
279
+ batch_size = prompt_embeds.shape[0]
280
+
281
+ if prompt_embeds is None:
282
+ # textual inversion: process multi-vector tokens if necessary
283
+ if isinstance(self, TextualInversionLoaderMixin):
284
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
285
+
286
+ text_inputs = self.tokenizer(
287
+ prompt,
288
+ padding="max_length",
289
+ max_length=self.tokenizer.model_max_length,
290
+ truncation=True,
291
+ return_tensors="pt",
292
+ )
293
+ text_input_ids = text_inputs.input_ids
294
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
295
+
296
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
297
+ text_input_ids, untruncated_ids
298
+ ):
299
+ removed_text = self.tokenizer.batch_decode(
300
+ untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
301
+ )
302
+ logger.warning(
303
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
304
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
305
+ )
306
+
307
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
308
+ attention_mask = text_inputs.attention_mask.to(device)
309
+ else:
310
+ attention_mask = None
311
+
312
+ if clip_skip is None:
313
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
314
+ prompt_embeds = prompt_embeds[0]
315
+ else:
316
+ prompt_embeds = self.text_encoder(
317
+ text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
318
+ )
319
+ # Access the `hidden_states` first, that contains a tuple of
320
+ # all the hidden states from the encoder layers. Then index into
321
+ # the tuple to access the hidden states from the desired layer.
322
+ prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
323
+ # We also need to apply the final LayerNorm here to not mess with the
324
+ # representations. The `last_hidden_states` that we typically use for
325
+ # obtaining the final prompt representations passes through the LayerNorm
326
+ # layer.
327
+ prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
328
+
329
+ if self.text_encoder is not None:
330
+ prompt_embeds_dtype = self.text_encoder.dtype
331
+ elif self.unet is not None:
332
+ prompt_embeds_dtype = self.unet.dtype
333
+ else:
334
+ prompt_embeds_dtype = prompt_embeds.dtype
335
+
336
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
337
+
338
+ bs_embed, seq_len, _ = prompt_embeds.shape
339
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
340
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
341
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
342
+
343
+ # get unconditional embeddings for classifier free guidance
344
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
345
+ uncond_tokens: List[str]
346
+ if negative_prompt is None:
347
+ uncond_tokens = [""] * batch_size
348
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
349
+ raise TypeError(
350
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
351
+ f" {type(prompt)}."
352
+ )
353
+ elif isinstance(negative_prompt, str):
354
+ uncond_tokens = [negative_prompt]
355
+ elif batch_size != len(negative_prompt):
356
+ raise ValueError(
357
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
358
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
359
+ " the batch size of `prompt`."
360
+ )
361
+ else:
362
+ uncond_tokens = negative_prompt
363
+
364
+ # textual inversion: process multi-vector tokens if necessary
365
+ if isinstance(self, TextualInversionLoaderMixin):
366
+ uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
367
+
368
+ max_length = prompt_embeds.shape[1]
369
+ uncond_input = self.tokenizer(
370
+ uncond_tokens,
371
+ padding="max_length",
372
+ max_length=max_length,
373
+ truncation=True,
374
+ return_tensors="pt",
375
+ )
376
+
377
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
378
+ attention_mask = uncond_input.attention_mask.to(device)
379
+ else:
380
+ attention_mask = None
381
+
382
+ negative_prompt_embeds = self.text_encoder(
383
+ uncond_input.input_ids.to(device),
384
+ attention_mask=attention_mask,
385
+ )
386
+ negative_prompt_embeds = negative_prompt_embeds[0]
387
+
388
+ if do_classifier_free_guidance:
389
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
390
+ seq_len = negative_prompt_embeds.shape[1]
391
+
392
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
393
+
394
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
395
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
396
+
397
+ if self.text_encoder is not None:
398
+ if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
399
+ # Retrieve the original scale by scaling back the LoRA layers
400
+ unscale_lora_layers(self.text_encoder, lora_scale)
401
+
402
+ return prompt_embeds, negative_prompt_embeds
403
+
404
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
405
+ def run_safety_checker(self, image, device, dtype):
406
+ if self.safety_checker is None:
407
+ has_nsfw_concept = None
408
+ else:
409
+ if torch.is_tensor(image):
410
+ feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
411
+ else:
412
+ feature_extractor_input = self.image_processor.numpy_to_pil(image)
413
+ safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
414
+ image, has_nsfw_concept = self.safety_checker(
415
+ images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
416
+ )
417
+ return image, has_nsfw_concept
418
+
419
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
420
+ def decode_latents(self, latents):
421
+ deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
422
+ deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
423
+
424
+ latents = 1 / self.vae.config.scaling_factor * latents
425
+ image = self.vae.decode(latents, return_dict=False)[0]
426
+ image = (image / 2 + 0.5).clamp(0, 1)
427
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
428
+ image = image.cpu().permute(0, 2, 3, 1).float().numpy()
429
+ return image
430
+
431
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
432
+ def prepare_extra_step_kwargs(self, generator, eta):
433
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
434
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
435
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
436
+ # and should be between [0, 1]
437
+
438
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
439
+ extra_step_kwargs = {}
440
+ if accepts_eta:
441
+ extra_step_kwargs["eta"] = eta
442
+
443
+ # check if the scheduler accepts generator
444
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
445
+ if accepts_generator:
446
+ extra_step_kwargs["generator"] = generator
447
+ return extra_step_kwargs
448
+
449
+ def check_inputs(
450
+ self,
451
+ prompt,
452
+ image,
453
+ negative_prompt=None,
454
+ prompt_embeds=None,
455
+ negative_prompt_embeds=None,
456
+ controlnet_conditioning_scale=1.0,
457
+ control_guidance_start=0.0,
458
+ control_guidance_end=1.0,
459
+ callback_on_step_end_tensor_inputs=None,
460
+ ):
461
+ if callback_on_step_end_tensor_inputs is not None and not all(
462
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
463
+ ):
464
+ raise ValueError(
465
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
466
+ )
467
+
468
+ if prompt is not None and prompt_embeds is not None:
469
+ raise ValueError(
470
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
471
+ " only forward one of the two."
472
+ )
473
+ elif prompt is None and prompt_embeds is None:
474
+ raise ValueError(
475
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
476
+ )
477
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
478
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
479
+
480
+ if negative_prompt is not None and negative_prompt_embeds is not None:
481
+ raise ValueError(
482
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
483
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
484
+ )
485
+
486
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
487
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
488
+ raise ValueError(
489
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
490
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
491
+ f" {negative_prompt_embeds.shape}."
492
+ )
493
+
494
+ # Check `image` and `controlnet_conditioning_scale`
495
+ is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
496
+ self.unet, torch._dynamo.eval_frame.OptimizedModule
497
+ )
498
+ if (
499
+ isinstance(self.unet, UNetControlNetXSModel)
500
+ or is_compiled
501
+ and isinstance(self.unet._orig_mod, UNetControlNetXSModel)
502
+ ):
503
+ self.check_image(image, prompt, prompt_embeds)
504
+ if not isinstance(controlnet_conditioning_scale, float):
505
+ raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
506
+ else:
507
+ assert False
508
+
509
+ start, end = control_guidance_start, control_guidance_end
510
+ if start >= end:
511
+ raise ValueError(
512
+ f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
513
+ )
514
+ if start < 0.0:
515
+ raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
516
+ if end > 1.0:
517
+ raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
518
+
519
+ def check_image(self, image, prompt, prompt_embeds):
520
+ image_is_pil = isinstance(image, PIL.Image.Image)
521
+ image_is_tensor = isinstance(image, torch.Tensor)
522
+ image_is_np = isinstance(image, np.ndarray)
523
+ image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
524
+ image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
525
+ image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
526
+
527
+ if (
528
+ not image_is_pil
529
+ and not image_is_tensor
530
+ and not image_is_np
531
+ and not image_is_pil_list
532
+ and not image_is_tensor_list
533
+ and not image_is_np_list
534
+ ):
535
+ raise TypeError(
536
+ f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
537
+ )
538
+
539
+ if image_is_pil:
540
+ image_batch_size = 1
541
+ else:
542
+ image_batch_size = len(image)
543
+
544
+ if prompt is not None and isinstance(prompt, str):
545
+ prompt_batch_size = 1
546
+ elif prompt is not None and isinstance(prompt, list):
547
+ prompt_batch_size = len(prompt)
548
+ elif prompt_embeds is not None:
549
+ prompt_batch_size = prompt_embeds.shape[0]
550
+
551
+ if image_batch_size != 1 and image_batch_size != prompt_batch_size:
552
+ raise ValueError(
553
+ f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
554
+ )
555
+
556
+ def prepare_image(
557
+ self,
558
+ image,
559
+ width,
560
+ height,
561
+ batch_size,
562
+ num_images_per_prompt,
563
+ device,
564
+ dtype,
565
+ do_classifier_free_guidance=False,
566
+ ):
567
+ image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
568
+ image_batch_size = image.shape[0]
569
+
570
+ if image_batch_size == 1:
571
+ repeat_by = batch_size
572
+ else:
573
+ # image batch size is the same as prompt batch size
574
+ repeat_by = num_images_per_prompt
575
+
576
+ image = image.repeat_interleave(repeat_by, dim=0)
577
+
578
+ image = image.to(device=device, dtype=dtype)
579
+
580
+ if do_classifier_free_guidance:
581
+ image = torch.cat([image] * 2)
582
+
583
+ return image
584
+
585
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
586
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
587
+ shape = (
588
+ batch_size,
589
+ num_channels_latents,
590
+ int(height) // self.vae_scale_factor,
591
+ int(width) // self.vae_scale_factor,
592
+ )
593
+ if isinstance(generator, list) and len(generator) != batch_size:
594
+ raise ValueError(
595
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
596
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
597
+ )
598
+
599
+ if latents is None:
600
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
601
+ else:
602
+ latents = latents.to(device)
603
+
604
+ # scale the initial noise by the standard deviation required by the scheduler
605
+ latents = latents * self.scheduler.init_noise_sigma
606
+ return latents
607
+
608
+ @property
609
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.guidance_scale
610
+ def guidance_scale(self):
611
+ return self._guidance_scale
612
+
613
+ @property
614
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.clip_skip
615
+ def clip_skip(self):
616
+ return self._clip_skip
617
+
618
+ @property
619
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.do_classifier_free_guidance
620
+ def do_classifier_free_guidance(self):
621
+ return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
622
+
623
+ @property
624
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.cross_attention_kwargs
625
+ def cross_attention_kwargs(self):
626
+ return self._cross_attention_kwargs
627
+
628
+ @property
629
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.num_timesteps
630
+ def num_timesteps(self):
631
+ return self._num_timesteps
632
+
633
+ @torch.no_grad()
634
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
635
+ def __call__(
636
+ self,
637
+ prompt: Union[str, List[str]] = None,
638
+ image: PipelineImageInput = None,
639
+ height: Optional[int] = None,
640
+ width: Optional[int] = None,
641
+ num_inference_steps: int = 50,
642
+ guidance_scale: float = 7.5,
643
+ negative_prompt: Optional[Union[str, List[str]]] = None,
644
+ num_images_per_prompt: Optional[int] = 1,
645
+ eta: float = 0.0,
646
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
647
+ latents: Optional[torch.Tensor] = None,
648
+ prompt_embeds: Optional[torch.Tensor] = None,
649
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
650
+ output_type: Optional[str] = "pil",
651
+ return_dict: bool = True,
652
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
653
+ controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
654
+ control_guidance_start: float = 0.0,
655
+ control_guidance_end: float = 1.0,
656
+ clip_skip: Optional[int] = None,
657
+ callback_on_step_end: Optional[
658
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
659
+ ] = None,
660
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
661
+ ):
662
+ r"""
663
+ The call function to the pipeline for generation.
664
+
665
+ Args:
666
+ prompt (`str` or `List[str]`, *optional*):
667
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
668
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
669
+ `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
670
+ The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
671
+ specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
672
+ as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
673
+ width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
674
+ images must be passed as a list such that each element of the list can be correctly batched for input
675
+ to a single ControlNet.
676
+ height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
677
+ The height in pixels of the generated image.
678
+ width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
679
+ The width in pixels of the generated image.
680
+ num_inference_steps (`int`, *optional*, defaults to 50):
681
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
682
+ expense of slower inference.
683
+ guidance_scale (`float`, *optional*, defaults to 7.5):
684
+ A higher guidance scale value encourages the model to generate images closely linked to the text
685
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
686
+ negative_prompt (`str` or `List[str]`, *optional*):
687
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
688
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
689
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
690
+ The number of images to generate per prompt.
691
+ eta (`float`, *optional*, defaults to 0.0):
692
+ Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
693
+ to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
694
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
695
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
696
+ generation deterministic.
697
+ latents (`torch.Tensor`, *optional*):
698
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
699
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
700
+ tensor is generated by sampling using the supplied random `generator`.
701
+ prompt_embeds (`torch.Tensor`, *optional*):
702
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
703
+ provided, text embeddings are generated from the `prompt` input argument.
704
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
705
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
706
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
707
+ output_type (`str`, *optional*, defaults to `"pil"`):
708
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
709
+ return_dict (`bool`, *optional*, defaults to `True`):
710
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
711
+ plain tuple.
712
+ cross_attention_kwargs (`dict`, *optional*):
713
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
714
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
715
+ controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
716
+ The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
717
+ to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
718
+ the corresponding scale as a list.
719
+ control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
720
+ The percentage of total steps at which the ControlNet starts applying.
721
+ control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
722
+ The percentage of total steps at which the ControlNet stops applying.
723
+ clip_skip (`int`, *optional*):
724
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
725
+ the output of the pre-final layer will be used for computing the prompt embeddings.
726
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
727
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
728
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
729
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
730
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
731
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
732
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
733
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
734
+ `._callback_tensor_inputs` attribute of your pipeine class.
735
+ Examples:
736
+
737
+ Returns:
738
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
739
+ If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
740
+ otherwise a `tuple` is returned where the first element is a list with the generated images and the
741
+ second element is a list of `bool`s indicating whether the corresponding generated image contains
742
+ "not-safe-for-work" (nsfw) content.
743
+ """
744
+
745
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
746
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
747
+
748
+ unet = self.unet._orig_mod if is_compiled_module(self.unet) else self.unet
749
+
750
+ # 1. Check inputs. Raise error if not correct
751
+ self.check_inputs(
752
+ prompt,
753
+ image,
754
+ negative_prompt,
755
+ prompt_embeds,
756
+ negative_prompt_embeds,
757
+ controlnet_conditioning_scale,
758
+ control_guidance_start,
759
+ control_guidance_end,
760
+ callback_on_step_end_tensor_inputs,
761
+ )
762
+
763
+ self._guidance_scale = guidance_scale
764
+ self._clip_skip = clip_skip
765
+ self._cross_attention_kwargs = cross_attention_kwargs
766
+ self._interrupt = False
767
+
768
+ # 2. Define call parameters
769
+ if prompt is not None and isinstance(prompt, str):
770
+ batch_size = 1
771
+ elif prompt is not None and isinstance(prompt, list):
772
+ batch_size = len(prompt)
773
+ else:
774
+ batch_size = prompt_embeds.shape[0]
775
+
776
+ device = self._execution_device
777
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
778
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
779
+ # corresponds to doing no classifier free guidance.
780
+ do_classifier_free_guidance = guidance_scale > 1.0
781
+
782
+ # 3. Encode input prompt
783
+ text_encoder_lora_scale = (
784
+ cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
785
+ )
786
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
787
+ prompt,
788
+ device,
789
+ num_images_per_prompt,
790
+ do_classifier_free_guidance,
791
+ negative_prompt,
792
+ prompt_embeds=prompt_embeds,
793
+ negative_prompt_embeds=negative_prompt_embeds,
794
+ lora_scale=text_encoder_lora_scale,
795
+ clip_skip=clip_skip,
796
+ )
797
+
798
+ # For classifier free guidance, we need to do two forward passes.
799
+ # Here we concatenate the unconditional and text embeddings into a single batch
800
+ # to avoid doing two forward passes
801
+ if do_classifier_free_guidance:
802
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
803
+
804
+ # 4. Prepare image
805
+ image = self.prepare_image(
806
+ image=image,
807
+ width=width,
808
+ height=height,
809
+ batch_size=batch_size * num_images_per_prompt,
810
+ num_images_per_prompt=num_images_per_prompt,
811
+ device=device,
812
+ dtype=unet.dtype,
813
+ do_classifier_free_guidance=do_classifier_free_guidance,
814
+ )
815
+ height, width = image.shape[-2:]
816
+
817
+ # 5. Prepare timesteps
818
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
819
+ timesteps = self.scheduler.timesteps
820
+
821
+ # 6. Prepare latent variables
822
+ num_channels_latents = self.unet.in_channels
823
+ latents = self.prepare_latents(
824
+ batch_size * num_images_per_prompt,
825
+ num_channels_latents,
826
+ height,
827
+ width,
828
+ prompt_embeds.dtype,
829
+ device,
830
+ generator,
831
+ latents,
832
+ )
833
+
834
+ # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
835
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
836
+
837
+ # 8. Denoising loop
838
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
839
+ self._num_timesteps = len(timesteps)
840
+ is_controlnet_compiled = is_compiled_module(self.unet)
841
+ is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
842
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
843
+ for i, t in enumerate(timesteps):
844
+ # Relevant thread:
845
+ # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
846
+ if is_controlnet_compiled and is_torch_higher_equal_2_1:
847
+ torch._inductor.cudagraph_mark_step_begin()
848
+ # expand the latents if we are doing classifier free guidance
849
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
850
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
851
+
852
+ # predict the noise residual
853
+ apply_control = (
854
+ i / len(timesteps) >= control_guidance_start and (i + 1) / len(timesteps) <= control_guidance_end
855
+ )
856
+ noise_pred = self.unet(
857
+ sample=latent_model_input,
858
+ timestep=t,
859
+ encoder_hidden_states=prompt_embeds,
860
+ controlnet_cond=image,
861
+ conditioning_scale=controlnet_conditioning_scale,
862
+ cross_attention_kwargs=cross_attention_kwargs,
863
+ return_dict=True,
864
+ apply_control=apply_control,
865
+ ).sample
866
+
867
+ # perform guidance
868
+ if do_classifier_free_guidance:
869
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
870
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
871
+
872
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
873
+
874
+ if callback_on_step_end is not None:
875
+ callback_kwargs = {}
876
+ for k in callback_on_step_end_tensor_inputs:
877
+ callback_kwargs[k] = locals()[k]
878
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
879
+
880
+ latents = callback_outputs.pop("latents", latents)
881
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
882
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
883
+
884
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
885
+ progress_bar.update()
886
+
887
+ # If we do sequential model offloading, let's offload unet and controlnet
888
+ # manually for max memory savings
889
+ if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
890
+ self.unet.to("cpu")
891
+ self.controlnet.to("cpu")
892
+ torch.cuda.empty_cache()
893
+
894
+ if not output_type == "latent":
895
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
896
+ 0
897
+ ]
898
+ image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
899
+ else:
900
+ image = latents
901
+ has_nsfw_concept = None
902
+
903
+ if has_nsfw_concept is None:
904
+ do_denormalize = [True] * image.shape[0]
905
+ else:
906
+ do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
907
+
908
+ image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
909
+
910
+ # Offload all models
911
+ self.maybe_free_model_hooks()
912
+
913
+ if not return_dict:
914
+ return (image, has_nsfw_concept)
915
+
916
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)