diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1058 @@
1
+ # Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import PIL.Image
19
+ import torch
20
+ from transformers import (
21
+ CLIPTextModelWithProjection,
22
+ CLIPTokenizer,
23
+ T5EncoderModel,
24
+ T5TokenizerFast,
25
+ )
26
+
27
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
28
+ from ...loaders import FromSingleFileMixin, SD3LoraLoaderMixin
29
+ from ...models.attention_processor import PAGCFGJointAttnProcessor2_0, PAGJointAttnProcessor2_0
30
+ from ...models.autoencoders import AutoencoderKL
31
+ from ...models.transformers import SD3Transformer2DModel
32
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
33
+ from ...utils import (
34
+ USE_PEFT_BACKEND,
35
+ is_torch_xla_available,
36
+ logging,
37
+ replace_example_docstring,
38
+ scale_lora_layers,
39
+ unscale_lora_layers,
40
+ )
41
+ from ...utils.torch_utils import randn_tensor
42
+ from ..pipeline_utils import DiffusionPipeline
43
+ from ..stable_diffusion_3.pipeline_output import StableDiffusion3PipelineOutput
44
+ from .pag_utils import PAGMixin
45
+
46
+
47
+ if is_torch_xla_available():
48
+ import torch_xla.core.xla_model as xm
49
+
50
+ XLA_AVAILABLE = True
51
+ else:
52
+ XLA_AVAILABLE = False
53
+
54
+
55
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
56
+
57
+ EXAMPLE_DOC_STRING = """
58
+ Examples:
59
+ ```py
60
+ >>> import torch
61
+ >>> from diffusers import StableDiffusion3PAGImg2ImgPipeline
62
+ >>> from diffusers.utils import load_image
63
+
64
+ >>> pipe = StableDiffusion3PAGImg2ImgPipeline.from_pretrained(
65
+ ... "stabilityai/stable-diffusion-3-medium-diffusers",
66
+ ... torch_dtype=torch.float16,
67
+ ... pag_applied_layers=["blocks.13"],
68
+ ... )
69
+ >>> pipe.to("cuda")
70
+ >>> prompt = "a photo of an astronaut riding a horse on mars"
71
+ >>> url = "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"
72
+ >>> init_image = load_image(url).convert("RGB")
73
+ >>> image = pipe(prompt, image=init_image, guidance_scale=5.0, pag_scale=0.7).images[0]
74
+ ```
75
+ """
76
+
77
+
78
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
79
+ def retrieve_latents(
80
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
81
+ ):
82
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
83
+ return encoder_output.latent_dist.sample(generator)
84
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
85
+ return encoder_output.latent_dist.mode()
86
+ elif hasattr(encoder_output, "latents"):
87
+ return encoder_output.latents
88
+ else:
89
+ raise AttributeError("Could not access latents of provided encoder_output")
90
+
91
+
92
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
93
+ def retrieve_timesteps(
94
+ scheduler,
95
+ num_inference_steps: Optional[int] = None,
96
+ device: Optional[Union[str, torch.device]] = None,
97
+ timesteps: Optional[List[int]] = None,
98
+ sigmas: Optional[List[float]] = None,
99
+ **kwargs,
100
+ ):
101
+ r"""
102
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
103
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
104
+
105
+ Args:
106
+ scheduler (`SchedulerMixin`):
107
+ The scheduler to get timesteps from.
108
+ num_inference_steps (`int`):
109
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
110
+ must be `None`.
111
+ device (`str` or `torch.device`, *optional*):
112
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
113
+ timesteps (`List[int]`, *optional*):
114
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
115
+ `num_inference_steps` and `sigmas` must be `None`.
116
+ sigmas (`List[float]`, *optional*):
117
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
118
+ `num_inference_steps` and `timesteps` must be `None`.
119
+
120
+ Returns:
121
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
122
+ second element is the number of inference steps.
123
+ """
124
+ if timesteps is not None and sigmas is not None:
125
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
126
+ if timesteps is not None:
127
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
128
+ if not accepts_timesteps:
129
+ raise ValueError(
130
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
131
+ f" timestep schedules. Please check whether you are using the correct scheduler."
132
+ )
133
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
134
+ timesteps = scheduler.timesteps
135
+ num_inference_steps = len(timesteps)
136
+ elif sigmas is not None:
137
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
138
+ if not accept_sigmas:
139
+ raise ValueError(
140
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
141
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
142
+ )
143
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
144
+ timesteps = scheduler.timesteps
145
+ num_inference_steps = len(timesteps)
146
+ else:
147
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
148
+ timesteps = scheduler.timesteps
149
+ return timesteps, num_inference_steps
150
+
151
+
152
+ class StableDiffusion3PAGImg2ImgPipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingleFileMixin, PAGMixin):
153
+ r"""
154
+ [PAG pipeline](https://huggingface.co/docs/diffusers/main/en/using-diffusers/pag) for image-to-image generation
155
+ using Stable Diffusion 3.
156
+
157
+ Args:
158
+ transformer ([`SD3Transformer2DModel`]):
159
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
160
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
161
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
162
+ vae ([`AutoencoderKL`]):
163
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
164
+ text_encoder ([`CLIPTextModelWithProjection`]):
165
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
166
+ specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant,
167
+ with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size`
168
+ as its dimension.
169
+ text_encoder_2 ([`CLIPTextModelWithProjection`]):
170
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
171
+ specifically the
172
+ [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
173
+ variant.
174
+ text_encoder_3 ([`T5EncoderModel`]):
175
+ Frozen text-encoder. Stable Diffusion 3 uses
176
+ [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
177
+ [t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
178
+ tokenizer (`CLIPTokenizer`):
179
+ Tokenizer of class
180
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
181
+ tokenizer_2 (`CLIPTokenizer`):
182
+ Second Tokenizer of class
183
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
184
+ tokenizer_3 (`T5TokenizerFast`):
185
+ Tokenizer of class
186
+ [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
187
+ """
188
+
189
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->transformer->vae"
190
+ _optional_components = []
191
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"]
192
+
193
+ def __init__(
194
+ self,
195
+ transformer: SD3Transformer2DModel,
196
+ scheduler: FlowMatchEulerDiscreteScheduler,
197
+ vae: AutoencoderKL,
198
+ text_encoder: CLIPTextModelWithProjection,
199
+ tokenizer: CLIPTokenizer,
200
+ text_encoder_2: CLIPTextModelWithProjection,
201
+ tokenizer_2: CLIPTokenizer,
202
+ text_encoder_3: T5EncoderModel,
203
+ tokenizer_3: T5TokenizerFast,
204
+ pag_applied_layers: Union[str, List[str]] = "blocks.1", # 1st transformer block
205
+ ):
206
+ super().__init__()
207
+
208
+ self.register_modules(
209
+ vae=vae,
210
+ text_encoder=text_encoder,
211
+ text_encoder_2=text_encoder_2,
212
+ text_encoder_3=text_encoder_3,
213
+ tokenizer=tokenizer,
214
+ tokenizer_2=tokenizer_2,
215
+ tokenizer_3=tokenizer_3,
216
+ transformer=transformer,
217
+ scheduler=scheduler,
218
+ )
219
+ self.vae_scale_factor = (
220
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
221
+ )
222
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
223
+ self.tokenizer_max_length = (
224
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
225
+ )
226
+ self.default_sample_size = (
227
+ self.transformer.config.sample_size
228
+ if hasattr(self, "transformer") and self.transformer is not None
229
+ else 128
230
+ )
231
+ self.patch_size = (
232
+ self.transformer.config.patch_size if hasattr(self, "transformer") and self.transformer is not None else 2
233
+ )
234
+
235
+ self.set_pag_applied_layers(
236
+ pag_applied_layers, pag_attn_processors=(PAGCFGJointAttnProcessor2_0(), PAGJointAttnProcessor2_0())
237
+ )
238
+
239
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_t5_prompt_embeds
240
+ def _get_t5_prompt_embeds(
241
+ self,
242
+ prompt: Union[str, List[str]] = None,
243
+ num_images_per_prompt: int = 1,
244
+ max_sequence_length: int = 256,
245
+ device: Optional[torch.device] = None,
246
+ dtype: Optional[torch.dtype] = None,
247
+ ):
248
+ device = device or self._execution_device
249
+ dtype = dtype or self.text_encoder.dtype
250
+
251
+ prompt = [prompt] if isinstance(prompt, str) else prompt
252
+ batch_size = len(prompt)
253
+
254
+ if self.text_encoder_3 is None:
255
+ return torch.zeros(
256
+ (
257
+ batch_size * num_images_per_prompt,
258
+ self.tokenizer_max_length,
259
+ self.transformer.config.joint_attention_dim,
260
+ ),
261
+ device=device,
262
+ dtype=dtype,
263
+ )
264
+
265
+ text_inputs = self.tokenizer_3(
266
+ prompt,
267
+ padding="max_length",
268
+ max_length=max_sequence_length,
269
+ truncation=True,
270
+ add_special_tokens=True,
271
+ return_tensors="pt",
272
+ )
273
+ text_input_ids = text_inputs.input_ids
274
+ untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids
275
+
276
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
277
+ removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
278
+ logger.warning(
279
+ "The following part of your input was truncated because `max_sequence_length` is set to "
280
+ f" {max_sequence_length} tokens: {removed_text}"
281
+ )
282
+
283
+ prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0]
284
+
285
+ dtype = self.text_encoder_3.dtype
286
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
287
+
288
+ _, seq_len, _ = prompt_embeds.shape
289
+
290
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
291
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
292
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
293
+
294
+ return prompt_embeds
295
+
296
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_clip_prompt_embeds
297
+ def _get_clip_prompt_embeds(
298
+ self,
299
+ prompt: Union[str, List[str]],
300
+ num_images_per_prompt: int = 1,
301
+ device: Optional[torch.device] = None,
302
+ clip_skip: Optional[int] = None,
303
+ clip_model_index: int = 0,
304
+ ):
305
+ device = device or self._execution_device
306
+
307
+ clip_tokenizers = [self.tokenizer, self.tokenizer_2]
308
+ clip_text_encoders = [self.text_encoder, self.text_encoder_2]
309
+
310
+ tokenizer = clip_tokenizers[clip_model_index]
311
+ text_encoder = clip_text_encoders[clip_model_index]
312
+
313
+ prompt = [prompt] if isinstance(prompt, str) else prompt
314
+ batch_size = len(prompt)
315
+
316
+ text_inputs = tokenizer(
317
+ prompt,
318
+ padding="max_length",
319
+ max_length=self.tokenizer_max_length,
320
+ truncation=True,
321
+ return_tensors="pt",
322
+ )
323
+
324
+ text_input_ids = text_inputs.input_ids
325
+ untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
326
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
327
+ removed_text = tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
328
+ logger.warning(
329
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
330
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
331
+ )
332
+ prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
333
+ pooled_prompt_embeds = prompt_embeds[0]
334
+
335
+ if clip_skip is None:
336
+ prompt_embeds = prompt_embeds.hidden_states[-2]
337
+ else:
338
+ prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
339
+
340
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
341
+
342
+ _, seq_len, _ = prompt_embeds.shape
343
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
344
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
345
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
346
+
347
+ pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1)
348
+ pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1)
349
+
350
+ return prompt_embeds, pooled_prompt_embeds
351
+
352
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.encode_prompt
353
+ def encode_prompt(
354
+ self,
355
+ prompt: Union[str, List[str]],
356
+ prompt_2: Union[str, List[str]],
357
+ prompt_3: Union[str, List[str]],
358
+ device: Optional[torch.device] = None,
359
+ num_images_per_prompt: int = 1,
360
+ do_classifier_free_guidance: bool = True,
361
+ negative_prompt: Optional[Union[str, List[str]]] = None,
362
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
363
+ negative_prompt_3: Optional[Union[str, List[str]]] = None,
364
+ prompt_embeds: Optional[torch.FloatTensor] = None,
365
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
366
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
367
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
368
+ clip_skip: Optional[int] = None,
369
+ max_sequence_length: int = 256,
370
+ lora_scale: Optional[float] = None,
371
+ ):
372
+ r"""
373
+
374
+ Args:
375
+ prompt (`str` or `List[str]`, *optional*):
376
+ prompt to be encoded
377
+ prompt_2 (`str` or `List[str]`, *optional*):
378
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
379
+ used in all text-encoders
380
+ prompt_3 (`str` or `List[str]`, *optional*):
381
+ The prompt or prompts to be sent to the `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
382
+ used in all text-encoders
383
+ device: (`torch.device`):
384
+ torch device
385
+ num_images_per_prompt (`int`):
386
+ number of images that should be generated per prompt
387
+ do_classifier_free_guidance (`bool`):
388
+ whether to use classifier free guidance or not
389
+ negative_prompt (`str` or `List[str]`, *optional*):
390
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
391
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
392
+ less than `1`).
393
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
394
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
395
+ `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
396
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
397
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
398
+ `text_encoder_3`. If not defined, `negative_prompt` is used in both text-encoders
399
+ prompt_embeds (`torch.FloatTensor`, *optional*):
400
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
401
+ provided, text embeddings will be generated from `prompt` input argument.
402
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
403
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
404
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
405
+ argument.
406
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
407
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
408
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
409
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
410
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
411
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
412
+ input argument.
413
+ clip_skip (`int`, *optional*):
414
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
415
+ the output of the pre-final layer will be used for computing the prompt embeddings.
416
+ lora_scale (`float`, *optional*):
417
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
418
+ """
419
+ device = device or self._execution_device
420
+
421
+ # set lora scale so that monkey patched LoRA
422
+ # function of text encoder can correctly access it
423
+ if lora_scale is not None and isinstance(self, SD3LoraLoaderMixin):
424
+ self._lora_scale = lora_scale
425
+
426
+ # dynamically adjust the LoRA scale
427
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
428
+ scale_lora_layers(self.text_encoder, lora_scale)
429
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
430
+ scale_lora_layers(self.text_encoder_2, lora_scale)
431
+
432
+ prompt = [prompt] if isinstance(prompt, str) else prompt
433
+ if prompt is not None:
434
+ batch_size = len(prompt)
435
+ else:
436
+ batch_size = prompt_embeds.shape[0]
437
+
438
+ if prompt_embeds is None:
439
+ prompt_2 = prompt_2 or prompt
440
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
441
+
442
+ prompt_3 = prompt_3 or prompt
443
+ prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3
444
+
445
+ prompt_embed, pooled_prompt_embed = self._get_clip_prompt_embeds(
446
+ prompt=prompt,
447
+ device=device,
448
+ num_images_per_prompt=num_images_per_prompt,
449
+ clip_skip=clip_skip,
450
+ clip_model_index=0,
451
+ )
452
+ prompt_2_embed, pooled_prompt_2_embed = self._get_clip_prompt_embeds(
453
+ prompt=prompt_2,
454
+ device=device,
455
+ num_images_per_prompt=num_images_per_prompt,
456
+ clip_skip=clip_skip,
457
+ clip_model_index=1,
458
+ )
459
+ clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1)
460
+
461
+ t5_prompt_embed = self._get_t5_prompt_embeds(
462
+ prompt=prompt_3,
463
+ num_images_per_prompt=num_images_per_prompt,
464
+ max_sequence_length=max_sequence_length,
465
+ device=device,
466
+ )
467
+
468
+ clip_prompt_embeds = torch.nn.functional.pad(
469
+ clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1])
470
+ )
471
+
472
+ prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2)
473
+ pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1)
474
+
475
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
476
+ negative_prompt = negative_prompt or ""
477
+ negative_prompt_2 = negative_prompt_2 or negative_prompt
478
+ negative_prompt_3 = negative_prompt_3 or negative_prompt
479
+
480
+ # normalize str to list
481
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
482
+ negative_prompt_2 = (
483
+ batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
484
+ )
485
+ negative_prompt_3 = (
486
+ batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3
487
+ )
488
+
489
+ if prompt is not None and type(prompt) is not type(negative_prompt):
490
+ raise TypeError(
491
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
492
+ f" {type(prompt)}."
493
+ )
494
+ elif batch_size != len(negative_prompt):
495
+ raise ValueError(
496
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
497
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
498
+ " the batch size of `prompt`."
499
+ )
500
+
501
+ negative_prompt_embed, negative_pooled_prompt_embed = self._get_clip_prompt_embeds(
502
+ negative_prompt,
503
+ device=device,
504
+ num_images_per_prompt=num_images_per_prompt,
505
+ clip_skip=None,
506
+ clip_model_index=0,
507
+ )
508
+ negative_prompt_2_embed, negative_pooled_prompt_2_embed = self._get_clip_prompt_embeds(
509
+ negative_prompt_2,
510
+ device=device,
511
+ num_images_per_prompt=num_images_per_prompt,
512
+ clip_skip=None,
513
+ clip_model_index=1,
514
+ )
515
+ negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1)
516
+
517
+ t5_negative_prompt_embed = self._get_t5_prompt_embeds(
518
+ prompt=negative_prompt_3,
519
+ num_images_per_prompt=num_images_per_prompt,
520
+ max_sequence_length=max_sequence_length,
521
+ device=device,
522
+ )
523
+
524
+ negative_clip_prompt_embeds = torch.nn.functional.pad(
525
+ negative_clip_prompt_embeds,
526
+ (0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1]),
527
+ )
528
+
529
+ negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2)
530
+ negative_pooled_prompt_embeds = torch.cat(
531
+ [negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1
532
+ )
533
+
534
+ if self.text_encoder is not None:
535
+ if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
536
+ # Retrieve the original scale by scaling back the LoRA layers
537
+ unscale_lora_layers(self.text_encoder, lora_scale)
538
+
539
+ if self.text_encoder_2 is not None:
540
+ if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
541
+ # Retrieve the original scale by scaling back the LoRA layers
542
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
543
+
544
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
545
+
546
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.check_inputs
547
+ def check_inputs(
548
+ self,
549
+ prompt,
550
+ prompt_2,
551
+ prompt_3,
552
+ height,
553
+ width,
554
+ strength,
555
+ negative_prompt=None,
556
+ negative_prompt_2=None,
557
+ negative_prompt_3=None,
558
+ prompt_embeds=None,
559
+ negative_prompt_embeds=None,
560
+ pooled_prompt_embeds=None,
561
+ negative_pooled_prompt_embeds=None,
562
+ callback_on_step_end_tensor_inputs=None,
563
+ max_sequence_length=None,
564
+ ):
565
+ if (
566
+ height % (self.vae_scale_factor * self.patch_size) != 0
567
+ or width % (self.vae_scale_factor * self.patch_size) != 0
568
+ ):
569
+ raise ValueError(
570
+ f"`height` and `width` have to be divisible by {self.vae_scale_factor * self.patch_size} but are {height} and {width}."
571
+ f"You can use height {height - height % (self.vae_scale_factor * self.patch_size)} and width {width - width % (self.vae_scale_factor * self.patch_size)}."
572
+ )
573
+
574
+ if strength < 0 or strength > 1:
575
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
576
+
577
+ if callback_on_step_end_tensor_inputs is not None and not all(
578
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
579
+ ):
580
+ raise ValueError(
581
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
582
+ )
583
+
584
+ if prompt is not None and prompt_embeds is not None:
585
+ raise ValueError(
586
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
587
+ " only forward one of the two."
588
+ )
589
+ elif prompt_2 is not None and prompt_embeds is not None:
590
+ raise ValueError(
591
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
592
+ " only forward one of the two."
593
+ )
594
+ elif prompt_3 is not None and prompt_embeds is not None:
595
+ raise ValueError(
596
+ f"Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
597
+ " only forward one of the two."
598
+ )
599
+ elif prompt is None and prompt_embeds is None:
600
+ raise ValueError(
601
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
602
+ )
603
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
604
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
605
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
606
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
607
+ elif prompt_3 is not None and (not isinstance(prompt_3, str) and not isinstance(prompt_3, list)):
608
+ raise ValueError(f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}")
609
+
610
+ if negative_prompt is not None and negative_prompt_embeds is not None:
611
+ raise ValueError(
612
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
613
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
614
+ )
615
+ elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
616
+ raise ValueError(
617
+ f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
618
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
619
+ )
620
+ elif negative_prompt_3 is not None and negative_prompt_embeds is not None:
621
+ raise ValueError(
622
+ f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`:"
623
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
624
+ )
625
+
626
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
627
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
628
+ raise ValueError(
629
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
630
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
631
+ f" {negative_prompt_embeds.shape}."
632
+ )
633
+
634
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
635
+ raise ValueError(
636
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
637
+ )
638
+
639
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
640
+ raise ValueError(
641
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
642
+ )
643
+
644
+ if max_sequence_length is not None and max_sequence_length > 512:
645
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
646
+
647
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps
648
+ def get_timesteps(self, num_inference_steps, strength, device):
649
+ # get the original timestep using init_timestep
650
+ init_timestep = min(num_inference_steps * strength, num_inference_steps)
651
+
652
+ t_start = int(max(num_inference_steps - init_timestep, 0))
653
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
654
+ if hasattr(self.scheduler, "set_begin_index"):
655
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
656
+
657
+ return timesteps, num_inference_steps - t_start
658
+
659
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.prepare_latents
660
+ def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None):
661
+ if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
662
+ raise ValueError(
663
+ f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
664
+ )
665
+
666
+ image = image.to(device=device, dtype=dtype)
667
+
668
+ batch_size = batch_size * num_images_per_prompt
669
+ if image.shape[1] == self.vae.config.latent_channels:
670
+ init_latents = image
671
+
672
+ else:
673
+ if isinstance(generator, list) and len(generator) != batch_size:
674
+ raise ValueError(
675
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
676
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
677
+ )
678
+
679
+ elif isinstance(generator, list):
680
+ init_latents = [
681
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
682
+ for i in range(batch_size)
683
+ ]
684
+ init_latents = torch.cat(init_latents, dim=0)
685
+ else:
686
+ init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
687
+
688
+ init_latents = (init_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
689
+
690
+ if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
691
+ # expand init_latents for batch_size
692
+ additional_image_per_prompt = batch_size // init_latents.shape[0]
693
+ init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
694
+ elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
695
+ raise ValueError(
696
+ f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
697
+ )
698
+ else:
699
+ init_latents = torch.cat([init_latents], dim=0)
700
+
701
+ shape = init_latents.shape
702
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
703
+
704
+ # get latents
705
+ init_latents = self.scheduler.scale_noise(init_latents, timestep, noise)
706
+ latents = init_latents.to(device=device, dtype=dtype)
707
+
708
+ return latents
709
+
710
+ @property
711
+ def guidance_scale(self):
712
+ return self._guidance_scale
713
+
714
+ @property
715
+ def clip_skip(self):
716
+ return self._clip_skip
717
+
718
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
719
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
720
+ # corresponds to doing no classifier free guidance.
721
+ @property
722
+ def do_classifier_free_guidance(self):
723
+ return self._guidance_scale > 1
724
+
725
+ @property
726
+ def joint_attention_kwargs(self):
727
+ return self._joint_attention_kwargs
728
+
729
+ @property
730
+ def num_timesteps(self):
731
+ return self._num_timesteps
732
+
733
+ @property
734
+ def interrupt(self):
735
+ return self._interrupt
736
+
737
+ @torch.no_grad()
738
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
739
+ def __call__(
740
+ self,
741
+ prompt: Union[str, List[str]] = None,
742
+ prompt_2: Optional[Union[str, List[str]]] = None,
743
+ prompt_3: Optional[Union[str, List[str]]] = None,
744
+ height: Optional[int] = None,
745
+ width: Optional[int] = None,
746
+ image: PipelineImageInput = None,
747
+ strength: float = 0.6,
748
+ num_inference_steps: int = 50,
749
+ sigmas: Optional[List[float]] = None,
750
+ guidance_scale: float = 7.0,
751
+ negative_prompt: Optional[Union[str, List[str]]] = None,
752
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
753
+ negative_prompt_3: Optional[Union[str, List[str]]] = None,
754
+ num_images_per_prompt: Optional[int] = 1,
755
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
756
+ latents: Optional[torch.FloatTensor] = None,
757
+ prompt_embeds: Optional[torch.FloatTensor] = None,
758
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
759
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
760
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
761
+ output_type: Optional[str] = "pil",
762
+ return_dict: bool = True,
763
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
764
+ clip_skip: Optional[int] = None,
765
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
766
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
767
+ max_sequence_length: int = 256,
768
+ pag_scale: float = 3.0,
769
+ pag_adaptive_scale: float = 0.0,
770
+ ):
771
+ r"""
772
+ Function invoked when calling the pipeline for generation.
773
+
774
+ Args:
775
+ prompt (`str` or `List[str]`, *optional*):
776
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
777
+ instead.
778
+ prompt_2 (`str` or `List[str]`, *optional*):
779
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
780
+ will be used instead
781
+ prompt_3 (`str` or `List[str]`, *optional*):
782
+ The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
783
+ will be used instead
784
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
785
+ `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
786
+ numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
787
+ or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
788
+ list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
789
+ latents as `image`, but if passing latents directly it is not encoded again.
790
+ strength (`float`, *optional*, defaults to 0.8):
791
+ Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
792
+ starting point and more noise is added the higher the `strength`. The number of denoising steps depends
793
+ on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
794
+ process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
795
+ essentially ignores `image`.
796
+ num_inference_steps (`int`, *optional*, defaults to 50):
797
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
798
+ expense of slower inference.
799
+ sigmas (`List[float]`, *optional*):
800
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
801
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
802
+ will be used.
803
+ guidance_scale (`float`, *optional*, defaults to 7.0):
804
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
805
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
806
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
807
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
808
+ usually at the expense of lower image quality.
809
+ negative_prompt (`str` or `List[str]`, *optional*):
810
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
811
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
812
+ less than `1`).
813
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
814
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
815
+ `text_encoder_2`. If not defined, `negative_prompt` is used instead
816
+ negative_prompt_3 (`str` or `List[str]`, *optional*):
817
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
818
+ `text_encoder_3`. If not defined, `negative_prompt` is used instead
819
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
820
+ The number of images to generate per prompt.
821
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
822
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
823
+ to make generation deterministic.
824
+ latents (`torch.FloatTensor`, *optional*):
825
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
826
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
827
+ tensor will ge generated by sampling using the supplied random `generator`.
828
+ prompt_embeds (`torch.FloatTensor`, *optional*):
829
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
830
+ provided, text embeddings will be generated from `prompt` input argument.
831
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
832
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
833
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
834
+ argument.
835
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
836
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
837
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
838
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
839
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
840
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
841
+ input argument.
842
+ output_type (`str`, *optional*, defaults to `"pil"`):
843
+ The output format of the generate image. Choose between
844
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
845
+ return_dict (`bool`, *optional*, defaults to `True`):
846
+ Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
847
+ of a plain tuple.
848
+ joint_attention_kwargs (`dict`, *optional*):
849
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
850
+ `self.processor` in
851
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
852
+ callback_on_step_end (`Callable`, *optional*):
853
+ A function that calls at the end of each denoising steps during the inference. The function is called
854
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
855
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
856
+ `callback_on_step_end_tensor_inputs`.
857
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
858
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
859
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
860
+ `._callback_tensor_inputs` attribute of your pipeline class.
861
+ max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
862
+ pag_scale (`float`, *optional*, defaults to 3.0):
863
+ The scale factor for the perturbed attention guidance. If it is set to 0.0, the perturbed attention
864
+ guidance will not be used.
865
+ pag_adaptive_scale (`float`, *optional*, defaults to 0.0):
866
+ The adaptive scale factor for the perturbed attention guidance. If it is set to 0.0, `pag_scale` is
867
+ used.
868
+
869
+ Examples:
870
+
871
+ Returns:
872
+ [`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] or `tuple`:
873
+ [`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] if `return_dict` is True, otherwise a
874
+ `tuple`. When returning a tuple, the first element is a list with the generated images.
875
+ """
876
+ height = height or self.default_sample_size * self.vae_scale_factor
877
+ width = width or self.default_sample_size * self.vae_scale_factor
878
+ # 1. Check inputs. Raise error if not correct
879
+ self.check_inputs(
880
+ prompt,
881
+ prompt_2,
882
+ prompt_3,
883
+ height,
884
+ width,
885
+ strength,
886
+ negative_prompt=negative_prompt,
887
+ negative_prompt_2=negative_prompt_2,
888
+ negative_prompt_3=negative_prompt_3,
889
+ prompt_embeds=prompt_embeds,
890
+ negative_prompt_embeds=negative_prompt_embeds,
891
+ pooled_prompt_embeds=pooled_prompt_embeds,
892
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
893
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
894
+ max_sequence_length=max_sequence_length,
895
+ )
896
+
897
+ self._guidance_scale = guidance_scale
898
+ self._clip_skip = clip_skip
899
+ self._joint_attention_kwargs = joint_attention_kwargs
900
+ self._interrupt = False
901
+ self._pag_scale = pag_scale
902
+ self._pag_adaptive_scale = pag_adaptive_scale
903
+
904
+ # 2. Define call parameters
905
+ if prompt is not None and isinstance(prompt, str):
906
+ batch_size = 1
907
+ elif prompt is not None and isinstance(prompt, list):
908
+ batch_size = len(prompt)
909
+ else:
910
+ batch_size = prompt_embeds.shape[0]
911
+
912
+ device = self._execution_device
913
+
914
+ lora_scale = (
915
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
916
+ )
917
+ (
918
+ prompt_embeds,
919
+ negative_prompt_embeds,
920
+ pooled_prompt_embeds,
921
+ negative_pooled_prompt_embeds,
922
+ ) = self.encode_prompt(
923
+ prompt=prompt,
924
+ prompt_2=prompt_2,
925
+ prompt_3=prompt_3,
926
+ negative_prompt=negative_prompt,
927
+ negative_prompt_2=negative_prompt_2,
928
+ negative_prompt_3=negative_prompt_3,
929
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
930
+ prompt_embeds=prompt_embeds,
931
+ negative_prompt_embeds=negative_prompt_embeds,
932
+ pooled_prompt_embeds=pooled_prompt_embeds,
933
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
934
+ device=device,
935
+ clip_skip=self.clip_skip,
936
+ num_images_per_prompt=num_images_per_prompt,
937
+ max_sequence_length=max_sequence_length,
938
+ lora_scale=lora_scale,
939
+ )
940
+
941
+ if self.do_perturbed_attention_guidance:
942
+ prompt_embeds = self._prepare_perturbed_attention_guidance(
943
+ prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance
944
+ )
945
+ pooled_prompt_embeds = self._prepare_perturbed_attention_guidance(
946
+ pooled_prompt_embeds, negative_pooled_prompt_embeds, self.do_classifier_free_guidance
947
+ )
948
+ elif self.do_classifier_free_guidance:
949
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
950
+ pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
951
+
952
+ # 3. Preprocess image
953
+ image = self.image_processor.preprocess(image, height=height, width=width)
954
+
955
+ # 4. Prepare timesteps
956
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, sigmas=sigmas)
957
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
958
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
959
+ # 5. Prepare latent variables
960
+ num_channels_latents = self.transformer.config.in_channels
961
+ if latents is None:
962
+ latents = self.prepare_latents(
963
+ image,
964
+ latent_timestep,
965
+ batch_size,
966
+ num_images_per_prompt,
967
+ prompt_embeds.dtype,
968
+ device,
969
+ generator,
970
+ )
971
+
972
+ if self.do_perturbed_attention_guidance:
973
+ original_attn_proc = self.transformer.attn_processors
974
+ self._set_pag_attn_processor(
975
+ pag_applied_layers=self.pag_applied_layers,
976
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
977
+ )
978
+
979
+ # 6. Denoising loop
980
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
981
+ self._num_timesteps = len(timesteps)
982
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
983
+ for i, t in enumerate(timesteps):
984
+ if self.interrupt:
985
+ continue
986
+
987
+ # expand the latents if we are doing classifier free guidance, perturbed-attention guidance, or both
988
+ latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0]))
989
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
990
+ timestep = t.expand(latent_model_input.shape[0])
991
+
992
+ noise_pred = self.transformer(
993
+ hidden_states=latent_model_input,
994
+ timestep=timestep,
995
+ encoder_hidden_states=prompt_embeds,
996
+ pooled_projections=pooled_prompt_embeds,
997
+ joint_attention_kwargs=self.joint_attention_kwargs,
998
+ return_dict=False,
999
+ )[0]
1000
+
1001
+ # perform guidance
1002
+ if self.do_perturbed_attention_guidance:
1003
+ noise_pred = self._apply_perturbed_attention_guidance(
1004
+ noise_pred, self.do_classifier_free_guidance, self.guidance_scale, t
1005
+ )
1006
+
1007
+ elif self.do_classifier_free_guidance:
1008
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1009
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
1010
+
1011
+ # compute the previous noisy sample x_t -> x_t-1
1012
+ latents_dtype = latents.dtype
1013
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
1014
+
1015
+ if latents.dtype != latents_dtype:
1016
+ if torch.backends.mps.is_available():
1017
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1018
+ latents = latents.to(latents_dtype)
1019
+
1020
+ if callback_on_step_end is not None:
1021
+ callback_kwargs = {}
1022
+ for k in callback_on_step_end_tensor_inputs:
1023
+ callback_kwargs[k] = locals()[k]
1024
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1025
+
1026
+ latents = callback_outputs.pop("latents", latents)
1027
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1028
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1029
+ negative_pooled_prompt_embeds = callback_outputs.pop(
1030
+ "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
1031
+ )
1032
+
1033
+ # call the callback, if provided
1034
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1035
+ progress_bar.update()
1036
+
1037
+ if XLA_AVAILABLE:
1038
+ xm.mark_step()
1039
+
1040
+ if output_type == "latent":
1041
+ image = latents
1042
+
1043
+ else:
1044
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
1045
+
1046
+ image = self.vae.decode(latents, return_dict=False)[0]
1047
+ image = self.image_processor.postprocess(image, output_type=output_type)
1048
+
1049
+ # Offload all models
1050
+ self.maybe_free_model_hooks()
1051
+
1052
+ if self.do_perturbed_attention_guidance:
1053
+ self.transformer.set_attn_processor(original_attn_proc)
1054
+
1055
+ if not return_dict:
1056
+ return (image,)
1057
+
1058
+ return StableDiffusion3PipelineOutput(images=image)