diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +50 -53
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.0.dist-info/RECORD +0 -399
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,292 @@
|
|
1
|
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
"""
|
16
|
+
Adapted from
|
17
|
+
https://github.com/huggingface/transformers/blob/3a8eb74668e9c2cc563b2f5c62fac174797063e0/src/transformers/quantizers/quantizer_torchao.py
|
18
|
+
"""
|
19
|
+
|
20
|
+
import importlib
|
21
|
+
import types
|
22
|
+
from typing import TYPE_CHECKING, Any, Dict, List, Union
|
23
|
+
|
24
|
+
from packaging import version
|
25
|
+
|
26
|
+
from ...utils import get_module_from_name, is_torch_available, is_torch_version, is_torchao_available, logging
|
27
|
+
from ..base import DiffusersQuantizer
|
28
|
+
|
29
|
+
|
30
|
+
if TYPE_CHECKING:
|
31
|
+
from ...models.modeling_utils import ModelMixin
|
32
|
+
|
33
|
+
|
34
|
+
if is_torch_available():
|
35
|
+
import torch
|
36
|
+
import torch.nn as nn
|
37
|
+
|
38
|
+
if is_torch_version(">=", "2.5"):
|
39
|
+
SUPPORTED_TORCH_DTYPES_FOR_QUANTIZATION = (
|
40
|
+
# At the moment, only int8 is supported for integer quantization dtypes.
|
41
|
+
# In Torch 2.6, int1-int7 will be introduced, so this can be visited in the future
|
42
|
+
# to support more quantization methods, such as intx_weight_only.
|
43
|
+
torch.int8,
|
44
|
+
torch.float8_e4m3fn,
|
45
|
+
torch.float8_e5m2,
|
46
|
+
torch.uint1,
|
47
|
+
torch.uint2,
|
48
|
+
torch.uint3,
|
49
|
+
torch.uint4,
|
50
|
+
torch.uint5,
|
51
|
+
torch.uint6,
|
52
|
+
torch.uint7,
|
53
|
+
)
|
54
|
+
else:
|
55
|
+
SUPPORTED_TORCH_DTYPES_FOR_QUANTIZATION = (
|
56
|
+
torch.int8,
|
57
|
+
torch.float8_e4m3fn,
|
58
|
+
torch.float8_e5m2,
|
59
|
+
)
|
60
|
+
|
61
|
+
if is_torchao_available():
|
62
|
+
from torchao.quantization import quantize_
|
63
|
+
|
64
|
+
|
65
|
+
logger = logging.get_logger(__name__)
|
66
|
+
|
67
|
+
|
68
|
+
def _quantization_type(weight):
|
69
|
+
from torchao.dtypes import AffineQuantizedTensor
|
70
|
+
from torchao.quantization.linear_activation_quantized_tensor import LinearActivationQuantizedTensor
|
71
|
+
|
72
|
+
if isinstance(weight, AffineQuantizedTensor):
|
73
|
+
return f"{weight.__class__.__name__}({weight._quantization_type()})"
|
74
|
+
|
75
|
+
if isinstance(weight, LinearActivationQuantizedTensor):
|
76
|
+
return f"{weight.__class__.__name__}(activation={weight.input_quant_func}, weight={_quantization_type(weight.original_weight_tensor)})"
|
77
|
+
|
78
|
+
|
79
|
+
def _linear_extra_repr(self):
|
80
|
+
weight = _quantization_type(self.weight)
|
81
|
+
if weight is None:
|
82
|
+
return f"in_features={self.weight.shape[1]}, out_features={self.weight.shape[0]}, weight=None"
|
83
|
+
else:
|
84
|
+
return f"in_features={self.weight.shape[1]}, out_features={self.weight.shape[0]}, weight={weight}"
|
85
|
+
|
86
|
+
|
87
|
+
class TorchAoHfQuantizer(DiffusersQuantizer):
|
88
|
+
r"""
|
89
|
+
Diffusers Quantizer for TorchAO: https://github.com/pytorch/ao/.
|
90
|
+
"""
|
91
|
+
|
92
|
+
requires_calibration = False
|
93
|
+
required_packages = ["torchao"]
|
94
|
+
|
95
|
+
def __init__(self, quantization_config, **kwargs):
|
96
|
+
super().__init__(quantization_config, **kwargs)
|
97
|
+
|
98
|
+
def validate_environment(self, *args, **kwargs):
|
99
|
+
if not is_torchao_available():
|
100
|
+
raise ImportError(
|
101
|
+
"Loading a TorchAO quantized model requires the torchao library. Please install with `pip install torchao`"
|
102
|
+
)
|
103
|
+
torchao_version = version.parse(importlib.metadata.version("torch"))
|
104
|
+
if torchao_version < version.parse("0.7.0"):
|
105
|
+
raise RuntimeError(
|
106
|
+
f"The minimum required version of `torchao` is 0.7.0, but the current version is {torchao_version}. Please upgrade with `pip install -U torchao`."
|
107
|
+
)
|
108
|
+
|
109
|
+
self.offload = False
|
110
|
+
|
111
|
+
device_map = kwargs.get("device_map", None)
|
112
|
+
if isinstance(device_map, dict):
|
113
|
+
if "cpu" in device_map.values() or "disk" in device_map.values():
|
114
|
+
if self.pre_quantized:
|
115
|
+
raise ValueError(
|
116
|
+
"You are attempting to perform cpu/disk offload with a pre-quantized torchao model "
|
117
|
+
"This is not supported yet. Please remove the CPU or disk device from the `device_map` argument."
|
118
|
+
)
|
119
|
+
else:
|
120
|
+
self.offload = True
|
121
|
+
|
122
|
+
if self.pre_quantized:
|
123
|
+
weights_only = kwargs.get("weights_only", None)
|
124
|
+
if weights_only:
|
125
|
+
torch_version = version.parse(importlib.metadata.version("torch"))
|
126
|
+
if torch_version < version.parse("2.5.0"):
|
127
|
+
# TODO(aryan): TorchAO is compatible with Pytorch >= 2.2 for certain quantization types. Try to see if we can support it in future
|
128
|
+
raise RuntimeError(
|
129
|
+
f"In order to use TorchAO pre-quantized model, you need to have torch>=2.5.0. However, the current version is {torch_version}."
|
130
|
+
)
|
131
|
+
|
132
|
+
def update_torch_dtype(self, torch_dtype):
|
133
|
+
quant_type = self.quantization_config.quant_type
|
134
|
+
|
135
|
+
if quant_type.startswith("int") or quant_type.startswith("uint"):
|
136
|
+
if torch_dtype is not None and torch_dtype != torch.bfloat16:
|
137
|
+
logger.warning(
|
138
|
+
f"You are trying to set torch_dtype to {torch_dtype} for int4/int8/uintx quantization, but "
|
139
|
+
f"only bfloat16 is supported right now. Please set `torch_dtype=torch.bfloat16`."
|
140
|
+
)
|
141
|
+
|
142
|
+
if torch_dtype is None:
|
143
|
+
# We need to set the torch_dtype, otherwise we have dtype mismatch when performing the quantized linear op
|
144
|
+
logger.warning(
|
145
|
+
"Overriding `torch_dtype` with `torch_dtype=torch.bfloat16` due to requirements of `torchao` "
|
146
|
+
"to enable model loading in different precisions. Pass your own `torch_dtype` to specify the "
|
147
|
+
"dtype of the remaining non-linear layers, or pass torch_dtype=torch.bfloat16, to remove this warning."
|
148
|
+
)
|
149
|
+
torch_dtype = torch.bfloat16
|
150
|
+
|
151
|
+
return torch_dtype
|
152
|
+
|
153
|
+
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype":
|
154
|
+
quant_type = self.quantization_config.quant_type
|
155
|
+
|
156
|
+
if quant_type.startswith("int8") or quant_type.startswith("int4"):
|
157
|
+
# Note that int4 weights are created by packing into torch.int8, but since there is no torch.int4, we use torch.int8
|
158
|
+
return torch.int8
|
159
|
+
elif quant_type == "uintx_weight_only":
|
160
|
+
return self.quantization_config.quant_type_kwargs.get("dtype", torch.uint8)
|
161
|
+
elif quant_type.startswith("uint"):
|
162
|
+
return {
|
163
|
+
1: torch.uint1,
|
164
|
+
2: torch.uint2,
|
165
|
+
3: torch.uint3,
|
166
|
+
4: torch.uint4,
|
167
|
+
5: torch.uint5,
|
168
|
+
6: torch.uint6,
|
169
|
+
7: torch.uint7,
|
170
|
+
}[int(quant_type[4])]
|
171
|
+
elif quant_type.startswith("float") or quant_type.startswith("fp"):
|
172
|
+
return torch.bfloat16
|
173
|
+
|
174
|
+
if isinstance(target_dtype, SUPPORTED_TORCH_DTYPES_FOR_QUANTIZATION):
|
175
|
+
return target_dtype
|
176
|
+
|
177
|
+
# We need one of the supported dtypes to be selected in order for accelerate to determine
|
178
|
+
# the total size of modules/parameters for auto device placement.
|
179
|
+
possible_device_maps = ["auto", "balanced", "balanced_low_0", "sequential"]
|
180
|
+
raise ValueError(
|
181
|
+
f"You have set `device_map` as one of {possible_device_maps} on a TorchAO quantized model but a suitable target dtype "
|
182
|
+
f"could not be inferred. The supported target_dtypes are: {SUPPORTED_TORCH_DTYPES_FOR_QUANTIZATION}. If you think the "
|
183
|
+
f"dtype you are using should be supported, please open an issue at https://github.com/huggingface/diffusers/issues."
|
184
|
+
)
|
185
|
+
|
186
|
+
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]:
|
187
|
+
max_memory = {key: val * 0.9 for key, val in max_memory.items()}
|
188
|
+
return max_memory
|
189
|
+
|
190
|
+
def check_if_quantized_param(
|
191
|
+
self,
|
192
|
+
model: "ModelMixin",
|
193
|
+
param_value: "torch.Tensor",
|
194
|
+
param_name: str,
|
195
|
+
state_dict: Dict[str, Any],
|
196
|
+
**kwargs,
|
197
|
+
) -> bool:
|
198
|
+
param_device = kwargs.pop("param_device", None)
|
199
|
+
# Check if the param_name is not in self.modules_to_not_convert
|
200
|
+
if any((key + "." in param_name) or (key == param_name) for key in self.modules_to_not_convert):
|
201
|
+
return False
|
202
|
+
elif param_device == "cpu" and self.offload:
|
203
|
+
# We don't quantize weights that we offload
|
204
|
+
return False
|
205
|
+
else:
|
206
|
+
# We only quantize the weight of nn.Linear
|
207
|
+
module, tensor_name = get_module_from_name(model, param_name)
|
208
|
+
return isinstance(module, torch.nn.Linear) and (tensor_name == "weight")
|
209
|
+
|
210
|
+
def create_quantized_param(
|
211
|
+
self,
|
212
|
+
model: "ModelMixin",
|
213
|
+
param_value: "torch.Tensor",
|
214
|
+
param_name: str,
|
215
|
+
target_device: "torch.device",
|
216
|
+
state_dict: Dict[str, Any],
|
217
|
+
unexpected_keys: List[str],
|
218
|
+
):
|
219
|
+
r"""
|
220
|
+
Each nn.Linear layer that needs to be quantized is processsed here. First, we set the value the weight tensor,
|
221
|
+
then we move it to the target device. Finally, we quantize the module.
|
222
|
+
"""
|
223
|
+
module, tensor_name = get_module_from_name(model, param_name)
|
224
|
+
|
225
|
+
if self.pre_quantized:
|
226
|
+
# If we're loading pre-quantized weights, replace the repr of linear layers for pretty printing info
|
227
|
+
# about AffineQuantizedTensor
|
228
|
+
module._parameters[tensor_name] = torch.nn.Parameter(param_value.to(device=target_device))
|
229
|
+
if isinstance(module, nn.Linear):
|
230
|
+
module.extra_repr = types.MethodType(_linear_extra_repr, module)
|
231
|
+
else:
|
232
|
+
# As we perform quantization here, the repr of linear layers is that of AQT, so we don't have to do it ourselves
|
233
|
+
module._parameters[tensor_name] = torch.nn.Parameter(param_value).to(device=target_device)
|
234
|
+
quantize_(module, self.quantization_config.get_apply_tensor_subclass())
|
235
|
+
|
236
|
+
def _process_model_before_weight_loading(
|
237
|
+
self,
|
238
|
+
model: "ModelMixin",
|
239
|
+
device_map,
|
240
|
+
keep_in_fp32_modules: List[str] = [],
|
241
|
+
**kwargs,
|
242
|
+
):
|
243
|
+
self.modules_to_not_convert = self.quantization_config.modules_to_not_convert
|
244
|
+
|
245
|
+
if not isinstance(self.modules_to_not_convert, list):
|
246
|
+
self.modules_to_not_convert = [self.modules_to_not_convert]
|
247
|
+
|
248
|
+
self.modules_to_not_convert.extend(keep_in_fp32_modules)
|
249
|
+
|
250
|
+
# Extend `self.modules_to_not_convert` to keys that are supposed to be offloaded to `cpu` or `disk`
|
251
|
+
if isinstance(device_map, dict) and len(device_map.keys()) > 1:
|
252
|
+
keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]]
|
253
|
+
self.modules_to_not_convert.extend(keys_on_cpu)
|
254
|
+
|
255
|
+
# Purge `None`.
|
256
|
+
# Unlike `transformers`, we don't know if we should always keep certain modules in FP32
|
257
|
+
# in case of diffusion transformer models. For language models and others alike, `lm_head`
|
258
|
+
# and tied modules are usually kept in FP32.
|
259
|
+
self.modules_to_not_convert = [module for module in self.modules_to_not_convert if module is not None]
|
260
|
+
|
261
|
+
model.config.quantization_config = self.quantization_config
|
262
|
+
|
263
|
+
def _process_model_after_weight_loading(self, model: "ModelMixin"):
|
264
|
+
return model
|
265
|
+
|
266
|
+
def is_serializable(self, safe_serialization=None):
|
267
|
+
# TODO(aryan): needs to be tested
|
268
|
+
if safe_serialization:
|
269
|
+
logger.warning(
|
270
|
+
"torchao quantized model does not support safe serialization, please set `safe_serialization` to False."
|
271
|
+
)
|
272
|
+
return False
|
273
|
+
|
274
|
+
_is_torchao_serializable = version.parse(importlib.metadata.version("huggingface_hub")) >= version.parse(
|
275
|
+
"0.25.0"
|
276
|
+
)
|
277
|
+
|
278
|
+
if not _is_torchao_serializable:
|
279
|
+
logger.warning("torchao quantized model is only serializable after huggingface_hub >= 0.25.0 ")
|
280
|
+
|
281
|
+
if self.offload and self.quantization_config.modules_to_not_convert is None:
|
282
|
+
logger.warning(
|
283
|
+
"The model contains offloaded modules and these modules are not quantized. We don't recommend saving the model as we won't be able to reload them."
|
284
|
+
"If you want to specify modules to not quantize, please specify modules_to_not_convert in the quantization_config."
|
285
|
+
)
|
286
|
+
return False
|
287
|
+
|
288
|
+
return _is_torchao_serializable
|
289
|
+
|
290
|
+
@property
|
291
|
+
def is_trainable(self):
|
292
|
+
return self.quantization_config.quant_type.startswith("int8")
|
diffusers/schedulers/__init__.py
CHANGED
@@ -43,12 +43,14 @@ else:
|
|
43
43
|
_import_structure["scheduling_consistency_decoder"] = ["ConsistencyDecoderScheduler"]
|
44
44
|
_import_structure["scheduling_consistency_models"] = ["CMStochasticIterativeScheduler"]
|
45
45
|
_import_structure["scheduling_ddim"] = ["DDIMScheduler"]
|
46
|
+
_import_structure["scheduling_ddim_cogvideox"] = ["CogVideoXDDIMScheduler"]
|
46
47
|
_import_structure["scheduling_ddim_inverse"] = ["DDIMInverseScheduler"]
|
47
48
|
_import_structure["scheduling_ddim_parallel"] = ["DDIMParallelScheduler"]
|
48
49
|
_import_structure["scheduling_ddpm"] = ["DDPMScheduler"]
|
49
50
|
_import_structure["scheduling_ddpm_parallel"] = ["DDPMParallelScheduler"]
|
50
51
|
_import_structure["scheduling_ddpm_wuerstchen"] = ["DDPMWuerstchenScheduler"]
|
51
52
|
_import_structure["scheduling_deis_multistep"] = ["DEISMultistepScheduler"]
|
53
|
+
_import_structure["scheduling_dpm_cogvideox"] = ["CogVideoXDPMScheduler"]
|
52
54
|
_import_structure["scheduling_dpmsolver_multistep"] = ["DPMSolverMultistepScheduler"]
|
53
55
|
_import_structure["scheduling_dpmsolver_multistep_inverse"] = ["DPMSolverMultistepInverseScheduler"]
|
54
56
|
_import_structure["scheduling_dpmsolver_singlestep"] = ["DPMSolverSinglestepScheduler"]
|
@@ -56,6 +58,8 @@ else:
|
|
56
58
|
_import_structure["scheduling_edm_euler"] = ["EDMEulerScheduler"]
|
57
59
|
_import_structure["scheduling_euler_ancestral_discrete"] = ["EulerAncestralDiscreteScheduler"]
|
58
60
|
_import_structure["scheduling_euler_discrete"] = ["EulerDiscreteScheduler"]
|
61
|
+
_import_structure["scheduling_flow_match_euler_discrete"] = ["FlowMatchEulerDiscreteScheduler"]
|
62
|
+
_import_structure["scheduling_flow_match_heun_discrete"] = ["FlowMatchHeunDiscreteScheduler"]
|
59
63
|
_import_structure["scheduling_heun_discrete"] = ["HeunDiscreteScheduler"]
|
60
64
|
_import_structure["scheduling_ipndm"] = ["IPNDMScheduler"]
|
61
65
|
_import_structure["scheduling_k_dpm_2_ancestral_discrete"] = ["KDPM2AncestralDiscreteScheduler"]
|
@@ -68,7 +72,7 @@ else:
|
|
68
72
|
_import_structure["scheduling_tcd"] = ["TCDScheduler"]
|
69
73
|
_import_structure["scheduling_unclip"] = ["UnCLIPScheduler"]
|
70
74
|
_import_structure["scheduling_unipc_multistep"] = ["UniPCMultistepScheduler"]
|
71
|
-
_import_structure["scheduling_utils"] = ["KarrasDiffusionSchedulers", "SchedulerMixin"]
|
75
|
+
_import_structure["scheduling_utils"] = ["AysSchedules", "KarrasDiffusionSchedulers", "SchedulerMixin"]
|
72
76
|
_import_structure["scheduling_vq_diffusion"] = ["VQDiffusionScheduler"]
|
73
77
|
|
74
78
|
try:
|
@@ -116,6 +120,7 @@ except OptionalDependencyNotAvailable:
|
|
116
120
|
_dummy_modules.update(get_objects_from_module(dummy_torch_and_torchsde_objects))
|
117
121
|
|
118
122
|
else:
|
123
|
+
_import_structure["scheduling_cosine_dpmsolver_multistep"] = ["CosineDPMSolverMultistepScheduler"]
|
119
124
|
_import_structure["scheduling_dpmsolver_sde"] = ["DPMSolverSDEScheduler"]
|
120
125
|
|
121
126
|
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
@@ -138,12 +143,14 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
|
138
143
|
from .scheduling_consistency_decoder import ConsistencyDecoderScheduler
|
139
144
|
from .scheduling_consistency_models import CMStochasticIterativeScheduler
|
140
145
|
from .scheduling_ddim import DDIMScheduler
|
146
|
+
from .scheduling_ddim_cogvideox import CogVideoXDDIMScheduler
|
141
147
|
from .scheduling_ddim_inverse import DDIMInverseScheduler
|
142
148
|
from .scheduling_ddim_parallel import DDIMParallelScheduler
|
143
149
|
from .scheduling_ddpm import DDPMScheduler
|
144
150
|
from .scheduling_ddpm_parallel import DDPMParallelScheduler
|
145
151
|
from .scheduling_ddpm_wuerstchen import DDPMWuerstchenScheduler
|
146
152
|
from .scheduling_deis_multistep import DEISMultistepScheduler
|
153
|
+
from .scheduling_dpm_cogvideox import CogVideoXDPMScheduler
|
147
154
|
from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
|
148
155
|
from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler
|
149
156
|
from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
|
@@ -151,6 +158,8 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
|
151
158
|
from .scheduling_edm_euler import EDMEulerScheduler
|
152
159
|
from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
|
153
160
|
from .scheduling_euler_discrete import EulerDiscreteScheduler
|
161
|
+
from .scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
|
162
|
+
from .scheduling_flow_match_heun_discrete import FlowMatchHeunDiscreteScheduler
|
154
163
|
from .scheduling_heun_discrete import HeunDiscreteScheduler
|
155
164
|
from .scheduling_ipndm import IPNDMScheduler
|
156
165
|
from .scheduling_k_dpm_2_ancestral_discrete import KDPM2AncestralDiscreteScheduler
|
@@ -163,7 +172,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
|
163
172
|
from .scheduling_tcd import TCDScheduler
|
164
173
|
from .scheduling_unclip import UnCLIPScheduler
|
165
174
|
from .scheduling_unipc_multistep import UniPCMultistepScheduler
|
166
|
-
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
|
175
|
+
from .scheduling_utils import AysSchedules, KarrasDiffusionSchedulers, SchedulerMixin
|
167
176
|
from .scheduling_vq_diffusion import VQDiffusionScheduler
|
168
177
|
|
169
178
|
try:
|
@@ -201,6 +210,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
|
201
210
|
except OptionalDependencyNotAvailable:
|
202
211
|
from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403
|
203
212
|
else:
|
213
|
+
from .scheduling_cosine_dpmsolver_multistep import CosineDPMSolverMultistepScheduler
|
204
214
|
from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
|
205
215
|
|
206
216
|
else:
|
@@ -30,7 +30,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
|
30
30
|
raise OptionalDependencyNotAvailable()
|
31
31
|
|
32
32
|
except OptionalDependencyNotAvailable:
|
33
|
-
from
|
33
|
+
from ...utils.dummy_pt_objects import * # noqa F403
|
34
34
|
else:
|
35
35
|
from .scheduling_karras_ve import KarrasVeScheduler
|
36
36
|
from .scheduling_sde_vp import ScoreSdeVpScheduler
|
@@ -31,19 +31,19 @@ class KarrasVeOutput(BaseOutput):
|
|
31
31
|
Output class for the scheduler's step function output.
|
32
32
|
|
33
33
|
Args:
|
34
|
-
prev_sample (`torch.
|
34
|
+
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
35
35
|
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
|
36
36
|
denoising loop.
|
37
|
-
derivative (`torch.
|
37
|
+
derivative (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
38
38
|
Derivative of predicted original image sample (x_0).
|
39
|
-
pred_original_sample (`torch.
|
39
|
+
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
40
40
|
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
|
41
41
|
`pred_original_sample` can be used to preview progress or for guidance.
|
42
42
|
"""
|
43
43
|
|
44
|
-
prev_sample: torch.
|
45
|
-
derivative: torch.
|
46
|
-
pred_original_sample: Optional[torch.
|
44
|
+
prev_sample: torch.Tensor
|
45
|
+
derivative: torch.Tensor
|
46
|
+
pred_original_sample: Optional[torch.Tensor] = None
|
47
47
|
|
48
48
|
|
49
49
|
class KarrasVeScheduler(SchedulerMixin, ConfigMixin):
|
@@ -94,21 +94,21 @@ class KarrasVeScheduler(SchedulerMixin, ConfigMixin):
|
|
94
94
|
# setable values
|
95
95
|
self.num_inference_steps: int = None
|
96
96
|
self.timesteps: np.IntTensor = None
|
97
|
-
self.schedule: torch.
|
97
|
+
self.schedule: torch.Tensor = None # sigma(t_i)
|
98
98
|
|
99
|
-
def scale_model_input(self, sample: torch.
|
99
|
+
def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
|
100
100
|
"""
|
101
101
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
102
102
|
current timestep.
|
103
103
|
|
104
104
|
Args:
|
105
|
-
sample (`torch.
|
105
|
+
sample (`torch.Tensor`):
|
106
106
|
The input sample.
|
107
107
|
timestep (`int`, *optional*):
|
108
108
|
The current timestep in the diffusion chain.
|
109
109
|
|
110
110
|
Returns:
|
111
|
-
`torch.
|
111
|
+
`torch.Tensor`:
|
112
112
|
A scaled input sample.
|
113
113
|
"""
|
114
114
|
return sample
|
@@ -136,14 +136,14 @@ class KarrasVeScheduler(SchedulerMixin, ConfigMixin):
|
|
136
136
|
self.schedule = torch.tensor(schedule, dtype=torch.float32, device=device)
|
137
137
|
|
138
138
|
def add_noise_to_input(
|
139
|
-
self, sample: torch.
|
140
|
-
) -> Tuple[torch.
|
139
|
+
self, sample: torch.Tensor, sigma: float, generator: Optional[torch.Generator] = None
|
140
|
+
) -> Tuple[torch.Tensor, float]:
|
141
141
|
"""
|
142
142
|
Explicit Langevin-like "churn" step of adding noise to the sample according to a `gamma_i ≥ 0` to reach a
|
143
143
|
higher noise level `sigma_hat = sigma_i + gamma_i*sigma_i`.
|
144
144
|
|
145
145
|
Args:
|
146
|
-
sample (`torch.
|
146
|
+
sample (`torch.Tensor`):
|
147
147
|
The input sample.
|
148
148
|
sigma (`float`):
|
149
149
|
generator (`torch.Generator`, *optional*):
|
@@ -163,10 +163,10 @@ class KarrasVeScheduler(SchedulerMixin, ConfigMixin):
|
|
163
163
|
|
164
164
|
def step(
|
165
165
|
self,
|
166
|
-
model_output: torch.
|
166
|
+
model_output: torch.Tensor,
|
167
167
|
sigma_hat: float,
|
168
168
|
sigma_prev: float,
|
169
|
-
sample_hat: torch.
|
169
|
+
sample_hat: torch.Tensor,
|
170
170
|
return_dict: bool = True,
|
171
171
|
) -> Union[KarrasVeOutput, Tuple]:
|
172
172
|
"""
|
@@ -174,11 +174,11 @@ class KarrasVeScheduler(SchedulerMixin, ConfigMixin):
|
|
174
174
|
process from the learned model outputs (most often the predicted noise).
|
175
175
|
|
176
176
|
Args:
|
177
|
-
model_output (`torch.
|
177
|
+
model_output (`torch.Tensor`):
|
178
178
|
The direct output from learned diffusion model.
|
179
179
|
sigma_hat (`float`):
|
180
180
|
sigma_prev (`float`):
|
181
|
-
sample_hat (`torch.
|
181
|
+
sample_hat (`torch.Tensor`):
|
182
182
|
return_dict (`bool`, *optional*, defaults to `True`):
|
183
183
|
Whether or not to return a [`~schedulers.scheduling_karras_ve.KarrasVESchedulerOutput`] or `tuple`.
|
184
184
|
|
@@ -202,25 +202,25 @@ class KarrasVeScheduler(SchedulerMixin, ConfigMixin):
|
|
202
202
|
|
203
203
|
def step_correct(
|
204
204
|
self,
|
205
|
-
model_output: torch.
|
205
|
+
model_output: torch.Tensor,
|
206
206
|
sigma_hat: float,
|
207
207
|
sigma_prev: float,
|
208
|
-
sample_hat: torch.
|
209
|
-
sample_prev: torch.
|
210
|
-
derivative: torch.
|
208
|
+
sample_hat: torch.Tensor,
|
209
|
+
sample_prev: torch.Tensor,
|
210
|
+
derivative: torch.Tensor,
|
211
211
|
return_dict: bool = True,
|
212
212
|
) -> Union[KarrasVeOutput, Tuple]:
|
213
213
|
"""
|
214
214
|
Corrects the predicted sample based on the `model_output` of the network.
|
215
215
|
|
216
216
|
Args:
|
217
|
-
model_output (`torch.
|
217
|
+
model_output (`torch.Tensor`):
|
218
218
|
The direct output from learned diffusion model.
|
219
219
|
sigma_hat (`float`): TODO
|
220
220
|
sigma_prev (`float`): TODO
|
221
|
-
sample_hat (`torch.
|
222
|
-
sample_prev (`torch.
|
223
|
-
derivative (`torch.
|
221
|
+
sample_hat (`torch.Tensor`): TODO
|
222
|
+
sample_prev (`torch.Tensor`): TODO
|
223
|
+
derivative (`torch.Tensor`): TODO
|
224
224
|
return_dict (`bool`, *optional*, defaults to `True`):
|
225
225
|
Whether or not to return a [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`.
|
226
226
|
|
@@ -29,16 +29,16 @@ class AmusedSchedulerOutput(BaseOutput):
|
|
29
29
|
Output class for the scheduler's `step` function output.
|
30
30
|
|
31
31
|
Args:
|
32
|
-
prev_sample (`torch.
|
32
|
+
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
33
33
|
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
34
34
|
denoising loop.
|
35
|
-
pred_original_sample (`torch.
|
35
|
+
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
36
36
|
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
37
37
|
`pred_original_sample` can be used to preview progress or for guidance.
|
38
38
|
"""
|
39
39
|
|
40
|
-
prev_sample: torch.
|
41
|
-
pred_original_sample: torch.
|
40
|
+
prev_sample: torch.Tensor
|
41
|
+
pred_original_sample: torch.Tensor = None
|
42
42
|
|
43
43
|
|
44
44
|
class AmusedScheduler(SchedulerMixin, ConfigMixin):
|
@@ -70,7 +70,7 @@ class AmusedScheduler(SchedulerMixin, ConfigMixin):
|
|
70
70
|
|
71
71
|
def step(
|
72
72
|
self,
|
73
|
-
model_output: torch.
|
73
|
+
model_output: torch.Tensor,
|
74
74
|
timestep: torch.long,
|
75
75
|
sample: torch.LongTensor,
|
76
76
|
starting_mask_ratio: int = 1,
|
@@ -45,7 +45,7 @@ def betas_for_alpha_bar(
|
|
45
45
|
return math.exp(t * -12.0)
|
46
46
|
|
47
47
|
else:
|
48
|
-
raise ValueError(f"Unsupported
|
48
|
+
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
|
49
49
|
|
50
50
|
betas = []
|
51
51
|
for i in range(num_diffusion_timesteps):
|
@@ -61,12 +61,12 @@ class ConsistencyDecoderSchedulerOutput(BaseOutput):
|
|
61
61
|
Output class for the scheduler's `step` function.
|
62
62
|
|
63
63
|
Args:
|
64
|
-
prev_sample (`torch.
|
64
|
+
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
65
65
|
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
66
66
|
denoising loop.
|
67
67
|
"""
|
68
68
|
|
69
|
-
prev_sample: torch.
|
69
|
+
prev_sample: torch.Tensor
|
70
70
|
|
71
71
|
|
72
72
|
class ConsistencyDecoderScheduler(SchedulerMixin, ConfigMixin):
|
@@ -113,28 +113,28 @@ class ConsistencyDecoderScheduler(SchedulerMixin, ConfigMixin):
|
|
113
113
|
def init_noise_sigma(self):
|
114
114
|
return self.sqrt_one_minus_alphas_cumprod[self.timesteps[0]]
|
115
115
|
|
116
|
-
def scale_model_input(self, sample: torch.
|
116
|
+
def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
|
117
117
|
"""
|
118
118
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
119
119
|
current timestep.
|
120
120
|
|
121
121
|
Args:
|
122
|
-
sample (`torch.
|
122
|
+
sample (`torch.Tensor`):
|
123
123
|
The input sample.
|
124
124
|
timestep (`int`, *optional*):
|
125
125
|
The current timestep in the diffusion chain.
|
126
126
|
|
127
127
|
Returns:
|
128
|
-
`torch.
|
128
|
+
`torch.Tensor`:
|
129
129
|
A scaled input sample.
|
130
130
|
"""
|
131
131
|
return sample * self.c_in[timestep]
|
132
132
|
|
133
133
|
def step(
|
134
134
|
self,
|
135
|
-
model_output: torch.
|
136
|
-
timestep: Union[float, torch.
|
137
|
-
sample: torch.
|
135
|
+
model_output: torch.Tensor,
|
136
|
+
timestep: Union[float, torch.Tensor],
|
137
|
+
sample: torch.Tensor,
|
138
138
|
generator: Optional[torch.Generator] = None,
|
139
139
|
return_dict: bool = True,
|
140
140
|
) -> Union[ConsistencyDecoderSchedulerOutput, Tuple]:
|
@@ -143,11 +143,11 @@ class ConsistencyDecoderScheduler(SchedulerMixin, ConfigMixin):
|
|
143
143
|
process from the learned model outputs (most often the predicted noise).
|
144
144
|
|
145
145
|
Args:
|
146
|
-
model_output (`torch.
|
146
|
+
model_output (`torch.Tensor`):
|
147
147
|
The direct output from the learned diffusion model.
|
148
148
|
timestep (`float`):
|
149
149
|
The current timestep in the diffusion chain.
|
150
|
-
sample (`torch.
|
150
|
+
sample (`torch.Tensor`):
|
151
151
|
A current instance of a sample created by the diffusion process.
|
152
152
|
generator (`torch.Generator`, *optional*):
|
153
153
|
A random number generator.
|