diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -37,16 +37,16 @@ class LCMSchedulerOutput(BaseOutput):
37
37
  Output class for the scheduler's `step` function output.
38
38
 
39
39
  Args:
40
- prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
40
+ prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
41
41
  Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
42
42
  denoising loop.
43
- pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
43
+ pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
44
44
  The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
45
45
  `pred_original_sample` can be used to preview progress or for guidance.
46
46
  """
47
47
 
48
- prev_sample: torch.FloatTensor
49
- denoised: Optional[torch.FloatTensor] = None
48
+ prev_sample: torch.Tensor
49
+ denoised: Optional[torch.Tensor] = None
50
50
 
51
51
 
52
52
  # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
@@ -84,7 +84,7 @@ def betas_for_alpha_bar(
84
84
  return math.exp(t * -12.0)
85
85
 
86
86
  else:
87
- raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
87
+ raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
88
88
 
89
89
  betas = []
90
90
  for i in range(num_diffusion_timesteps):
@@ -95,17 +95,17 @@ def betas_for_alpha_bar(
95
95
 
96
96
 
97
97
  # Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
98
- def rescale_zero_terminal_snr(betas: torch.FloatTensor) -> torch.FloatTensor:
98
+ def rescale_zero_terminal_snr(betas: torch.Tensor) -> torch.Tensor:
99
99
  """
100
100
  Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)
101
101
 
102
102
 
103
103
  Args:
104
- betas (`torch.FloatTensor`):
104
+ betas (`torch.Tensor`):
105
105
  the betas that the scheduler is being initialized with.
106
106
 
107
107
  Returns:
108
- `torch.FloatTensor`: rescaled betas with zero terminal SNR
108
+ `torch.Tensor`: rescaled betas with zero terminal SNR
109
109
  """
110
110
  # Convert betas to alphas_bar_sqrt
111
111
  alphas = 1.0 - betas
@@ -224,7 +224,7 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
224
224
  # Glide cosine schedule
225
225
  self.betas = betas_for_alpha_bar(num_train_timesteps)
226
226
  else:
227
- raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
227
+ raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
228
228
 
229
229
  # Rescale for zero SNR
230
230
  if rescale_betas_zero_snr:
@@ -296,24 +296,24 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
296
296
  """
297
297
  self._begin_index = begin_index
298
298
 
299
- def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
299
+ def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
300
300
  """
301
301
  Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
302
302
  current timestep.
303
303
 
304
304
  Args:
305
- sample (`torch.FloatTensor`):
305
+ sample (`torch.Tensor`):
306
306
  The input sample.
307
307
  timestep (`int`, *optional*):
308
308
  The current timestep in the diffusion chain.
309
309
  Returns:
310
- `torch.FloatTensor`:
310
+ `torch.Tensor`:
311
311
  A scaled input sample.
312
312
  """
313
313
  return sample
314
314
 
315
315
  # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
316
- def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
316
+ def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
317
317
  """
318
318
  "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
319
319
  prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
@@ -497,9 +497,9 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
497
497
 
498
498
  def step(
499
499
  self,
500
- model_output: torch.FloatTensor,
500
+ model_output: torch.Tensor,
501
501
  timestep: int,
502
- sample: torch.FloatTensor,
502
+ sample: torch.Tensor,
503
503
  generator: Optional[torch.Generator] = None,
504
504
  return_dict: bool = True,
505
505
  ) -> Union[LCMSchedulerOutput, Tuple]:
@@ -508,11 +508,11 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
508
508
  process from the learned model outputs (most often the predicted noise).
509
509
 
510
510
  Args:
511
- model_output (`torch.FloatTensor`):
511
+ model_output (`torch.Tensor`):
512
512
  The direct output from learned diffusion model.
513
513
  timestep (`float`):
514
514
  The current discrete timestep in the diffusion chain.
515
- sample (`torch.FloatTensor`):
515
+ sample (`torch.Tensor`):
516
516
  A current instance of a sample created by the diffusion process.
517
517
  generator (`torch.Generator`, *optional*):
518
518
  A random number generator.
@@ -594,10 +594,10 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
594
594
  # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
595
595
  def add_noise(
596
596
  self,
597
- original_samples: torch.FloatTensor,
598
- noise: torch.FloatTensor,
597
+ original_samples: torch.Tensor,
598
+ noise: torch.Tensor,
599
599
  timesteps: torch.IntTensor,
600
- ) -> torch.FloatTensor:
600
+ ) -> torch.Tensor:
601
601
  # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
602
602
  # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
603
603
  # for the subsequent add_noise calls
@@ -619,9 +619,7 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
619
619
  return noisy_samples
620
620
 
621
621
  # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
622
- def get_velocity(
623
- self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
624
- ) -> torch.FloatTensor:
622
+ def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
625
623
  # Make sure alphas_cumprod and timestep have same device and dtype as sample
626
624
  self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
627
625
  alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
@@ -645,16 +643,12 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
645
643
 
646
644
  # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.previous_timestep
647
645
  def previous_timestep(self, timestep):
648
- if self.custom_timesteps:
646
+ if self.custom_timesteps or self.num_inference_steps:
649
647
  index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0]
650
648
  if index == self.timesteps.shape[0] - 1:
651
649
  prev_t = torch.tensor(-1)
652
650
  else:
653
651
  prev_t = self.timesteps[index + 1]
654
652
  else:
655
- num_inference_steps = (
656
- self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps
657
- )
658
- prev_t = timestep - self.config.num_train_timesteps // num_inference_steps
659
-
653
+ prev_t = timestep - 1
660
654
  return prev_t
@@ -17,6 +17,7 @@ from dataclasses import dataclass
17
17
  from typing import List, Optional, Tuple, Union
18
18
 
19
19
  import numpy as np
20
+ import scipy.stats
20
21
  import torch
21
22
  from scipy import integrate
22
23
 
@@ -32,16 +33,16 @@ class LMSDiscreteSchedulerOutput(BaseOutput):
32
33
  Output class for the scheduler's `step` function output.
33
34
 
34
35
  Args:
35
- prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
36
+ prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
36
37
  Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
37
38
  denoising loop.
38
- pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
39
+ pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
39
40
  The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
40
41
  `pred_original_sample` can be used to preview progress or for guidance.
41
42
  """
42
43
 
43
- prev_sample: torch.FloatTensor
44
- pred_original_sample: Optional[torch.FloatTensor] = None
44
+ prev_sample: torch.Tensor
45
+ pred_original_sample: Optional[torch.Tensor] = None
45
46
 
46
47
 
47
48
  # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
@@ -79,7 +80,7 @@ def betas_for_alpha_bar(
79
80
  return math.exp(t * -12.0)
80
81
 
81
82
  else:
82
- raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
83
+ raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
83
84
 
84
85
  betas = []
85
86
  for i in range(num_diffusion_timesteps):
@@ -111,6 +112,11 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
111
112
  use_karras_sigmas (`bool`, *optional*, defaults to `False`):
112
113
  Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
113
114
  the sigmas are determined according to a sequence of noise levels {σi}.
115
+ use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
116
+ Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
117
+ use_beta_sigmas (`bool`, *optional*, defaults to `False`):
118
+ Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
119
+ Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
114
120
  prediction_type (`str`, defaults to `epsilon`, *optional*):
115
121
  Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
116
122
  `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
@@ -134,10 +140,16 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
134
140
  beta_schedule: str = "linear",
135
141
  trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
136
142
  use_karras_sigmas: Optional[bool] = False,
143
+ use_exponential_sigmas: Optional[bool] = False,
144
+ use_beta_sigmas: Optional[bool] = False,
137
145
  prediction_type: str = "epsilon",
138
146
  timestep_spacing: str = "linspace",
139
147
  steps_offset: int = 0,
140
148
  ):
149
+ if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
150
+ raise ValueError(
151
+ "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
152
+ )
141
153
  if trained_betas is not None:
142
154
  self.betas = torch.tensor(trained_betas, dtype=torch.float32)
143
155
  elif beta_schedule == "linear":
@@ -149,7 +161,7 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
149
161
  # Glide cosine schedule
150
162
  self.betas = betas_for_alpha_bar(num_train_timesteps)
151
163
  else:
152
- raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
164
+ raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
153
165
 
154
166
  self.alphas = 1.0 - self.betas
155
167
  self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
@@ -180,7 +192,7 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
180
192
  @property
181
193
  def step_index(self):
182
194
  """
183
- The index counter for current timestep. It will increae 1 after each scheduler step.
195
+ The index counter for current timestep. It will increase 1 after each scheduler step.
184
196
  """
185
197
  return self._step_index
186
198
 
@@ -202,21 +214,19 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
202
214
  """
203
215
  self._begin_index = begin_index
204
216
 
205
- def scale_model_input(
206
- self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
207
- ) -> torch.FloatTensor:
217
+ def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor:
208
218
  """
209
219
  Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
210
220
  current timestep.
211
221
 
212
222
  Args:
213
- sample (`torch.FloatTensor`):
223
+ sample (`torch.Tensor`):
214
224
  The input sample.
215
- timestep (`float` or `torch.FloatTensor`):
225
+ timestep (`float` or `torch.Tensor`):
216
226
  The current timestep in the diffusion chain.
217
227
 
218
228
  Returns:
219
- `torch.FloatTensor`:
229
+ `torch.Tensor`:
220
230
  A scaled input sample.
221
231
  """
222
232
 
@@ -288,9 +298,15 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
288
298
  log_sigmas = np.log(sigmas)
289
299
  sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
290
300
 
291
- if self.use_karras_sigmas:
301
+ if self.config.use_karras_sigmas:
292
302
  sigmas = self._convert_to_karras(in_sigmas=sigmas)
293
303
  timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
304
+ elif self.config.use_exponential_sigmas:
305
+ sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
306
+ timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
307
+ elif self.config.use_beta_sigmas:
308
+ sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
309
+ timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
294
310
 
295
311
  sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
296
312
 
@@ -326,7 +342,7 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
326
342
  else:
327
343
  self._step_index = self._begin_index
328
344
 
329
- # copied from diffusers.schedulers.scheduling_euler_discrete._sigma_to_t
345
+ # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
330
346
  def _sigma_to_t(self, sigma, log_sigmas):
331
347
  # get log sigma
332
348
  log_sigma = np.log(np.maximum(sigma, 1e-10))
@@ -350,8 +366,8 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
350
366
  t = t.reshape(sigma.shape)
351
367
  return t
352
368
 
353
- # copied from diffusers.schedulers.scheduling_euler_discrete._convert_to_karras
354
- def _convert_to_karras(self, in_sigmas: torch.FloatTensor) -> torch.FloatTensor:
369
+ # copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
370
+ def _convert_to_karras(self, in_sigmas: torch.Tensor) -> torch.Tensor:
355
371
  """Constructs the noise schedule of Karras et al. (2022)."""
356
372
 
357
373
  sigma_min: float = in_sigmas[-1].item()
@@ -364,11 +380,65 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
364
380
  sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
365
381
  return sigmas
366
382
 
383
+ # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
384
+ def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
385
+ """Constructs an exponential noise schedule."""
386
+
387
+ # Hack to make sure that other schedulers which copy this function don't break
388
+ # TODO: Add this logic to the other schedulers
389
+ if hasattr(self.config, "sigma_min"):
390
+ sigma_min = self.config.sigma_min
391
+ else:
392
+ sigma_min = None
393
+
394
+ if hasattr(self.config, "sigma_max"):
395
+ sigma_max = self.config.sigma_max
396
+ else:
397
+ sigma_max = None
398
+
399
+ sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
400
+ sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
401
+
402
+ sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
403
+ return sigmas
404
+
405
+ # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
406
+ def _convert_to_beta(
407
+ self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
408
+ ) -> torch.Tensor:
409
+ """From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""
410
+
411
+ # Hack to make sure that other schedulers which copy this function don't break
412
+ # TODO: Add this logic to the other schedulers
413
+ if hasattr(self.config, "sigma_min"):
414
+ sigma_min = self.config.sigma_min
415
+ else:
416
+ sigma_min = None
417
+
418
+ if hasattr(self.config, "sigma_max"):
419
+ sigma_max = self.config.sigma_max
420
+ else:
421
+ sigma_max = None
422
+
423
+ sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
424
+ sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
425
+
426
+ sigmas = np.array(
427
+ [
428
+ sigma_min + (ppf * (sigma_max - sigma_min))
429
+ for ppf in [
430
+ scipy.stats.beta.ppf(timestep, alpha, beta)
431
+ for timestep in 1 - np.linspace(0, 1, num_inference_steps)
432
+ ]
433
+ ]
434
+ )
435
+ return sigmas
436
+
367
437
  def step(
368
438
  self,
369
- model_output: torch.FloatTensor,
370
- timestep: Union[float, torch.FloatTensor],
371
- sample: torch.FloatTensor,
439
+ model_output: torch.Tensor,
440
+ timestep: Union[float, torch.Tensor],
441
+ sample: torch.Tensor,
372
442
  order: int = 4,
373
443
  return_dict: bool = True,
374
444
  ) -> Union[LMSDiscreteSchedulerOutput, Tuple]:
@@ -377,11 +447,11 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
377
447
  process from the learned model outputs (most often the predicted noise).
378
448
 
379
449
  Args:
380
- model_output (`torch.FloatTensor`):
450
+ model_output (`torch.Tensor`):
381
451
  The direct output from learned diffusion model.
382
- timestep (`float` or `torch.FloatTensor`):
452
+ timestep (`float` or `torch.Tensor`):
383
453
  The current discrete timestep in the diffusion chain.
384
- sample (`torch.FloatTensor`):
454
+ sample (`torch.Tensor`):
385
455
  A current instance of a sample created by the diffusion process.
386
456
  order (`int`, defaults to 4):
387
457
  The order of the linear multistep method.
@@ -437,17 +507,20 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
437
507
  self._step_index += 1
438
508
 
439
509
  if not return_dict:
440
- return (prev_sample,)
510
+ return (
511
+ prev_sample,
512
+ pred_original_sample,
513
+ )
441
514
 
442
515
  return LMSDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
443
516
 
444
517
  # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
445
518
  def add_noise(
446
519
  self,
447
- original_samples: torch.FloatTensor,
448
- noise: torch.FloatTensor,
449
- timesteps: torch.FloatTensor,
450
- ) -> torch.FloatTensor:
520
+ original_samples: torch.Tensor,
521
+ noise: torch.Tensor,
522
+ timesteps: torch.Tensor,
523
+ ) -> torch.Tensor:
451
524
  # Make sure sigmas and timesteps have the same device and dtype as original_samples
452
525
  sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
453
526
  if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
@@ -461,7 +534,11 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
461
534
  # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
462
535
  if self.begin_index is None:
463
536
  step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
537
+ elif self.step_index is not None:
538
+ # add_noise is called after first denoising step (for inpainting)
539
+ step_indices = [self.step_index] * timesteps.shape[0]
464
540
  else:
541
+ # add noise is called before first denoising step to create initial latent(img2img)
465
542
  step_indices = [self.begin_index] * timesteps.shape[0]
466
543
 
467
544
  sigma = sigmas[step_indices].flatten()
@@ -59,7 +59,7 @@ def betas_for_alpha_bar(
59
59
  return math.exp(t * -12.0)
60
60
 
61
61
  else:
62
- raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
62
+ raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
63
63
 
64
64
  betas = []
65
65
  for i in range(num_diffusion_timesteps):
@@ -135,7 +135,7 @@ class PNDMScheduler(SchedulerMixin, ConfigMixin):
135
135
  # Glide cosine schedule
136
136
  self.betas = betas_for_alpha_bar(num_train_timesteps)
137
137
  else:
138
- raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
138
+ raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
139
139
 
140
140
  self.alphas = 1.0 - self.betas
141
141
  self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
@@ -225,9 +225,9 @@ class PNDMScheduler(SchedulerMixin, ConfigMixin):
225
225
 
226
226
  def step(
227
227
  self,
228
- model_output: torch.FloatTensor,
228
+ model_output: torch.Tensor,
229
229
  timestep: int,
230
- sample: torch.FloatTensor,
230
+ sample: torch.Tensor,
231
231
  return_dict: bool = True,
232
232
  ) -> Union[SchedulerOutput, Tuple]:
233
233
  """
@@ -236,11 +236,11 @@ class PNDMScheduler(SchedulerMixin, ConfigMixin):
236
236
  or [`~PNDMScheduler.step_plms`] depending on the internal variable `counter`.
237
237
 
238
238
  Args:
239
- model_output (`torch.FloatTensor`):
239
+ model_output (`torch.Tensor`):
240
240
  The direct output from learned diffusion model.
241
241
  timestep (`int`):
242
242
  The current discrete timestep in the diffusion chain.
243
- sample (`torch.FloatTensor`):
243
+ sample (`torch.Tensor`):
244
244
  A current instance of a sample created by the diffusion process.
245
245
  return_dict (`bool`):
246
246
  Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
@@ -258,9 +258,9 @@ class PNDMScheduler(SchedulerMixin, ConfigMixin):
258
258
 
259
259
  def step_prk(
260
260
  self,
261
- model_output: torch.FloatTensor,
261
+ model_output: torch.Tensor,
262
262
  timestep: int,
263
- sample: torch.FloatTensor,
263
+ sample: torch.Tensor,
264
264
  return_dict: bool = True,
265
265
  ) -> Union[SchedulerOutput, Tuple]:
266
266
  """
@@ -269,11 +269,11 @@ class PNDMScheduler(SchedulerMixin, ConfigMixin):
269
269
  equation.
270
270
 
271
271
  Args:
272
- model_output (`torch.FloatTensor`):
272
+ model_output (`torch.Tensor`):
273
273
  The direct output from learned diffusion model.
274
274
  timestep (`int`):
275
275
  The current discrete timestep in the diffusion chain.
276
- sample (`torch.FloatTensor`):
276
+ sample (`torch.Tensor`):
277
277
  A current instance of a sample created by the diffusion process.
278
278
  return_dict (`bool`):
279
279
  Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or tuple.
@@ -318,9 +318,9 @@ class PNDMScheduler(SchedulerMixin, ConfigMixin):
318
318
 
319
319
  def step_plms(
320
320
  self,
321
- model_output: torch.FloatTensor,
321
+ model_output: torch.Tensor,
322
322
  timestep: int,
323
- sample: torch.FloatTensor,
323
+ sample: torch.Tensor,
324
324
  return_dict: bool = True,
325
325
  ) -> Union[SchedulerOutput, Tuple]:
326
326
  """
@@ -328,11 +328,11 @@ class PNDMScheduler(SchedulerMixin, ConfigMixin):
328
328
  the linear multistep method. It performs one forward pass multiple times to approximate the solution.
329
329
 
330
330
  Args:
331
- model_output (`torch.FloatTensor`):
331
+ model_output (`torch.Tensor`):
332
332
  The direct output from learned diffusion model.
333
333
  timestep (`int`):
334
334
  The current discrete timestep in the diffusion chain.
335
- sample (`torch.FloatTensor`):
335
+ sample (`torch.Tensor`):
336
336
  A current instance of a sample created by the diffusion process.
337
337
  return_dict (`bool`):
338
338
  Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or tuple.
@@ -387,17 +387,17 @@ class PNDMScheduler(SchedulerMixin, ConfigMixin):
387
387
 
388
388
  return SchedulerOutput(prev_sample=prev_sample)
389
389
 
390
- def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
390
+ def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
391
391
  """
392
392
  Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
393
393
  current timestep.
394
394
 
395
395
  Args:
396
- sample (`torch.FloatTensor`):
396
+ sample (`torch.Tensor`):
397
397
  The input sample.
398
398
 
399
399
  Returns:
400
- `torch.FloatTensor`:
400
+ `torch.Tensor`:
401
401
  A scaled input sample.
402
402
  """
403
403
  return sample
@@ -448,10 +448,10 @@ class PNDMScheduler(SchedulerMixin, ConfigMixin):
448
448
  # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
449
449
  def add_noise(
450
450
  self,
451
- original_samples: torch.FloatTensor,
452
- noise: torch.FloatTensor,
451
+ original_samples: torch.Tensor,
452
+ noise: torch.Tensor,
453
453
  timesteps: torch.IntTensor,
454
- ) -> torch.FloatTensor:
454
+ ) -> torch.Tensor:
455
455
  # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
456
456
  # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
457
457
  # for the subsequent add_noise calls
@@ -31,16 +31,16 @@ class RePaintSchedulerOutput(BaseOutput):
31
31
  Output class for the scheduler's step function output.
32
32
 
33
33
  Args:
34
- prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
34
+ prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
35
35
  Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
36
36
  denoising loop.
37
- pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
37
+ pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
38
38
  The predicted denoised sample (x_{0}) based on the model output from
39
39
  the current timestep. `pred_original_sample` can be used to preview progress or for guidance.
40
40
  """
41
41
 
42
- prev_sample: torch.FloatTensor
43
- pred_original_sample: torch.FloatTensor
42
+ prev_sample: torch.Tensor
43
+ pred_original_sample: torch.Tensor
44
44
 
45
45
 
46
46
  # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
@@ -78,7 +78,7 @@ def betas_for_alpha_bar(
78
78
  return math.exp(t * -12.0)
79
79
 
80
80
  else:
81
- raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
81
+ raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
82
82
 
83
83
  betas = []
84
84
  for i in range(num_diffusion_timesteps):
@@ -143,7 +143,7 @@ class RePaintScheduler(SchedulerMixin, ConfigMixin):
143
143
  betas = torch.linspace(-6, 6, num_train_timesteps)
144
144
  self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
145
145
  else:
146
- raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
146
+ raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
147
147
 
148
148
  self.alphas = 1.0 - self.betas
149
149
  self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
@@ -160,19 +160,19 @@ class RePaintScheduler(SchedulerMixin, ConfigMixin):
160
160
 
161
161
  self.eta = eta
162
162
 
163
- def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
163
+ def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
164
164
  """
165
165
  Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
166
166
  current timestep.
167
167
 
168
168
  Args:
169
- sample (`torch.FloatTensor`):
169
+ sample (`torch.Tensor`):
170
170
  The input sample.
171
171
  timestep (`int`, *optional*):
172
172
  The current timestep in the diffusion chain.
173
173
 
174
174
  Returns:
175
- `torch.FloatTensor`:
175
+ `torch.Tensor`:
176
176
  A scaled input sample.
177
177
  """
178
178
  return sample
@@ -245,11 +245,11 @@ class RePaintScheduler(SchedulerMixin, ConfigMixin):
245
245
 
246
246
  def step(
247
247
  self,
248
- model_output: torch.FloatTensor,
248
+ model_output: torch.Tensor,
249
249
  timestep: int,
250
- sample: torch.FloatTensor,
251
- original_image: torch.FloatTensor,
252
- mask: torch.FloatTensor,
250
+ sample: torch.Tensor,
251
+ original_image: torch.Tensor,
252
+ mask: torch.Tensor,
253
253
  generator: Optional[torch.Generator] = None,
254
254
  return_dict: bool = True,
255
255
  ) -> Union[RePaintSchedulerOutput, Tuple]:
@@ -258,15 +258,15 @@ class RePaintScheduler(SchedulerMixin, ConfigMixin):
258
258
  process from the learned model outputs (most often the predicted noise).
259
259
 
260
260
  Args:
261
- model_output (`torch.FloatTensor`):
261
+ model_output (`torch.Tensor`):
262
262
  The direct output from learned diffusion model.
263
263
  timestep (`int`):
264
264
  The current discrete timestep in the diffusion chain.
265
- sample (`torch.FloatTensor`):
265
+ sample (`torch.Tensor`):
266
266
  A current instance of a sample created by the diffusion process.
267
- original_image (`torch.FloatTensor`):
267
+ original_image (`torch.Tensor`):
268
268
  The original image to inpaint on.
269
- mask (`torch.FloatTensor`):
269
+ mask (`torch.Tensor`):
270
270
  The mask where a value of 0.0 indicates which part of the original image to inpaint.
271
271
  generator (`torch.Generator`, *optional*):
272
272
  A random number generator.
@@ -319,7 +319,7 @@ class RePaintScheduler(SchedulerMixin, ConfigMixin):
319
319
  prev_unknown_part = alpha_prod_t_prev**0.5 * pred_original_sample + pred_sample_direction + variance
320
320
 
321
321
  # 8. Algorithm 1 Line 5 https://arxiv.org/pdf/2201.09865.pdf
322
- prev_known_part = (alpha_prod_t_prev**0.5) * original_image + ((1 - alpha_prod_t_prev) ** 0.5) * noise
322
+ prev_known_part = (alpha_prod_t_prev**0.5) * original_image + (1 - alpha_prod_t_prev) * noise
323
323
 
324
324
  # 9. Algorithm 1 Line 8 https://arxiv.org/pdf/2201.09865.pdf
325
325
  pred_prev_sample = mask * prev_known_part + (1.0 - mask) * prev_unknown_part
@@ -351,10 +351,10 @@ class RePaintScheduler(SchedulerMixin, ConfigMixin):
351
351
 
352
352
  def add_noise(
353
353
  self,
354
- original_samples: torch.FloatTensor,
355
- noise: torch.FloatTensor,
354
+ original_samples: torch.Tensor,
355
+ noise: torch.Tensor,
356
356
  timesteps: torch.IntTensor,
357
- ) -> torch.FloatTensor:
357
+ ) -> torch.Tensor:
358
358
  raise NotImplementedError("Use `DDPMScheduler.add_noise()` to train for sampling with RePaint.")
359
359
 
360
360
  def __len__(self):