diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +50 -53
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.0.dist-info/RECORD +0 -399
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
diffusers/models/controlnet.py
CHANGED
@@ -11,175 +11,25 @@
|
|
11
11
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
|
-
from
|
15
|
-
|
16
|
-
|
17
|
-
import
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
from ..loaders import FromOriginalControlNetMixin
|
23
|
-
from ..utils import BaseOutput, logging
|
24
|
-
from .attention_processor import (
|
25
|
-
ADDED_KV_ATTENTION_PROCESSORS,
|
26
|
-
CROSS_ATTENTION_PROCESSORS,
|
27
|
-
AttentionProcessor,
|
28
|
-
AttnAddedKVProcessor,
|
29
|
-
AttnProcessor,
|
30
|
-
)
|
31
|
-
from .embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
|
32
|
-
from .modeling_utils import ModelMixin
|
33
|
-
from .unets.unet_2d_blocks import (
|
34
|
-
CrossAttnDownBlock2D,
|
35
|
-
DownBlock2D,
|
36
|
-
UNetMidBlock2D,
|
37
|
-
UNetMidBlock2DCrossAttn,
|
38
|
-
get_down_block,
|
14
|
+
from typing import Optional, Tuple, Union
|
15
|
+
|
16
|
+
from ..utils import deprecate
|
17
|
+
from .controlnets.controlnet import ( # noqa
|
18
|
+
ControlNetConditioningEmbedding,
|
19
|
+
ControlNetModel,
|
20
|
+
ControlNetOutput,
|
21
|
+
zero_module,
|
39
22
|
)
|
40
|
-
from .unets.unet_2d_condition import UNet2DConditionModel
|
41
|
-
|
42
|
-
|
43
|
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
44
23
|
|
45
24
|
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
25
|
+
class ControlNetOutput(ControlNetOutput):
|
26
|
+
def __init__(self, *args, **kwargs):
|
27
|
+
deprecation_message = "Importing `ControlNetOutput` from `diffusers.models.controlnet` is deprecated and this will be removed in a future version. Please use `from diffusers.models.controlnets.controlnet import ControlNetOutput`, instead."
|
28
|
+
deprecate("diffusers.models.controlnet.ControlNetOutput", "0.34", deprecation_message)
|
29
|
+
super().__init__(*args, **kwargs)
|
50
30
|
|
51
|
-
Args:
|
52
|
-
down_block_res_samples (`tuple[torch.Tensor]`):
|
53
|
-
A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
|
54
|
-
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
|
55
|
-
used to condition the original UNet's downsampling activations.
|
56
|
-
mid_down_block_re_sample (`torch.Tensor`):
|
57
|
-
The activation of the midde block (the lowest sample resolution). Each tensor should be of shape
|
58
|
-
`(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
|
59
|
-
Output can be used to condition the original UNet's middle block activation.
|
60
|
-
"""
|
61
|
-
|
62
|
-
down_block_res_samples: Tuple[torch.Tensor]
|
63
|
-
mid_block_res_sample: torch.Tensor
|
64
|
-
|
65
|
-
|
66
|
-
class ControlNetConditioningEmbedding(nn.Module):
|
67
|
-
"""
|
68
|
-
Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
|
69
|
-
[11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
|
70
|
-
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
|
71
|
-
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
|
72
|
-
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
|
73
|
-
model) to encode image-space conditions ... into feature maps ..."
|
74
|
-
"""
|
75
31
|
|
76
|
-
|
77
|
-
self,
|
78
|
-
conditioning_embedding_channels: int,
|
79
|
-
conditioning_channels: int = 3,
|
80
|
-
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
|
81
|
-
):
|
82
|
-
super().__init__()
|
83
|
-
|
84
|
-
self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
|
85
|
-
|
86
|
-
self.blocks = nn.ModuleList([])
|
87
|
-
|
88
|
-
for i in range(len(block_out_channels) - 1):
|
89
|
-
channel_in = block_out_channels[i]
|
90
|
-
channel_out = block_out_channels[i + 1]
|
91
|
-
self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
|
92
|
-
self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))
|
93
|
-
|
94
|
-
self.conv_out = zero_module(
|
95
|
-
nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
|
96
|
-
)
|
97
|
-
|
98
|
-
def forward(self, conditioning):
|
99
|
-
embedding = self.conv_in(conditioning)
|
100
|
-
embedding = F.silu(embedding)
|
101
|
-
|
102
|
-
for block in self.blocks:
|
103
|
-
embedding = block(embedding)
|
104
|
-
embedding = F.silu(embedding)
|
105
|
-
|
106
|
-
embedding = self.conv_out(embedding)
|
107
|
-
|
108
|
-
return embedding
|
109
|
-
|
110
|
-
|
111
|
-
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
|
112
|
-
"""
|
113
|
-
A ControlNet model.
|
114
|
-
|
115
|
-
Args:
|
116
|
-
in_channels (`int`, defaults to 4):
|
117
|
-
The number of channels in the input sample.
|
118
|
-
flip_sin_to_cos (`bool`, defaults to `True`):
|
119
|
-
Whether to flip the sin to cos in the time embedding.
|
120
|
-
freq_shift (`int`, defaults to 0):
|
121
|
-
The frequency shift to apply to the time embedding.
|
122
|
-
down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
123
|
-
The tuple of downsample blocks to use.
|
124
|
-
only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
|
125
|
-
block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
|
126
|
-
The tuple of output channels for each block.
|
127
|
-
layers_per_block (`int`, defaults to 2):
|
128
|
-
The number of layers per block.
|
129
|
-
downsample_padding (`int`, defaults to 1):
|
130
|
-
The padding to use for the downsampling convolution.
|
131
|
-
mid_block_scale_factor (`float`, defaults to 1):
|
132
|
-
The scale factor to use for the mid block.
|
133
|
-
act_fn (`str`, defaults to "silu"):
|
134
|
-
The activation function to use.
|
135
|
-
norm_num_groups (`int`, *optional*, defaults to 32):
|
136
|
-
The number of groups to use for the normalization. If None, normalization and activation layers is skipped
|
137
|
-
in post-processing.
|
138
|
-
norm_eps (`float`, defaults to 1e-5):
|
139
|
-
The epsilon to use for the normalization.
|
140
|
-
cross_attention_dim (`int`, defaults to 1280):
|
141
|
-
The dimension of the cross attention features.
|
142
|
-
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
143
|
-
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
144
|
-
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
145
|
-
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
146
|
-
encoder_hid_dim (`int`, *optional*, defaults to None):
|
147
|
-
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
148
|
-
dimension to `cross_attention_dim`.
|
149
|
-
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
150
|
-
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
151
|
-
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
152
|
-
attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
|
153
|
-
The dimension of the attention heads.
|
154
|
-
use_linear_projection (`bool`, defaults to `False`):
|
155
|
-
class_embed_type (`str`, *optional*, defaults to `None`):
|
156
|
-
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
|
157
|
-
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
158
|
-
addition_embed_type (`str`, *optional*, defaults to `None`):
|
159
|
-
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
160
|
-
"text". "text" will use the `TextTimeEmbedding` layer.
|
161
|
-
num_class_embeds (`int`, *optional*, defaults to 0):
|
162
|
-
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
163
|
-
class conditioning with `class_embed_type` equal to `None`.
|
164
|
-
upcast_attention (`bool`, defaults to `False`):
|
165
|
-
resnet_time_scale_shift (`str`, defaults to `"default"`):
|
166
|
-
Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
|
167
|
-
projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
|
168
|
-
The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
|
169
|
-
`class_embed_type="projection"`.
|
170
|
-
controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
|
171
|
-
The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
|
172
|
-
conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
|
173
|
-
The tuple of output channel for each block in the `conditioning_embedding` layer.
|
174
|
-
global_pool_conditions (`bool`, defaults to `False`):
|
175
|
-
TODO(Patrick) - unused parameter.
|
176
|
-
addition_embed_type_num_heads (`int`, defaults to 64):
|
177
|
-
The number of heads to use for the `TextTimeEmbedding` layer.
|
178
|
-
"""
|
179
|
-
|
180
|
-
_supports_gradient_checkpointing = True
|
181
|
-
|
182
|
-
@register_to_config
|
32
|
+
class ControlNetModel(ControlNetModel):
|
183
33
|
def __init__(
|
184
34
|
self,
|
185
35
|
in_channels: int = 4,
|
@@ -220,649 +70,46 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
|
|
220
70
|
global_pool_conditions: bool = False,
|
221
71
|
addition_embed_type_num_heads: int = 64,
|
222
72
|
):
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
228
|
-
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
229
|
-
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
230
|
-
# which is why we correct for the naming here.
|
231
|
-
num_attention_heads = num_attention_heads or attention_head_dim
|
232
|
-
|
233
|
-
# Check inputs
|
234
|
-
if len(block_out_channels) != len(down_block_types):
|
235
|
-
raise ValueError(
|
236
|
-
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
237
|
-
)
|
238
|
-
|
239
|
-
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
240
|
-
raise ValueError(
|
241
|
-
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
242
|
-
)
|
243
|
-
|
244
|
-
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
245
|
-
raise ValueError(
|
246
|
-
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
247
|
-
)
|
248
|
-
|
249
|
-
if isinstance(transformer_layers_per_block, int):
|
250
|
-
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
251
|
-
|
252
|
-
# input
|
253
|
-
conv_in_kernel = 3
|
254
|
-
conv_in_padding = (conv_in_kernel - 1) // 2
|
255
|
-
self.conv_in = nn.Conv2d(
|
256
|
-
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
257
|
-
)
|
258
|
-
|
259
|
-
# time
|
260
|
-
time_embed_dim = block_out_channels[0] * 4
|
261
|
-
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
262
|
-
timestep_input_dim = block_out_channels[0]
|
263
|
-
self.time_embedding = TimestepEmbedding(
|
264
|
-
timestep_input_dim,
|
265
|
-
time_embed_dim,
|
266
|
-
act_fn=act_fn,
|
267
|
-
)
|
268
|
-
|
269
|
-
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
270
|
-
encoder_hid_dim_type = "text_proj"
|
271
|
-
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
272
|
-
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
273
|
-
|
274
|
-
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
275
|
-
raise ValueError(
|
276
|
-
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
277
|
-
)
|
278
|
-
|
279
|
-
if encoder_hid_dim_type == "text_proj":
|
280
|
-
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
281
|
-
elif encoder_hid_dim_type == "text_image_proj":
|
282
|
-
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
283
|
-
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
284
|
-
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
285
|
-
self.encoder_hid_proj = TextImageProjection(
|
286
|
-
text_embed_dim=encoder_hid_dim,
|
287
|
-
image_embed_dim=cross_attention_dim,
|
288
|
-
cross_attention_dim=cross_attention_dim,
|
289
|
-
)
|
290
|
-
|
291
|
-
elif encoder_hid_dim_type is not None:
|
292
|
-
raise ValueError(
|
293
|
-
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
294
|
-
)
|
295
|
-
else:
|
296
|
-
self.encoder_hid_proj = None
|
297
|
-
|
298
|
-
# class embedding
|
299
|
-
if class_embed_type is None and num_class_embeds is not None:
|
300
|
-
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
301
|
-
elif class_embed_type == "timestep":
|
302
|
-
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
303
|
-
elif class_embed_type == "identity":
|
304
|
-
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
305
|
-
elif class_embed_type == "projection":
|
306
|
-
if projection_class_embeddings_input_dim is None:
|
307
|
-
raise ValueError(
|
308
|
-
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
309
|
-
)
|
310
|
-
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
311
|
-
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
312
|
-
# 2. it projects from an arbitrary input dimension.
|
313
|
-
#
|
314
|
-
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
315
|
-
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
316
|
-
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
317
|
-
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
318
|
-
else:
|
319
|
-
self.class_embedding = None
|
320
|
-
|
321
|
-
if addition_embed_type == "text":
|
322
|
-
if encoder_hid_dim is not None:
|
323
|
-
text_time_embedding_from_dim = encoder_hid_dim
|
324
|
-
else:
|
325
|
-
text_time_embedding_from_dim = cross_attention_dim
|
326
|
-
|
327
|
-
self.add_embedding = TextTimeEmbedding(
|
328
|
-
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
329
|
-
)
|
330
|
-
elif addition_embed_type == "text_image":
|
331
|
-
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
332
|
-
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
333
|
-
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
334
|
-
self.add_embedding = TextImageTimeEmbedding(
|
335
|
-
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
336
|
-
)
|
337
|
-
elif addition_embed_type == "text_time":
|
338
|
-
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
339
|
-
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
340
|
-
|
341
|
-
elif addition_embed_type is not None:
|
342
|
-
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
343
|
-
|
344
|
-
# control net conditioning embedding
|
345
|
-
self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
|
346
|
-
conditioning_embedding_channels=block_out_channels[0],
|
347
|
-
block_out_channels=conditioning_embedding_out_channels,
|
73
|
+
deprecation_message = "Importing `ControlNetModel` from `diffusers.models.controlnet` is deprecated and this will be removed in a future version. Please use `from diffusers.models.controlnets.controlnet import ControlNetModel`, instead."
|
74
|
+
deprecate("diffusers.models.controlnet.ControlNetModel", "0.34", deprecation_message)
|
75
|
+
super().__init__(
|
76
|
+
in_channels=in_channels,
|
348
77
|
conditioning_channels=conditioning_channels,
|
349
|
-
|
350
|
-
|
351
|
-
|
352
|
-
|
353
|
-
|
354
|
-
|
355
|
-
|
356
|
-
|
357
|
-
|
358
|
-
|
359
|
-
|
360
|
-
|
361
|
-
|
362
|
-
|
363
|
-
# down
|
364
|
-
output_channel = block_out_channels[0]
|
365
|
-
|
366
|
-
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
367
|
-
controlnet_block = zero_module(controlnet_block)
|
368
|
-
self.controlnet_down_blocks.append(controlnet_block)
|
369
|
-
|
370
|
-
for i, down_block_type in enumerate(down_block_types):
|
371
|
-
input_channel = output_channel
|
372
|
-
output_channel = block_out_channels[i]
|
373
|
-
is_final_block = i == len(block_out_channels) - 1
|
374
|
-
|
375
|
-
down_block = get_down_block(
|
376
|
-
down_block_type,
|
377
|
-
num_layers=layers_per_block,
|
378
|
-
transformer_layers_per_block=transformer_layers_per_block[i],
|
379
|
-
in_channels=input_channel,
|
380
|
-
out_channels=output_channel,
|
381
|
-
temb_channels=time_embed_dim,
|
382
|
-
add_downsample=not is_final_block,
|
383
|
-
resnet_eps=norm_eps,
|
384
|
-
resnet_act_fn=act_fn,
|
385
|
-
resnet_groups=norm_num_groups,
|
386
|
-
cross_attention_dim=cross_attention_dim,
|
387
|
-
num_attention_heads=num_attention_heads[i],
|
388
|
-
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
389
|
-
downsample_padding=downsample_padding,
|
390
|
-
use_linear_projection=use_linear_projection,
|
391
|
-
only_cross_attention=only_cross_attention[i],
|
392
|
-
upcast_attention=upcast_attention,
|
393
|
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
394
|
-
)
|
395
|
-
self.down_blocks.append(down_block)
|
396
|
-
|
397
|
-
for _ in range(layers_per_block):
|
398
|
-
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
399
|
-
controlnet_block = zero_module(controlnet_block)
|
400
|
-
self.controlnet_down_blocks.append(controlnet_block)
|
401
|
-
|
402
|
-
if not is_final_block:
|
403
|
-
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
404
|
-
controlnet_block = zero_module(controlnet_block)
|
405
|
-
self.controlnet_down_blocks.append(controlnet_block)
|
406
|
-
|
407
|
-
# mid
|
408
|
-
mid_block_channel = block_out_channels[-1]
|
409
|
-
|
410
|
-
controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
|
411
|
-
controlnet_block = zero_module(controlnet_block)
|
412
|
-
self.controlnet_mid_block = controlnet_block
|
413
|
-
|
414
|
-
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
415
|
-
self.mid_block = UNetMidBlock2DCrossAttn(
|
416
|
-
transformer_layers_per_block=transformer_layers_per_block[-1],
|
417
|
-
in_channels=mid_block_channel,
|
418
|
-
temb_channels=time_embed_dim,
|
419
|
-
resnet_eps=norm_eps,
|
420
|
-
resnet_act_fn=act_fn,
|
421
|
-
output_scale_factor=mid_block_scale_factor,
|
422
|
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
423
|
-
cross_attention_dim=cross_attention_dim,
|
424
|
-
num_attention_heads=num_attention_heads[-1],
|
425
|
-
resnet_groups=norm_num_groups,
|
426
|
-
use_linear_projection=use_linear_projection,
|
427
|
-
upcast_attention=upcast_attention,
|
428
|
-
)
|
429
|
-
elif mid_block_type == "UNetMidBlock2D":
|
430
|
-
self.mid_block = UNetMidBlock2D(
|
431
|
-
in_channels=block_out_channels[-1],
|
432
|
-
temb_channels=time_embed_dim,
|
433
|
-
num_layers=0,
|
434
|
-
resnet_eps=norm_eps,
|
435
|
-
resnet_act_fn=act_fn,
|
436
|
-
output_scale_factor=mid_block_scale_factor,
|
437
|
-
resnet_groups=norm_num_groups,
|
438
|
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
439
|
-
add_attention=False,
|
440
|
-
)
|
441
|
-
else:
|
442
|
-
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
443
|
-
|
444
|
-
@classmethod
|
445
|
-
def from_unet(
|
446
|
-
cls,
|
447
|
-
unet: UNet2DConditionModel,
|
448
|
-
controlnet_conditioning_channel_order: str = "rgb",
|
449
|
-
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
|
450
|
-
load_weights_from_unet: bool = True,
|
451
|
-
conditioning_channels: int = 3,
|
452
|
-
):
|
453
|
-
r"""
|
454
|
-
Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`].
|
455
|
-
|
456
|
-
Parameters:
|
457
|
-
unet (`UNet2DConditionModel`):
|
458
|
-
The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
|
459
|
-
where applicable.
|
460
|
-
"""
|
461
|
-
transformer_layers_per_block = (
|
462
|
-
unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
|
463
|
-
)
|
464
|
-
encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
|
465
|
-
encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
|
466
|
-
addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
|
467
|
-
addition_time_embed_dim = (
|
468
|
-
unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
|
469
|
-
)
|
470
|
-
|
471
|
-
controlnet = cls(
|
78
|
+
flip_sin_to_cos=flip_sin_to_cos,
|
79
|
+
freq_shift=freq_shift,
|
80
|
+
down_block_types=down_block_types,
|
81
|
+
mid_block_type=mid_block_type,
|
82
|
+
only_cross_attention=only_cross_attention,
|
83
|
+
block_out_channels=block_out_channels,
|
84
|
+
layers_per_block=layers_per_block,
|
85
|
+
downsample_padding=downsample_padding,
|
86
|
+
mid_block_scale_factor=mid_block_scale_factor,
|
87
|
+
act_fn=act_fn,
|
88
|
+
norm_num_groups=norm_num_groups,
|
89
|
+
norm_eps=norm_eps,
|
90
|
+
cross_attention_dim=cross_attention_dim,
|
91
|
+
transformer_layers_per_block=transformer_layers_per_block,
|
472
92
|
encoder_hid_dim=encoder_hid_dim,
|
473
93
|
encoder_hid_dim_type=encoder_hid_dim_type,
|
94
|
+
attention_head_dim=attention_head_dim,
|
95
|
+
num_attention_heads=num_attention_heads,
|
96
|
+
use_linear_projection=use_linear_projection,
|
97
|
+
class_embed_type=class_embed_type,
|
474
98
|
addition_embed_type=addition_embed_type,
|
475
99
|
addition_time_embed_dim=addition_time_embed_dim,
|
476
|
-
|
477
|
-
|
478
|
-
|
479
|
-
|
480
|
-
down_block_types=unet.config.down_block_types,
|
481
|
-
only_cross_attention=unet.config.only_cross_attention,
|
482
|
-
block_out_channels=unet.config.block_out_channels,
|
483
|
-
layers_per_block=unet.config.layers_per_block,
|
484
|
-
downsample_padding=unet.config.downsample_padding,
|
485
|
-
mid_block_scale_factor=unet.config.mid_block_scale_factor,
|
486
|
-
act_fn=unet.config.act_fn,
|
487
|
-
norm_num_groups=unet.config.norm_num_groups,
|
488
|
-
norm_eps=unet.config.norm_eps,
|
489
|
-
cross_attention_dim=unet.config.cross_attention_dim,
|
490
|
-
attention_head_dim=unet.config.attention_head_dim,
|
491
|
-
num_attention_heads=unet.config.num_attention_heads,
|
492
|
-
use_linear_projection=unet.config.use_linear_projection,
|
493
|
-
class_embed_type=unet.config.class_embed_type,
|
494
|
-
num_class_embeds=unet.config.num_class_embeds,
|
495
|
-
upcast_attention=unet.config.upcast_attention,
|
496
|
-
resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
|
497
|
-
projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
|
498
|
-
mid_block_type=unet.config.mid_block_type,
|
100
|
+
num_class_embeds=num_class_embeds,
|
101
|
+
upcast_attention=upcast_attention,
|
102
|
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
103
|
+
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
|
499
104
|
controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
|
500
105
|
conditioning_embedding_out_channels=conditioning_embedding_out_channels,
|
501
|
-
|
502
|
-
|
503
|
-
|
504
|
-
if load_weights_from_unet:
|
505
|
-
controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
|
506
|
-
controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
|
507
|
-
controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
|
508
|
-
|
509
|
-
if controlnet.class_embedding:
|
510
|
-
controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
|
511
|
-
|
512
|
-
controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict())
|
513
|
-
controlnet.mid_block.load_state_dict(unet.mid_block.state_dict())
|
514
|
-
|
515
|
-
return controlnet
|
516
|
-
|
517
|
-
@property
|
518
|
-
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
519
|
-
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
520
|
-
r"""
|
521
|
-
Returns:
|
522
|
-
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
523
|
-
indexed by its weight name.
|
524
|
-
"""
|
525
|
-
# set recursively
|
526
|
-
processors = {}
|
527
|
-
|
528
|
-
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
529
|
-
if hasattr(module, "get_processor"):
|
530
|
-
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
531
|
-
|
532
|
-
for sub_name, child in module.named_children():
|
533
|
-
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
534
|
-
|
535
|
-
return processors
|
536
|
-
|
537
|
-
for name, module in self.named_children():
|
538
|
-
fn_recursive_add_processors(name, module, processors)
|
539
|
-
|
540
|
-
return processors
|
541
|
-
|
542
|
-
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
543
|
-
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
544
|
-
r"""
|
545
|
-
Sets the attention processor to use to compute attention.
|
546
|
-
|
547
|
-
Parameters:
|
548
|
-
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
549
|
-
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
550
|
-
for **all** `Attention` layers.
|
551
|
-
|
552
|
-
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
553
|
-
processor. This is strongly recommended when setting trainable attention processors.
|
554
|
-
|
555
|
-
"""
|
556
|
-
count = len(self.attn_processors.keys())
|
557
|
-
|
558
|
-
if isinstance(processor, dict) and len(processor) != count:
|
559
|
-
raise ValueError(
|
560
|
-
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
561
|
-
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
562
|
-
)
|
563
|
-
|
564
|
-
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
565
|
-
if hasattr(module, "set_processor"):
|
566
|
-
if not isinstance(processor, dict):
|
567
|
-
module.set_processor(processor)
|
568
|
-
else:
|
569
|
-
module.set_processor(processor.pop(f"{name}.processor"))
|
570
|
-
|
571
|
-
for sub_name, child in module.named_children():
|
572
|
-
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
573
|
-
|
574
|
-
for name, module in self.named_children():
|
575
|
-
fn_recursive_attn_processor(name, module, processor)
|
576
|
-
|
577
|
-
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
578
|
-
def set_default_attn_processor(self):
|
579
|
-
"""
|
580
|
-
Disables custom attention processors and sets the default attention implementation.
|
581
|
-
"""
|
582
|
-
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
583
|
-
processor = AttnAddedKVProcessor()
|
584
|
-
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
585
|
-
processor = AttnProcessor()
|
586
|
-
else:
|
587
|
-
raise ValueError(
|
588
|
-
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
589
|
-
)
|
590
|
-
|
591
|
-
self.set_attn_processor(processor)
|
592
|
-
|
593
|
-
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
|
594
|
-
def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
|
595
|
-
r"""
|
596
|
-
Enable sliced attention computation.
|
597
|
-
|
598
|
-
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
599
|
-
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
600
|
-
|
601
|
-
Args:
|
602
|
-
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
603
|
-
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
604
|
-
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
605
|
-
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
606
|
-
must be a multiple of `slice_size`.
|
607
|
-
"""
|
608
|
-
sliceable_head_dims = []
|
609
|
-
|
610
|
-
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
611
|
-
if hasattr(module, "set_attention_slice"):
|
612
|
-
sliceable_head_dims.append(module.sliceable_head_dim)
|
613
|
-
|
614
|
-
for child in module.children():
|
615
|
-
fn_recursive_retrieve_sliceable_dims(child)
|
616
|
-
|
617
|
-
# retrieve number of attention layers
|
618
|
-
for module in self.children():
|
619
|
-
fn_recursive_retrieve_sliceable_dims(module)
|
620
|
-
|
621
|
-
num_sliceable_layers = len(sliceable_head_dims)
|
622
|
-
|
623
|
-
if slice_size == "auto":
|
624
|
-
# half the attention head size is usually a good trade-off between
|
625
|
-
# speed and memory
|
626
|
-
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
627
|
-
elif slice_size == "max":
|
628
|
-
# make smallest slice possible
|
629
|
-
slice_size = num_sliceable_layers * [1]
|
630
|
-
|
631
|
-
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
632
|
-
|
633
|
-
if len(slice_size) != len(sliceable_head_dims):
|
634
|
-
raise ValueError(
|
635
|
-
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
636
|
-
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
637
|
-
)
|
638
|
-
|
639
|
-
for i in range(len(slice_size)):
|
640
|
-
size = slice_size[i]
|
641
|
-
dim = sliceable_head_dims[i]
|
642
|
-
if size is not None and size > dim:
|
643
|
-
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
644
|
-
|
645
|
-
# Recursively walk through all the children.
|
646
|
-
# Any children which exposes the set_attention_slice method
|
647
|
-
# gets the message
|
648
|
-
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
649
|
-
if hasattr(module, "set_attention_slice"):
|
650
|
-
module.set_attention_slice(slice_size.pop())
|
651
|
-
|
652
|
-
for child in module.children():
|
653
|
-
fn_recursive_set_attention_slice(child, slice_size)
|
654
|
-
|
655
|
-
reversed_slice_size = list(reversed(slice_size))
|
656
|
-
for module in self.children():
|
657
|
-
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
658
|
-
|
659
|
-
def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
|
660
|
-
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
|
661
|
-
module.gradient_checkpointing = value
|
662
|
-
|
663
|
-
def forward(
|
664
|
-
self,
|
665
|
-
sample: torch.FloatTensor,
|
666
|
-
timestep: Union[torch.Tensor, float, int],
|
667
|
-
encoder_hidden_states: torch.Tensor,
|
668
|
-
controlnet_cond: torch.FloatTensor,
|
669
|
-
conditioning_scale: float = 1.0,
|
670
|
-
class_labels: Optional[torch.Tensor] = None,
|
671
|
-
timestep_cond: Optional[torch.Tensor] = None,
|
672
|
-
attention_mask: Optional[torch.Tensor] = None,
|
673
|
-
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
674
|
-
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
675
|
-
guess_mode: bool = False,
|
676
|
-
return_dict: bool = True,
|
677
|
-
) -> Union[ControlNetOutput, Tuple[Tuple[torch.FloatTensor, ...], torch.FloatTensor]]:
|
678
|
-
"""
|
679
|
-
The [`ControlNetModel`] forward method.
|
680
|
-
|
681
|
-
Args:
|
682
|
-
sample (`torch.FloatTensor`):
|
683
|
-
The noisy input tensor.
|
684
|
-
timestep (`Union[torch.Tensor, float, int]`):
|
685
|
-
The number of timesteps to denoise an input.
|
686
|
-
encoder_hidden_states (`torch.Tensor`):
|
687
|
-
The encoder hidden states.
|
688
|
-
controlnet_cond (`torch.FloatTensor`):
|
689
|
-
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
690
|
-
conditioning_scale (`float`, defaults to `1.0`):
|
691
|
-
The scale factor for ControlNet outputs.
|
692
|
-
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
693
|
-
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
694
|
-
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
|
695
|
-
Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
|
696
|
-
timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
|
697
|
-
embeddings.
|
698
|
-
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
699
|
-
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
700
|
-
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
701
|
-
negative values to the attention scores corresponding to "discard" tokens.
|
702
|
-
added_cond_kwargs (`dict`):
|
703
|
-
Additional conditions for the Stable Diffusion XL UNet.
|
704
|
-
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
|
705
|
-
A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
|
706
|
-
guess_mode (`bool`, defaults to `False`):
|
707
|
-
In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
|
708
|
-
you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
|
709
|
-
return_dict (`bool`, defaults to `True`):
|
710
|
-
Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
|
711
|
-
|
712
|
-
Returns:
|
713
|
-
[`~models.controlnet.ControlNetOutput`] **or** `tuple`:
|
714
|
-
If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is
|
715
|
-
returned where the first element is the sample tensor.
|
716
|
-
"""
|
717
|
-
# check channel order
|
718
|
-
channel_order = self.config.controlnet_conditioning_channel_order
|
719
|
-
|
720
|
-
if channel_order == "rgb":
|
721
|
-
# in rgb order by default
|
722
|
-
...
|
723
|
-
elif channel_order == "bgr":
|
724
|
-
controlnet_cond = torch.flip(controlnet_cond, dims=[1])
|
725
|
-
else:
|
726
|
-
raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
|
727
|
-
|
728
|
-
# prepare attention_mask
|
729
|
-
if attention_mask is not None:
|
730
|
-
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
731
|
-
attention_mask = attention_mask.unsqueeze(1)
|
732
|
-
|
733
|
-
# 1. time
|
734
|
-
timesteps = timestep
|
735
|
-
if not torch.is_tensor(timesteps):
|
736
|
-
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
737
|
-
# This would be a good case for the `match` statement (Python 3.10+)
|
738
|
-
is_mps = sample.device.type == "mps"
|
739
|
-
if isinstance(timestep, float):
|
740
|
-
dtype = torch.float32 if is_mps else torch.float64
|
741
|
-
else:
|
742
|
-
dtype = torch.int32 if is_mps else torch.int64
|
743
|
-
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
744
|
-
elif len(timesteps.shape) == 0:
|
745
|
-
timesteps = timesteps[None].to(sample.device)
|
746
|
-
|
747
|
-
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
748
|
-
timesteps = timesteps.expand(sample.shape[0])
|
749
|
-
|
750
|
-
t_emb = self.time_proj(timesteps)
|
751
|
-
|
752
|
-
# timesteps does not contain any weights and will always return f32 tensors
|
753
|
-
# but time_embedding might actually be running in fp16. so we need to cast here.
|
754
|
-
# there might be better ways to encapsulate this.
|
755
|
-
t_emb = t_emb.to(dtype=sample.dtype)
|
756
|
-
|
757
|
-
emb = self.time_embedding(t_emb, timestep_cond)
|
758
|
-
aug_emb = None
|
759
|
-
|
760
|
-
if self.class_embedding is not None:
|
761
|
-
if class_labels is None:
|
762
|
-
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
763
|
-
|
764
|
-
if self.config.class_embed_type == "timestep":
|
765
|
-
class_labels = self.time_proj(class_labels)
|
766
|
-
|
767
|
-
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
768
|
-
emb = emb + class_emb
|
769
|
-
|
770
|
-
if self.config.addition_embed_type is not None:
|
771
|
-
if self.config.addition_embed_type == "text":
|
772
|
-
aug_emb = self.add_embedding(encoder_hidden_states)
|
773
|
-
|
774
|
-
elif self.config.addition_embed_type == "text_time":
|
775
|
-
if "text_embeds" not in added_cond_kwargs:
|
776
|
-
raise ValueError(
|
777
|
-
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
778
|
-
)
|
779
|
-
text_embeds = added_cond_kwargs.get("text_embeds")
|
780
|
-
if "time_ids" not in added_cond_kwargs:
|
781
|
-
raise ValueError(
|
782
|
-
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
783
|
-
)
|
784
|
-
time_ids = added_cond_kwargs.get("time_ids")
|
785
|
-
time_embeds = self.add_time_proj(time_ids.flatten())
|
786
|
-
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
787
|
-
|
788
|
-
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
789
|
-
add_embeds = add_embeds.to(emb.dtype)
|
790
|
-
aug_emb = self.add_embedding(add_embeds)
|
791
|
-
|
792
|
-
emb = emb + aug_emb if aug_emb is not None else emb
|
793
|
-
|
794
|
-
# 2. pre-process
|
795
|
-
sample = self.conv_in(sample)
|
796
|
-
|
797
|
-
controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
|
798
|
-
sample = sample + controlnet_cond
|
799
|
-
|
800
|
-
# 3. down
|
801
|
-
down_block_res_samples = (sample,)
|
802
|
-
for downsample_block in self.down_blocks:
|
803
|
-
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
804
|
-
sample, res_samples = downsample_block(
|
805
|
-
hidden_states=sample,
|
806
|
-
temb=emb,
|
807
|
-
encoder_hidden_states=encoder_hidden_states,
|
808
|
-
attention_mask=attention_mask,
|
809
|
-
cross_attention_kwargs=cross_attention_kwargs,
|
810
|
-
)
|
811
|
-
else:
|
812
|
-
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
813
|
-
|
814
|
-
down_block_res_samples += res_samples
|
815
|
-
|
816
|
-
# 4. mid
|
817
|
-
if self.mid_block is not None:
|
818
|
-
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
819
|
-
sample = self.mid_block(
|
820
|
-
sample,
|
821
|
-
emb,
|
822
|
-
encoder_hidden_states=encoder_hidden_states,
|
823
|
-
attention_mask=attention_mask,
|
824
|
-
cross_attention_kwargs=cross_attention_kwargs,
|
825
|
-
)
|
826
|
-
else:
|
827
|
-
sample = self.mid_block(sample, emb)
|
828
|
-
|
829
|
-
# 5. Control net blocks
|
830
|
-
|
831
|
-
controlnet_down_block_res_samples = ()
|
832
|
-
|
833
|
-
for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
|
834
|
-
down_block_res_sample = controlnet_block(down_block_res_sample)
|
835
|
-
controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
|
836
|
-
|
837
|
-
down_block_res_samples = controlnet_down_block_res_samples
|
838
|
-
|
839
|
-
mid_block_res_sample = self.controlnet_mid_block(sample)
|
840
|
-
|
841
|
-
# 6. scaling
|
842
|
-
if guess_mode and not self.config.global_pool_conditions:
|
843
|
-
scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0
|
844
|
-
scales = scales * conditioning_scale
|
845
|
-
down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)]
|
846
|
-
mid_block_res_sample = mid_block_res_sample * scales[-1] # last one
|
847
|
-
else:
|
848
|
-
down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
|
849
|
-
mid_block_res_sample = mid_block_res_sample * conditioning_scale
|
850
|
-
|
851
|
-
if self.config.global_pool_conditions:
|
852
|
-
down_block_res_samples = [
|
853
|
-
torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples
|
854
|
-
]
|
855
|
-
mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)
|
856
|
-
|
857
|
-
if not return_dict:
|
858
|
-
return (down_block_res_samples, mid_block_res_sample)
|
859
|
-
|
860
|
-
return ControlNetOutput(
|
861
|
-
down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
|
106
|
+
global_pool_conditions=global_pool_conditions,
|
107
|
+
addition_embed_type_num_heads=addition_embed_type_num_heads,
|
862
108
|
)
|
863
109
|
|
864
110
|
|
865
|
-
|
866
|
-
|
867
|
-
|
868
|
-
|
111
|
+
class ControlNetConditioningEmbedding(ControlNetConditioningEmbedding):
|
112
|
+
def __init__(self, *args, **kwargs):
|
113
|
+
deprecation_message = "Importing `ControlNetConditioningEmbedding` from `diffusers.models.controlnet` is deprecated and this will be removed in a future version. Please use `from diffusers.models.controlnets.controlnet import ControlNetConditioningEmbedding`, instead."
|
114
|
+
deprecate("diffusers.models.controlnet.ControlNetConditioningEmbedding", "0.34", deprecation_message)
|
115
|
+
super().__init__(*args, **kwargs)
|