diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,292 @@
1
+ # Copyright 2024 The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ """
16
+ Adapted from
17
+ https://github.com/huggingface/transformers/blob/3a8eb74668e9c2cc563b2f5c62fac174797063e0/src/transformers/quantizers/quantizer_torchao.py
18
+ """
19
+
20
+ import importlib
21
+ import types
22
+ from typing import TYPE_CHECKING, Any, Dict, List, Union
23
+
24
+ from packaging import version
25
+
26
+ from ...utils import get_module_from_name, is_torch_available, is_torch_version, is_torchao_available, logging
27
+ from ..base import DiffusersQuantizer
28
+
29
+
30
+ if TYPE_CHECKING:
31
+ from ...models.modeling_utils import ModelMixin
32
+
33
+
34
+ if is_torch_available():
35
+ import torch
36
+ import torch.nn as nn
37
+
38
+ if is_torch_version(">=", "2.5"):
39
+ SUPPORTED_TORCH_DTYPES_FOR_QUANTIZATION = (
40
+ # At the moment, only int8 is supported for integer quantization dtypes.
41
+ # In Torch 2.6, int1-int7 will be introduced, so this can be visited in the future
42
+ # to support more quantization methods, such as intx_weight_only.
43
+ torch.int8,
44
+ torch.float8_e4m3fn,
45
+ torch.float8_e5m2,
46
+ torch.uint1,
47
+ torch.uint2,
48
+ torch.uint3,
49
+ torch.uint4,
50
+ torch.uint5,
51
+ torch.uint6,
52
+ torch.uint7,
53
+ )
54
+ else:
55
+ SUPPORTED_TORCH_DTYPES_FOR_QUANTIZATION = (
56
+ torch.int8,
57
+ torch.float8_e4m3fn,
58
+ torch.float8_e5m2,
59
+ )
60
+
61
+ if is_torchao_available():
62
+ from torchao.quantization import quantize_
63
+
64
+
65
+ logger = logging.get_logger(__name__)
66
+
67
+
68
+ def _quantization_type(weight):
69
+ from torchao.dtypes import AffineQuantizedTensor
70
+ from torchao.quantization.linear_activation_quantized_tensor import LinearActivationQuantizedTensor
71
+
72
+ if isinstance(weight, AffineQuantizedTensor):
73
+ return f"{weight.__class__.__name__}({weight._quantization_type()})"
74
+
75
+ if isinstance(weight, LinearActivationQuantizedTensor):
76
+ return f"{weight.__class__.__name__}(activation={weight.input_quant_func}, weight={_quantization_type(weight.original_weight_tensor)})"
77
+
78
+
79
+ def _linear_extra_repr(self):
80
+ weight = _quantization_type(self.weight)
81
+ if weight is None:
82
+ return f"in_features={self.weight.shape[1]}, out_features={self.weight.shape[0]}, weight=None"
83
+ else:
84
+ return f"in_features={self.weight.shape[1]}, out_features={self.weight.shape[0]}, weight={weight}"
85
+
86
+
87
+ class TorchAoHfQuantizer(DiffusersQuantizer):
88
+ r"""
89
+ Diffusers Quantizer for TorchAO: https://github.com/pytorch/ao/.
90
+ """
91
+
92
+ requires_calibration = False
93
+ required_packages = ["torchao"]
94
+
95
+ def __init__(self, quantization_config, **kwargs):
96
+ super().__init__(quantization_config, **kwargs)
97
+
98
+ def validate_environment(self, *args, **kwargs):
99
+ if not is_torchao_available():
100
+ raise ImportError(
101
+ "Loading a TorchAO quantized model requires the torchao library. Please install with `pip install torchao`"
102
+ )
103
+ torchao_version = version.parse(importlib.metadata.version("torch"))
104
+ if torchao_version < version.parse("0.7.0"):
105
+ raise RuntimeError(
106
+ f"The minimum required version of `torchao` is 0.7.0, but the current version is {torchao_version}. Please upgrade with `pip install -U torchao`."
107
+ )
108
+
109
+ self.offload = False
110
+
111
+ device_map = kwargs.get("device_map", None)
112
+ if isinstance(device_map, dict):
113
+ if "cpu" in device_map.values() or "disk" in device_map.values():
114
+ if self.pre_quantized:
115
+ raise ValueError(
116
+ "You are attempting to perform cpu/disk offload with a pre-quantized torchao model "
117
+ "This is not supported yet. Please remove the CPU or disk device from the `device_map` argument."
118
+ )
119
+ else:
120
+ self.offload = True
121
+
122
+ if self.pre_quantized:
123
+ weights_only = kwargs.get("weights_only", None)
124
+ if weights_only:
125
+ torch_version = version.parse(importlib.metadata.version("torch"))
126
+ if torch_version < version.parse("2.5.0"):
127
+ # TODO(aryan): TorchAO is compatible with Pytorch >= 2.2 for certain quantization types. Try to see if we can support it in future
128
+ raise RuntimeError(
129
+ f"In order to use TorchAO pre-quantized model, you need to have torch>=2.5.0. However, the current version is {torch_version}."
130
+ )
131
+
132
+ def update_torch_dtype(self, torch_dtype):
133
+ quant_type = self.quantization_config.quant_type
134
+
135
+ if quant_type.startswith("int") or quant_type.startswith("uint"):
136
+ if torch_dtype is not None and torch_dtype != torch.bfloat16:
137
+ logger.warning(
138
+ f"You are trying to set torch_dtype to {torch_dtype} for int4/int8/uintx quantization, but "
139
+ f"only bfloat16 is supported right now. Please set `torch_dtype=torch.bfloat16`."
140
+ )
141
+
142
+ if torch_dtype is None:
143
+ # We need to set the torch_dtype, otherwise we have dtype mismatch when performing the quantized linear op
144
+ logger.warning(
145
+ "Overriding `torch_dtype` with `torch_dtype=torch.bfloat16` due to requirements of `torchao` "
146
+ "to enable model loading in different precisions. Pass your own `torch_dtype` to specify the "
147
+ "dtype of the remaining non-linear layers, or pass torch_dtype=torch.bfloat16, to remove this warning."
148
+ )
149
+ torch_dtype = torch.bfloat16
150
+
151
+ return torch_dtype
152
+
153
+ def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype":
154
+ quant_type = self.quantization_config.quant_type
155
+
156
+ if quant_type.startswith("int8") or quant_type.startswith("int4"):
157
+ # Note that int4 weights are created by packing into torch.int8, but since there is no torch.int4, we use torch.int8
158
+ return torch.int8
159
+ elif quant_type == "uintx_weight_only":
160
+ return self.quantization_config.quant_type_kwargs.get("dtype", torch.uint8)
161
+ elif quant_type.startswith("uint"):
162
+ return {
163
+ 1: torch.uint1,
164
+ 2: torch.uint2,
165
+ 3: torch.uint3,
166
+ 4: torch.uint4,
167
+ 5: torch.uint5,
168
+ 6: torch.uint6,
169
+ 7: torch.uint7,
170
+ }[int(quant_type[4])]
171
+ elif quant_type.startswith("float") or quant_type.startswith("fp"):
172
+ return torch.bfloat16
173
+
174
+ if isinstance(target_dtype, SUPPORTED_TORCH_DTYPES_FOR_QUANTIZATION):
175
+ return target_dtype
176
+
177
+ # We need one of the supported dtypes to be selected in order for accelerate to determine
178
+ # the total size of modules/parameters for auto device placement.
179
+ possible_device_maps = ["auto", "balanced", "balanced_low_0", "sequential"]
180
+ raise ValueError(
181
+ f"You have set `device_map` as one of {possible_device_maps} on a TorchAO quantized model but a suitable target dtype "
182
+ f"could not be inferred. The supported target_dtypes are: {SUPPORTED_TORCH_DTYPES_FOR_QUANTIZATION}. If you think the "
183
+ f"dtype you are using should be supported, please open an issue at https://github.com/huggingface/diffusers/issues."
184
+ )
185
+
186
+ def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]:
187
+ max_memory = {key: val * 0.9 for key, val in max_memory.items()}
188
+ return max_memory
189
+
190
+ def check_if_quantized_param(
191
+ self,
192
+ model: "ModelMixin",
193
+ param_value: "torch.Tensor",
194
+ param_name: str,
195
+ state_dict: Dict[str, Any],
196
+ **kwargs,
197
+ ) -> bool:
198
+ param_device = kwargs.pop("param_device", None)
199
+ # Check if the param_name is not in self.modules_to_not_convert
200
+ if any((key + "." in param_name) or (key == param_name) for key in self.modules_to_not_convert):
201
+ return False
202
+ elif param_device == "cpu" and self.offload:
203
+ # We don't quantize weights that we offload
204
+ return False
205
+ else:
206
+ # We only quantize the weight of nn.Linear
207
+ module, tensor_name = get_module_from_name(model, param_name)
208
+ return isinstance(module, torch.nn.Linear) and (tensor_name == "weight")
209
+
210
+ def create_quantized_param(
211
+ self,
212
+ model: "ModelMixin",
213
+ param_value: "torch.Tensor",
214
+ param_name: str,
215
+ target_device: "torch.device",
216
+ state_dict: Dict[str, Any],
217
+ unexpected_keys: List[str],
218
+ ):
219
+ r"""
220
+ Each nn.Linear layer that needs to be quantized is processsed here. First, we set the value the weight tensor,
221
+ then we move it to the target device. Finally, we quantize the module.
222
+ """
223
+ module, tensor_name = get_module_from_name(model, param_name)
224
+
225
+ if self.pre_quantized:
226
+ # If we're loading pre-quantized weights, replace the repr of linear layers for pretty printing info
227
+ # about AffineQuantizedTensor
228
+ module._parameters[tensor_name] = torch.nn.Parameter(param_value.to(device=target_device))
229
+ if isinstance(module, nn.Linear):
230
+ module.extra_repr = types.MethodType(_linear_extra_repr, module)
231
+ else:
232
+ # As we perform quantization here, the repr of linear layers is that of AQT, so we don't have to do it ourselves
233
+ module._parameters[tensor_name] = torch.nn.Parameter(param_value).to(device=target_device)
234
+ quantize_(module, self.quantization_config.get_apply_tensor_subclass())
235
+
236
+ def _process_model_before_weight_loading(
237
+ self,
238
+ model: "ModelMixin",
239
+ device_map,
240
+ keep_in_fp32_modules: List[str] = [],
241
+ **kwargs,
242
+ ):
243
+ self.modules_to_not_convert = self.quantization_config.modules_to_not_convert
244
+
245
+ if not isinstance(self.modules_to_not_convert, list):
246
+ self.modules_to_not_convert = [self.modules_to_not_convert]
247
+
248
+ self.modules_to_not_convert.extend(keep_in_fp32_modules)
249
+
250
+ # Extend `self.modules_to_not_convert` to keys that are supposed to be offloaded to `cpu` or `disk`
251
+ if isinstance(device_map, dict) and len(device_map.keys()) > 1:
252
+ keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]]
253
+ self.modules_to_not_convert.extend(keys_on_cpu)
254
+
255
+ # Purge `None`.
256
+ # Unlike `transformers`, we don't know if we should always keep certain modules in FP32
257
+ # in case of diffusion transformer models. For language models and others alike, `lm_head`
258
+ # and tied modules are usually kept in FP32.
259
+ self.modules_to_not_convert = [module for module in self.modules_to_not_convert if module is not None]
260
+
261
+ model.config.quantization_config = self.quantization_config
262
+
263
+ def _process_model_after_weight_loading(self, model: "ModelMixin"):
264
+ return model
265
+
266
+ def is_serializable(self, safe_serialization=None):
267
+ # TODO(aryan): needs to be tested
268
+ if safe_serialization:
269
+ logger.warning(
270
+ "torchao quantized model does not support safe serialization, please set `safe_serialization` to False."
271
+ )
272
+ return False
273
+
274
+ _is_torchao_serializable = version.parse(importlib.metadata.version("huggingface_hub")) >= version.parse(
275
+ "0.25.0"
276
+ )
277
+
278
+ if not _is_torchao_serializable:
279
+ logger.warning("torchao quantized model is only serializable after huggingface_hub >= 0.25.0 ")
280
+
281
+ if self.offload and self.quantization_config.modules_to_not_convert is None:
282
+ logger.warning(
283
+ "The model contains offloaded modules and these modules are not quantized. We don't recommend saving the model as we won't be able to reload them."
284
+ "If you want to specify modules to not quantize, please specify modules_to_not_convert in the quantization_config."
285
+ )
286
+ return False
287
+
288
+ return _is_torchao_serializable
289
+
290
+ @property
291
+ def is_trainable(self):
292
+ return self.quantization_config.quant_type.startswith("int8")
@@ -43,12 +43,14 @@ else:
43
43
  _import_structure["scheduling_consistency_decoder"] = ["ConsistencyDecoderScheduler"]
44
44
  _import_structure["scheduling_consistency_models"] = ["CMStochasticIterativeScheduler"]
45
45
  _import_structure["scheduling_ddim"] = ["DDIMScheduler"]
46
+ _import_structure["scheduling_ddim_cogvideox"] = ["CogVideoXDDIMScheduler"]
46
47
  _import_structure["scheduling_ddim_inverse"] = ["DDIMInverseScheduler"]
47
48
  _import_structure["scheduling_ddim_parallel"] = ["DDIMParallelScheduler"]
48
49
  _import_structure["scheduling_ddpm"] = ["DDPMScheduler"]
49
50
  _import_structure["scheduling_ddpm_parallel"] = ["DDPMParallelScheduler"]
50
51
  _import_structure["scheduling_ddpm_wuerstchen"] = ["DDPMWuerstchenScheduler"]
51
52
  _import_structure["scheduling_deis_multistep"] = ["DEISMultistepScheduler"]
53
+ _import_structure["scheduling_dpm_cogvideox"] = ["CogVideoXDPMScheduler"]
52
54
  _import_structure["scheduling_dpmsolver_multistep"] = ["DPMSolverMultistepScheduler"]
53
55
  _import_structure["scheduling_dpmsolver_multistep_inverse"] = ["DPMSolverMultistepInverseScheduler"]
54
56
  _import_structure["scheduling_dpmsolver_singlestep"] = ["DPMSolverSinglestepScheduler"]
@@ -56,6 +58,8 @@ else:
56
58
  _import_structure["scheduling_edm_euler"] = ["EDMEulerScheduler"]
57
59
  _import_structure["scheduling_euler_ancestral_discrete"] = ["EulerAncestralDiscreteScheduler"]
58
60
  _import_structure["scheduling_euler_discrete"] = ["EulerDiscreteScheduler"]
61
+ _import_structure["scheduling_flow_match_euler_discrete"] = ["FlowMatchEulerDiscreteScheduler"]
62
+ _import_structure["scheduling_flow_match_heun_discrete"] = ["FlowMatchHeunDiscreteScheduler"]
59
63
  _import_structure["scheduling_heun_discrete"] = ["HeunDiscreteScheduler"]
60
64
  _import_structure["scheduling_ipndm"] = ["IPNDMScheduler"]
61
65
  _import_structure["scheduling_k_dpm_2_ancestral_discrete"] = ["KDPM2AncestralDiscreteScheduler"]
@@ -68,7 +72,7 @@ else:
68
72
  _import_structure["scheduling_tcd"] = ["TCDScheduler"]
69
73
  _import_structure["scheduling_unclip"] = ["UnCLIPScheduler"]
70
74
  _import_structure["scheduling_unipc_multistep"] = ["UniPCMultistepScheduler"]
71
- _import_structure["scheduling_utils"] = ["KarrasDiffusionSchedulers", "SchedulerMixin"]
75
+ _import_structure["scheduling_utils"] = ["AysSchedules", "KarrasDiffusionSchedulers", "SchedulerMixin"]
72
76
  _import_structure["scheduling_vq_diffusion"] = ["VQDiffusionScheduler"]
73
77
 
74
78
  try:
@@ -116,6 +120,7 @@ except OptionalDependencyNotAvailable:
116
120
  _dummy_modules.update(get_objects_from_module(dummy_torch_and_torchsde_objects))
117
121
 
118
122
  else:
123
+ _import_structure["scheduling_cosine_dpmsolver_multistep"] = ["CosineDPMSolverMultistepScheduler"]
119
124
  _import_structure["scheduling_dpmsolver_sde"] = ["DPMSolverSDEScheduler"]
120
125
 
121
126
  if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
@@ -138,12 +143,14 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
138
143
  from .scheduling_consistency_decoder import ConsistencyDecoderScheduler
139
144
  from .scheduling_consistency_models import CMStochasticIterativeScheduler
140
145
  from .scheduling_ddim import DDIMScheduler
146
+ from .scheduling_ddim_cogvideox import CogVideoXDDIMScheduler
141
147
  from .scheduling_ddim_inverse import DDIMInverseScheduler
142
148
  from .scheduling_ddim_parallel import DDIMParallelScheduler
143
149
  from .scheduling_ddpm import DDPMScheduler
144
150
  from .scheduling_ddpm_parallel import DDPMParallelScheduler
145
151
  from .scheduling_ddpm_wuerstchen import DDPMWuerstchenScheduler
146
152
  from .scheduling_deis_multistep import DEISMultistepScheduler
153
+ from .scheduling_dpm_cogvideox import CogVideoXDPMScheduler
147
154
  from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
148
155
  from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler
149
156
  from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
@@ -151,6 +158,8 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
151
158
  from .scheduling_edm_euler import EDMEulerScheduler
152
159
  from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
153
160
  from .scheduling_euler_discrete import EulerDiscreteScheduler
161
+ from .scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
162
+ from .scheduling_flow_match_heun_discrete import FlowMatchHeunDiscreteScheduler
154
163
  from .scheduling_heun_discrete import HeunDiscreteScheduler
155
164
  from .scheduling_ipndm import IPNDMScheduler
156
165
  from .scheduling_k_dpm_2_ancestral_discrete import KDPM2AncestralDiscreteScheduler
@@ -163,7 +172,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
163
172
  from .scheduling_tcd import TCDScheduler
164
173
  from .scheduling_unclip import UnCLIPScheduler
165
174
  from .scheduling_unipc_multistep import UniPCMultistepScheduler
166
- from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
175
+ from .scheduling_utils import AysSchedules, KarrasDiffusionSchedulers, SchedulerMixin
167
176
  from .scheduling_vq_diffusion import VQDiffusionScheduler
168
177
 
169
178
  try:
@@ -201,6 +210,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
201
210
  except OptionalDependencyNotAvailable:
202
211
  from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403
203
212
  else:
213
+ from .scheduling_cosine_dpmsolver_multistep import CosineDPMSolverMultistepScheduler
204
214
  from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
205
215
 
206
216
  else:
@@ -30,7 +30,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
30
30
  raise OptionalDependencyNotAvailable()
31
31
 
32
32
  except OptionalDependencyNotAvailable:
33
- from ..utils.dummy_pt_objects import * # noqa F403
33
+ from ...utils.dummy_pt_objects import * # noqa F403
34
34
  else:
35
35
  from .scheduling_karras_ve import KarrasVeScheduler
36
36
  from .scheduling_sde_vp import ScoreSdeVpScheduler
@@ -31,19 +31,19 @@ class KarrasVeOutput(BaseOutput):
31
31
  Output class for the scheduler's step function output.
32
32
 
33
33
  Args:
34
- prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
34
+ prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
35
35
  Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
36
36
  denoising loop.
37
- derivative (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
37
+ derivative (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
38
38
  Derivative of predicted original image sample (x_0).
39
- pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
39
+ pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
40
40
  The predicted denoised sample (x_{0}) based on the model output from the current timestep.
41
41
  `pred_original_sample` can be used to preview progress or for guidance.
42
42
  """
43
43
 
44
- prev_sample: torch.FloatTensor
45
- derivative: torch.FloatTensor
46
- pred_original_sample: Optional[torch.FloatTensor] = None
44
+ prev_sample: torch.Tensor
45
+ derivative: torch.Tensor
46
+ pred_original_sample: Optional[torch.Tensor] = None
47
47
 
48
48
 
49
49
  class KarrasVeScheduler(SchedulerMixin, ConfigMixin):
@@ -94,21 +94,21 @@ class KarrasVeScheduler(SchedulerMixin, ConfigMixin):
94
94
  # setable values
95
95
  self.num_inference_steps: int = None
96
96
  self.timesteps: np.IntTensor = None
97
- self.schedule: torch.FloatTensor = None # sigma(t_i)
97
+ self.schedule: torch.Tensor = None # sigma(t_i)
98
98
 
99
- def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
99
+ def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
100
100
  """
101
101
  Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
102
102
  current timestep.
103
103
 
104
104
  Args:
105
- sample (`torch.FloatTensor`):
105
+ sample (`torch.Tensor`):
106
106
  The input sample.
107
107
  timestep (`int`, *optional*):
108
108
  The current timestep in the diffusion chain.
109
109
 
110
110
  Returns:
111
- `torch.FloatTensor`:
111
+ `torch.Tensor`:
112
112
  A scaled input sample.
113
113
  """
114
114
  return sample
@@ -136,14 +136,14 @@ class KarrasVeScheduler(SchedulerMixin, ConfigMixin):
136
136
  self.schedule = torch.tensor(schedule, dtype=torch.float32, device=device)
137
137
 
138
138
  def add_noise_to_input(
139
- self, sample: torch.FloatTensor, sigma: float, generator: Optional[torch.Generator] = None
140
- ) -> Tuple[torch.FloatTensor, float]:
139
+ self, sample: torch.Tensor, sigma: float, generator: Optional[torch.Generator] = None
140
+ ) -> Tuple[torch.Tensor, float]:
141
141
  """
142
142
  Explicit Langevin-like "churn" step of adding noise to the sample according to a `gamma_i ≥ 0` to reach a
143
143
  higher noise level `sigma_hat = sigma_i + gamma_i*sigma_i`.
144
144
 
145
145
  Args:
146
- sample (`torch.FloatTensor`):
146
+ sample (`torch.Tensor`):
147
147
  The input sample.
148
148
  sigma (`float`):
149
149
  generator (`torch.Generator`, *optional*):
@@ -163,10 +163,10 @@ class KarrasVeScheduler(SchedulerMixin, ConfigMixin):
163
163
 
164
164
  def step(
165
165
  self,
166
- model_output: torch.FloatTensor,
166
+ model_output: torch.Tensor,
167
167
  sigma_hat: float,
168
168
  sigma_prev: float,
169
- sample_hat: torch.FloatTensor,
169
+ sample_hat: torch.Tensor,
170
170
  return_dict: bool = True,
171
171
  ) -> Union[KarrasVeOutput, Tuple]:
172
172
  """
@@ -174,11 +174,11 @@ class KarrasVeScheduler(SchedulerMixin, ConfigMixin):
174
174
  process from the learned model outputs (most often the predicted noise).
175
175
 
176
176
  Args:
177
- model_output (`torch.FloatTensor`):
177
+ model_output (`torch.Tensor`):
178
178
  The direct output from learned diffusion model.
179
179
  sigma_hat (`float`):
180
180
  sigma_prev (`float`):
181
- sample_hat (`torch.FloatTensor`):
181
+ sample_hat (`torch.Tensor`):
182
182
  return_dict (`bool`, *optional*, defaults to `True`):
183
183
  Whether or not to return a [`~schedulers.scheduling_karras_ve.KarrasVESchedulerOutput`] or `tuple`.
184
184
 
@@ -202,25 +202,25 @@ class KarrasVeScheduler(SchedulerMixin, ConfigMixin):
202
202
 
203
203
  def step_correct(
204
204
  self,
205
- model_output: torch.FloatTensor,
205
+ model_output: torch.Tensor,
206
206
  sigma_hat: float,
207
207
  sigma_prev: float,
208
- sample_hat: torch.FloatTensor,
209
- sample_prev: torch.FloatTensor,
210
- derivative: torch.FloatTensor,
208
+ sample_hat: torch.Tensor,
209
+ sample_prev: torch.Tensor,
210
+ derivative: torch.Tensor,
211
211
  return_dict: bool = True,
212
212
  ) -> Union[KarrasVeOutput, Tuple]:
213
213
  """
214
214
  Corrects the predicted sample based on the `model_output` of the network.
215
215
 
216
216
  Args:
217
- model_output (`torch.FloatTensor`):
217
+ model_output (`torch.Tensor`):
218
218
  The direct output from learned diffusion model.
219
219
  sigma_hat (`float`): TODO
220
220
  sigma_prev (`float`): TODO
221
- sample_hat (`torch.FloatTensor`): TODO
222
- sample_prev (`torch.FloatTensor`): TODO
223
- derivative (`torch.FloatTensor`): TODO
221
+ sample_hat (`torch.Tensor`): TODO
222
+ sample_prev (`torch.Tensor`): TODO
223
+ derivative (`torch.Tensor`): TODO
224
224
  return_dict (`bool`, *optional*, defaults to `True`):
225
225
  Whether or not to return a [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`.
226
226
 
@@ -29,16 +29,16 @@ class AmusedSchedulerOutput(BaseOutput):
29
29
  Output class for the scheduler's `step` function output.
30
30
 
31
31
  Args:
32
- prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
32
+ prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
33
33
  Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
34
34
  denoising loop.
35
- pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
35
+ pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
36
36
  The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
37
37
  `pred_original_sample` can be used to preview progress or for guidance.
38
38
  """
39
39
 
40
- prev_sample: torch.FloatTensor
41
- pred_original_sample: torch.FloatTensor = None
40
+ prev_sample: torch.Tensor
41
+ pred_original_sample: torch.Tensor = None
42
42
 
43
43
 
44
44
  class AmusedScheduler(SchedulerMixin, ConfigMixin):
@@ -70,7 +70,7 @@ class AmusedScheduler(SchedulerMixin, ConfigMixin):
70
70
 
71
71
  def step(
72
72
  self,
73
- model_output: torch.FloatTensor,
73
+ model_output: torch.Tensor,
74
74
  timestep: torch.long,
75
75
  sample: torch.LongTensor,
76
76
  starting_mask_ratio: int = 1,
@@ -45,7 +45,7 @@ def betas_for_alpha_bar(
45
45
  return math.exp(t * -12.0)
46
46
 
47
47
  else:
48
- raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
48
+ raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
49
49
 
50
50
  betas = []
51
51
  for i in range(num_diffusion_timesteps):
@@ -61,12 +61,12 @@ class ConsistencyDecoderSchedulerOutput(BaseOutput):
61
61
  Output class for the scheduler's `step` function.
62
62
 
63
63
  Args:
64
- prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
64
+ prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
65
65
  Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
66
66
  denoising loop.
67
67
  """
68
68
 
69
- prev_sample: torch.FloatTensor
69
+ prev_sample: torch.Tensor
70
70
 
71
71
 
72
72
  class ConsistencyDecoderScheduler(SchedulerMixin, ConfigMixin):
@@ -113,28 +113,28 @@ class ConsistencyDecoderScheduler(SchedulerMixin, ConfigMixin):
113
113
  def init_noise_sigma(self):
114
114
  return self.sqrt_one_minus_alphas_cumprod[self.timesteps[0]]
115
115
 
116
- def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
116
+ def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
117
117
  """
118
118
  Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
119
119
  current timestep.
120
120
 
121
121
  Args:
122
- sample (`torch.FloatTensor`):
122
+ sample (`torch.Tensor`):
123
123
  The input sample.
124
124
  timestep (`int`, *optional*):
125
125
  The current timestep in the diffusion chain.
126
126
 
127
127
  Returns:
128
- `torch.FloatTensor`:
128
+ `torch.Tensor`:
129
129
  A scaled input sample.
130
130
  """
131
131
  return sample * self.c_in[timestep]
132
132
 
133
133
  def step(
134
134
  self,
135
- model_output: torch.FloatTensor,
136
- timestep: Union[float, torch.FloatTensor],
137
- sample: torch.FloatTensor,
135
+ model_output: torch.Tensor,
136
+ timestep: Union[float, torch.Tensor],
137
+ sample: torch.Tensor,
138
138
  generator: Optional[torch.Generator] = None,
139
139
  return_dict: bool = True,
140
140
  ) -> Union[ConsistencyDecoderSchedulerOutput, Tuple]:
@@ -143,11 +143,11 @@ class ConsistencyDecoderScheduler(SchedulerMixin, ConfigMixin):
143
143
  process from the learned model outputs (most often the predicted noise).
144
144
 
145
145
  Args:
146
- model_output (`torch.FloatTensor`):
146
+ model_output (`torch.Tensor`):
147
147
  The direct output from the learned diffusion model.
148
148
  timestep (`float`):
149
149
  The current timestep in the diffusion chain.
150
- sample (`torch.FloatTensor`):
150
+ sample (`torch.Tensor`):
151
151
  A current instance of a sample created by the diffusion process.
152
152
  generator (`torch.Generator`, *optional*):
153
153
  A random number generator.