diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,957 @@
1
+ # Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ from transformers import (
21
+ CLIPImageProcessor,
22
+ CLIPTextModel,
23
+ CLIPTokenizer,
24
+ CLIPVisionModelWithProjection,
25
+ T5EncoderModel,
26
+ T5TokenizerFast,
27
+ )
28
+
29
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
30
+ from ...loaders import FluxIPAdapterMixin, FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin
31
+ from ...models.autoencoders import AutoencoderKL
32
+ from ...models.transformers import FluxTransformer2DModel
33
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
34
+ from ...utils import (
35
+ USE_PEFT_BACKEND,
36
+ is_torch_xla_available,
37
+ logging,
38
+ replace_example_docstring,
39
+ scale_lora_layers,
40
+ unscale_lora_layers,
41
+ )
42
+ from ...utils.torch_utils import randn_tensor
43
+ from ..pipeline_utils import DiffusionPipeline
44
+ from .pipeline_output import FluxPipelineOutput
45
+
46
+
47
+ if is_torch_xla_available():
48
+ import torch_xla.core.xla_model as xm
49
+
50
+ XLA_AVAILABLE = True
51
+ else:
52
+ XLA_AVAILABLE = False
53
+
54
+
55
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
56
+
57
+ EXAMPLE_DOC_STRING = """
58
+ Examples:
59
+ ```py
60
+ >>> import torch
61
+ >>> from diffusers import FluxPipeline
62
+
63
+ >>> pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
64
+ >>> pipe.to("cuda")
65
+ >>> prompt = "A cat holding a sign that says hello world"
66
+ >>> # Depending on the variant being used, the pipeline call will slightly vary.
67
+ >>> # Refer to the pipeline documentation for more details.
68
+ >>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0]
69
+ >>> image.save("flux.png")
70
+ ```
71
+ """
72
+
73
+
74
+ def calculate_shift(
75
+ image_seq_len,
76
+ base_seq_len: int = 256,
77
+ max_seq_len: int = 4096,
78
+ base_shift: float = 0.5,
79
+ max_shift: float = 1.16,
80
+ ):
81
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
82
+ b = base_shift - m * base_seq_len
83
+ mu = image_seq_len * m + b
84
+ return mu
85
+
86
+
87
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
88
+ def retrieve_timesteps(
89
+ scheduler,
90
+ num_inference_steps: Optional[int] = None,
91
+ device: Optional[Union[str, torch.device]] = None,
92
+ timesteps: Optional[List[int]] = None,
93
+ sigmas: Optional[List[float]] = None,
94
+ **kwargs,
95
+ ):
96
+ r"""
97
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
98
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
99
+
100
+ Args:
101
+ scheduler (`SchedulerMixin`):
102
+ The scheduler to get timesteps from.
103
+ num_inference_steps (`int`):
104
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
105
+ must be `None`.
106
+ device (`str` or `torch.device`, *optional*):
107
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
108
+ timesteps (`List[int]`, *optional*):
109
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
110
+ `num_inference_steps` and `sigmas` must be `None`.
111
+ sigmas (`List[float]`, *optional*):
112
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
113
+ `num_inference_steps` and `timesteps` must be `None`.
114
+
115
+ Returns:
116
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
117
+ second element is the number of inference steps.
118
+ """
119
+ if timesteps is not None and sigmas is not None:
120
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
121
+ if timesteps is not None:
122
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
123
+ if not accepts_timesteps:
124
+ raise ValueError(
125
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
126
+ f" timestep schedules. Please check whether you are using the correct scheduler."
127
+ )
128
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
129
+ timesteps = scheduler.timesteps
130
+ num_inference_steps = len(timesteps)
131
+ elif sigmas is not None:
132
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
133
+ if not accept_sigmas:
134
+ raise ValueError(
135
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
136
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
137
+ )
138
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
139
+ timesteps = scheduler.timesteps
140
+ num_inference_steps = len(timesteps)
141
+ else:
142
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
143
+ timesteps = scheduler.timesteps
144
+ return timesteps, num_inference_steps
145
+
146
+
147
+ class FluxPipeline(
148
+ DiffusionPipeline,
149
+ FluxLoraLoaderMixin,
150
+ FromSingleFileMixin,
151
+ TextualInversionLoaderMixin,
152
+ FluxIPAdapterMixin,
153
+ ):
154
+ r"""
155
+ The Flux pipeline for text-to-image generation.
156
+
157
+ Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
158
+
159
+ Args:
160
+ transformer ([`FluxTransformer2DModel`]):
161
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
162
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
163
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
164
+ vae ([`AutoencoderKL`]):
165
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
166
+ text_encoder ([`CLIPTextModel`]):
167
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
168
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
169
+ text_encoder_2 ([`T5EncoderModel`]):
170
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
171
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
172
+ tokenizer (`CLIPTokenizer`):
173
+ Tokenizer of class
174
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
175
+ tokenizer_2 (`T5TokenizerFast`):
176
+ Second Tokenizer of class
177
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
178
+ """
179
+
180
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->transformer->vae"
181
+ _optional_components = ["image_encoder", "feature_extractor"]
182
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
183
+
184
+ def __init__(
185
+ self,
186
+ scheduler: FlowMatchEulerDiscreteScheduler,
187
+ vae: AutoencoderKL,
188
+ text_encoder: CLIPTextModel,
189
+ tokenizer: CLIPTokenizer,
190
+ text_encoder_2: T5EncoderModel,
191
+ tokenizer_2: T5TokenizerFast,
192
+ transformer: FluxTransformer2DModel,
193
+ image_encoder: CLIPVisionModelWithProjection = None,
194
+ feature_extractor: CLIPImageProcessor = None,
195
+ ):
196
+ super().__init__()
197
+
198
+ self.register_modules(
199
+ vae=vae,
200
+ text_encoder=text_encoder,
201
+ text_encoder_2=text_encoder_2,
202
+ tokenizer=tokenizer,
203
+ tokenizer_2=tokenizer_2,
204
+ transformer=transformer,
205
+ scheduler=scheduler,
206
+ image_encoder=image_encoder,
207
+ feature_extractor=feature_extractor,
208
+ )
209
+ self.vae_scale_factor = (
210
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
211
+ )
212
+ # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
213
+ # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
214
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
215
+ self.tokenizer_max_length = (
216
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
217
+ )
218
+ self.default_sample_size = 128
219
+
220
+ def _get_t5_prompt_embeds(
221
+ self,
222
+ prompt: Union[str, List[str]] = None,
223
+ num_images_per_prompt: int = 1,
224
+ max_sequence_length: int = 512,
225
+ device: Optional[torch.device] = None,
226
+ dtype: Optional[torch.dtype] = None,
227
+ ):
228
+ device = device or self._execution_device
229
+ dtype = dtype or self.text_encoder.dtype
230
+
231
+ prompt = [prompt] if isinstance(prompt, str) else prompt
232
+ batch_size = len(prompt)
233
+
234
+ if isinstance(self, TextualInversionLoaderMixin):
235
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)
236
+
237
+ text_inputs = self.tokenizer_2(
238
+ prompt,
239
+ padding="max_length",
240
+ max_length=max_sequence_length,
241
+ truncation=True,
242
+ return_length=False,
243
+ return_overflowing_tokens=False,
244
+ return_tensors="pt",
245
+ )
246
+ text_input_ids = text_inputs.input_ids
247
+ untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
248
+
249
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
250
+ removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
251
+ logger.warning(
252
+ "The following part of your input was truncated because `max_sequence_length` is set to "
253
+ f" {max_sequence_length} tokens: {removed_text}"
254
+ )
255
+
256
+ prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
257
+
258
+ dtype = self.text_encoder_2.dtype
259
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
260
+
261
+ _, seq_len, _ = prompt_embeds.shape
262
+
263
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
264
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
265
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
266
+
267
+ return prompt_embeds
268
+
269
+ def _get_clip_prompt_embeds(
270
+ self,
271
+ prompt: Union[str, List[str]],
272
+ num_images_per_prompt: int = 1,
273
+ device: Optional[torch.device] = None,
274
+ ):
275
+ device = device or self._execution_device
276
+
277
+ prompt = [prompt] if isinstance(prompt, str) else prompt
278
+ batch_size = len(prompt)
279
+
280
+ if isinstance(self, TextualInversionLoaderMixin):
281
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
282
+
283
+ text_inputs = self.tokenizer(
284
+ prompt,
285
+ padding="max_length",
286
+ max_length=self.tokenizer_max_length,
287
+ truncation=True,
288
+ return_overflowing_tokens=False,
289
+ return_length=False,
290
+ return_tensors="pt",
291
+ )
292
+
293
+ text_input_ids = text_inputs.input_ids
294
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
295
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
296
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
297
+ logger.warning(
298
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
299
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
300
+ )
301
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
302
+
303
+ # Use pooled output of CLIPTextModel
304
+ prompt_embeds = prompt_embeds.pooler_output
305
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
306
+
307
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
308
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
309
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
310
+
311
+ return prompt_embeds
312
+
313
+ def encode_prompt(
314
+ self,
315
+ prompt: Union[str, List[str]],
316
+ prompt_2: Union[str, List[str]],
317
+ device: Optional[torch.device] = None,
318
+ num_images_per_prompt: int = 1,
319
+ prompt_embeds: Optional[torch.FloatTensor] = None,
320
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
321
+ max_sequence_length: int = 512,
322
+ lora_scale: Optional[float] = None,
323
+ ):
324
+ r"""
325
+
326
+ Args:
327
+ prompt (`str` or `List[str]`, *optional*):
328
+ prompt to be encoded
329
+ prompt_2 (`str` or `List[str]`, *optional*):
330
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
331
+ used in all text-encoders
332
+ device: (`torch.device`):
333
+ torch device
334
+ num_images_per_prompt (`int`):
335
+ number of images that should be generated per prompt
336
+ prompt_embeds (`torch.FloatTensor`, *optional*):
337
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
338
+ provided, text embeddings will be generated from `prompt` input argument.
339
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
340
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
341
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
342
+ lora_scale (`float`, *optional*):
343
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
344
+ """
345
+ device = device or self._execution_device
346
+
347
+ # set lora scale so that monkey patched LoRA
348
+ # function of text encoder can correctly access it
349
+ if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
350
+ self._lora_scale = lora_scale
351
+
352
+ # dynamically adjust the LoRA scale
353
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
354
+ scale_lora_layers(self.text_encoder, lora_scale)
355
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
356
+ scale_lora_layers(self.text_encoder_2, lora_scale)
357
+
358
+ prompt = [prompt] if isinstance(prompt, str) else prompt
359
+
360
+ if prompt_embeds is None:
361
+ prompt_2 = prompt_2 or prompt
362
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
363
+
364
+ # We only use the pooled prompt output from the CLIPTextModel
365
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
366
+ prompt=prompt,
367
+ device=device,
368
+ num_images_per_prompt=num_images_per_prompt,
369
+ )
370
+ prompt_embeds = self._get_t5_prompt_embeds(
371
+ prompt=prompt_2,
372
+ num_images_per_prompt=num_images_per_prompt,
373
+ max_sequence_length=max_sequence_length,
374
+ device=device,
375
+ )
376
+
377
+ if self.text_encoder is not None:
378
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
379
+ # Retrieve the original scale by scaling back the LoRA layers
380
+ unscale_lora_layers(self.text_encoder, lora_scale)
381
+
382
+ if self.text_encoder_2 is not None:
383
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
384
+ # Retrieve the original scale by scaling back the LoRA layers
385
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
386
+
387
+ dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
388
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
389
+
390
+ return prompt_embeds, pooled_prompt_embeds, text_ids
391
+
392
+ def encode_image(self, image, device, num_images_per_prompt):
393
+ dtype = next(self.image_encoder.parameters()).dtype
394
+
395
+ if not isinstance(image, torch.Tensor):
396
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
397
+
398
+ image = image.to(device=device, dtype=dtype)
399
+ image_embeds = self.image_encoder(image).image_embeds
400
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
401
+ return image_embeds
402
+
403
+ def prepare_ip_adapter_image_embeds(
404
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt
405
+ ):
406
+ image_embeds = []
407
+ if ip_adapter_image_embeds is None:
408
+ if not isinstance(ip_adapter_image, list):
409
+ ip_adapter_image = [ip_adapter_image]
410
+
411
+ if len(ip_adapter_image) != len(self.transformer.encoder_hid_proj.image_projection_layers):
412
+ raise ValueError(
413
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.transformer.encoder_hid_proj.image_projection_layers)} IP Adapters."
414
+ )
415
+
416
+ for single_ip_adapter_image, image_proj_layer in zip(
417
+ ip_adapter_image, self.transformer.encoder_hid_proj.image_projection_layers
418
+ ):
419
+ single_image_embeds = self.encode_image(single_ip_adapter_image, device, 1)
420
+
421
+ image_embeds.append(single_image_embeds[None, :])
422
+ else:
423
+ for single_image_embeds in ip_adapter_image_embeds:
424
+ image_embeds.append(single_image_embeds)
425
+
426
+ ip_adapter_image_embeds = []
427
+ for i, single_image_embeds in enumerate(image_embeds):
428
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
429
+ single_image_embeds = single_image_embeds.to(device=device)
430
+ ip_adapter_image_embeds.append(single_image_embeds)
431
+
432
+ return ip_adapter_image_embeds
433
+
434
+ def check_inputs(
435
+ self,
436
+ prompt,
437
+ prompt_2,
438
+ height,
439
+ width,
440
+ negative_prompt=None,
441
+ negative_prompt_2=None,
442
+ prompt_embeds=None,
443
+ negative_prompt_embeds=None,
444
+ pooled_prompt_embeds=None,
445
+ negative_pooled_prompt_embeds=None,
446
+ callback_on_step_end_tensor_inputs=None,
447
+ max_sequence_length=None,
448
+ ):
449
+ if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
450
+ logger.warning(
451
+ f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
452
+ )
453
+
454
+ if callback_on_step_end_tensor_inputs is not None and not all(
455
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
456
+ ):
457
+ raise ValueError(
458
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
459
+ )
460
+
461
+ if prompt is not None and prompt_embeds is not None:
462
+ raise ValueError(
463
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
464
+ " only forward one of the two."
465
+ )
466
+ elif prompt_2 is not None and prompt_embeds is not None:
467
+ raise ValueError(
468
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
469
+ " only forward one of the two."
470
+ )
471
+ elif prompt is None and prompt_embeds is None:
472
+ raise ValueError(
473
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
474
+ )
475
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
476
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
477
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
478
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
479
+
480
+ if negative_prompt is not None and negative_prompt_embeds is not None:
481
+ raise ValueError(
482
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
483
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
484
+ )
485
+ elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
486
+ raise ValueError(
487
+ f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
488
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
489
+ )
490
+
491
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
492
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
493
+ raise ValueError(
494
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
495
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
496
+ f" {negative_prompt_embeds.shape}."
497
+ )
498
+
499
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
500
+ raise ValueError(
501
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
502
+ )
503
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
504
+ raise ValueError(
505
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
506
+ )
507
+
508
+ if max_sequence_length is not None and max_sequence_length > 512:
509
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
510
+
511
+ @staticmethod
512
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
513
+ latent_image_ids = torch.zeros(height, width, 3)
514
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
515
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
516
+
517
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
518
+
519
+ latent_image_ids = latent_image_ids.reshape(
520
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
521
+ )
522
+
523
+ return latent_image_ids.to(device=device, dtype=dtype)
524
+
525
+ @staticmethod
526
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
527
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
528
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
529
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
530
+
531
+ return latents
532
+
533
+ @staticmethod
534
+ def _unpack_latents(latents, height, width, vae_scale_factor):
535
+ batch_size, num_patches, channels = latents.shape
536
+
537
+ # VAE applies 8x compression on images but we must also account for packing which requires
538
+ # latent height and width to be divisible by 2.
539
+ height = 2 * (int(height) // (vae_scale_factor * 2))
540
+ width = 2 * (int(width) // (vae_scale_factor * 2))
541
+
542
+ latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
543
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
544
+
545
+ latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
546
+
547
+ return latents
548
+
549
+ def enable_vae_slicing(self):
550
+ r"""
551
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
552
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
553
+ """
554
+ self.vae.enable_slicing()
555
+
556
+ def disable_vae_slicing(self):
557
+ r"""
558
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
559
+ computing decoding in one step.
560
+ """
561
+ self.vae.disable_slicing()
562
+
563
+ def enable_vae_tiling(self):
564
+ r"""
565
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
566
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
567
+ processing larger images.
568
+ """
569
+ self.vae.enable_tiling()
570
+
571
+ def disable_vae_tiling(self):
572
+ r"""
573
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
574
+ computing decoding in one step.
575
+ """
576
+ self.vae.disable_tiling()
577
+
578
+ def prepare_latents(
579
+ self,
580
+ batch_size,
581
+ num_channels_latents,
582
+ height,
583
+ width,
584
+ dtype,
585
+ device,
586
+ generator,
587
+ latents=None,
588
+ ):
589
+ # VAE applies 8x compression on images but we must also account for packing which requires
590
+ # latent height and width to be divisible by 2.
591
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
592
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
593
+
594
+ shape = (batch_size, num_channels_latents, height, width)
595
+
596
+ if latents is not None:
597
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
598
+ return latents.to(device=device, dtype=dtype), latent_image_ids
599
+
600
+ if isinstance(generator, list) and len(generator) != batch_size:
601
+ raise ValueError(
602
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
603
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
604
+ )
605
+
606
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
607
+ latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
608
+
609
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
610
+
611
+ return latents, latent_image_ids
612
+
613
+ @property
614
+ def guidance_scale(self):
615
+ return self._guidance_scale
616
+
617
+ @property
618
+ def joint_attention_kwargs(self):
619
+ return self._joint_attention_kwargs
620
+
621
+ @property
622
+ def num_timesteps(self):
623
+ return self._num_timesteps
624
+
625
+ @property
626
+ def interrupt(self):
627
+ return self._interrupt
628
+
629
+ @torch.no_grad()
630
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
631
+ def __call__(
632
+ self,
633
+ prompt: Union[str, List[str]] = None,
634
+ prompt_2: Optional[Union[str, List[str]]] = None,
635
+ negative_prompt: Union[str, List[str]] = None,
636
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
637
+ true_cfg_scale: float = 1.0,
638
+ height: Optional[int] = None,
639
+ width: Optional[int] = None,
640
+ num_inference_steps: int = 28,
641
+ sigmas: Optional[List[float]] = None,
642
+ guidance_scale: float = 3.5,
643
+ num_images_per_prompt: Optional[int] = 1,
644
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
645
+ latents: Optional[torch.FloatTensor] = None,
646
+ prompt_embeds: Optional[torch.FloatTensor] = None,
647
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
648
+ ip_adapter_image: Optional[PipelineImageInput] = None,
649
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
650
+ negative_ip_adapter_image: Optional[PipelineImageInput] = None,
651
+ negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
652
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
653
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
654
+ output_type: Optional[str] = "pil",
655
+ return_dict: bool = True,
656
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
657
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
658
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
659
+ max_sequence_length: int = 512,
660
+ ):
661
+ r"""
662
+ Function invoked when calling the pipeline for generation.
663
+
664
+ Args:
665
+ prompt (`str` or `List[str]`, *optional*):
666
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
667
+ instead.
668
+ prompt_2 (`str` or `List[str]`, *optional*):
669
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
670
+ will be used instead
671
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
672
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
673
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
674
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
675
+ num_inference_steps (`int`, *optional*, defaults to 50):
676
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
677
+ expense of slower inference.
678
+ sigmas (`List[float]`, *optional*):
679
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
680
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
681
+ will be used.
682
+ guidance_scale (`float`, *optional*, defaults to 7.0):
683
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
684
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
685
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
686
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
687
+ usually at the expense of lower image quality.
688
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
689
+ The number of images to generate per prompt.
690
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
691
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
692
+ to make generation deterministic.
693
+ latents (`torch.FloatTensor`, *optional*):
694
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
695
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
696
+ tensor will ge generated by sampling using the supplied random `generator`.
697
+ prompt_embeds (`torch.FloatTensor`, *optional*):
698
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
699
+ provided, text embeddings will be generated from `prompt` input argument.
700
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
701
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
702
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
703
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
704
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
705
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
706
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
707
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
708
+ negative_ip_adapter_image:
709
+ (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
710
+ negative_ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
711
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
712
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
713
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
714
+ output_type (`str`, *optional*, defaults to `"pil"`):
715
+ The output format of the generate image. Choose between
716
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
717
+ return_dict (`bool`, *optional*, defaults to `True`):
718
+ Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
719
+ joint_attention_kwargs (`dict`, *optional*):
720
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
721
+ `self.processor` in
722
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
723
+ callback_on_step_end (`Callable`, *optional*):
724
+ A function that calls at the end of each denoising steps during the inference. The function is called
725
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
726
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
727
+ `callback_on_step_end_tensor_inputs`.
728
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
729
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
730
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
731
+ `._callback_tensor_inputs` attribute of your pipeline class.
732
+ max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
733
+
734
+ Examples:
735
+
736
+ Returns:
737
+ [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
738
+ is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
739
+ images.
740
+ """
741
+
742
+ height = height or self.default_sample_size * self.vae_scale_factor
743
+ width = width or self.default_sample_size * self.vae_scale_factor
744
+
745
+ # 1. Check inputs. Raise error if not correct
746
+ self.check_inputs(
747
+ prompt,
748
+ prompt_2,
749
+ height,
750
+ width,
751
+ negative_prompt=negative_prompt,
752
+ negative_prompt_2=negative_prompt_2,
753
+ prompt_embeds=prompt_embeds,
754
+ negative_prompt_embeds=negative_prompt_embeds,
755
+ pooled_prompt_embeds=pooled_prompt_embeds,
756
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
757
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
758
+ max_sequence_length=max_sequence_length,
759
+ )
760
+
761
+ self._guidance_scale = guidance_scale
762
+ self._joint_attention_kwargs = joint_attention_kwargs
763
+ self._interrupt = False
764
+
765
+ # 2. Define call parameters
766
+ if prompt is not None and isinstance(prompt, str):
767
+ batch_size = 1
768
+ elif prompt is not None and isinstance(prompt, list):
769
+ batch_size = len(prompt)
770
+ else:
771
+ batch_size = prompt_embeds.shape[0]
772
+
773
+ device = self._execution_device
774
+
775
+ lora_scale = (
776
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
777
+ )
778
+ do_true_cfg = true_cfg_scale > 1 and negative_prompt is not None
779
+ (
780
+ prompt_embeds,
781
+ pooled_prompt_embeds,
782
+ text_ids,
783
+ ) = self.encode_prompt(
784
+ prompt=prompt,
785
+ prompt_2=prompt_2,
786
+ prompt_embeds=prompt_embeds,
787
+ pooled_prompt_embeds=pooled_prompt_embeds,
788
+ device=device,
789
+ num_images_per_prompt=num_images_per_prompt,
790
+ max_sequence_length=max_sequence_length,
791
+ lora_scale=lora_scale,
792
+ )
793
+ if do_true_cfg:
794
+ (
795
+ negative_prompt_embeds,
796
+ negative_pooled_prompt_embeds,
797
+ _,
798
+ ) = self.encode_prompt(
799
+ prompt=negative_prompt,
800
+ prompt_2=negative_prompt_2,
801
+ prompt_embeds=negative_prompt_embeds,
802
+ pooled_prompt_embeds=negative_pooled_prompt_embeds,
803
+ device=device,
804
+ num_images_per_prompt=num_images_per_prompt,
805
+ max_sequence_length=max_sequence_length,
806
+ lora_scale=lora_scale,
807
+ )
808
+
809
+ # 4. Prepare latent variables
810
+ num_channels_latents = self.transformer.config.in_channels // 4
811
+ latents, latent_image_ids = self.prepare_latents(
812
+ batch_size * num_images_per_prompt,
813
+ num_channels_latents,
814
+ height,
815
+ width,
816
+ prompt_embeds.dtype,
817
+ device,
818
+ generator,
819
+ latents,
820
+ )
821
+
822
+ # 5. Prepare timesteps
823
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
824
+ image_seq_len = latents.shape[1]
825
+ mu = calculate_shift(
826
+ image_seq_len,
827
+ self.scheduler.config.base_image_seq_len,
828
+ self.scheduler.config.max_image_seq_len,
829
+ self.scheduler.config.base_shift,
830
+ self.scheduler.config.max_shift,
831
+ )
832
+ timesteps, num_inference_steps = retrieve_timesteps(
833
+ self.scheduler,
834
+ num_inference_steps,
835
+ device,
836
+ sigmas=sigmas,
837
+ mu=mu,
838
+ )
839
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
840
+ self._num_timesteps = len(timesteps)
841
+
842
+ # handle guidance
843
+ if self.transformer.config.guidance_embeds:
844
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
845
+ guidance = guidance.expand(latents.shape[0])
846
+ else:
847
+ guidance = None
848
+
849
+ if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and (
850
+ negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None
851
+ ):
852
+ negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
853
+ elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and (
854
+ negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None
855
+ ):
856
+ ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
857
+
858
+ if self.joint_attention_kwargs is None:
859
+ self._joint_attention_kwargs = {}
860
+
861
+ image_embeds = None
862
+ negative_image_embeds = None
863
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
864
+ image_embeds = self.prepare_ip_adapter_image_embeds(
865
+ ip_adapter_image,
866
+ ip_adapter_image_embeds,
867
+ device,
868
+ batch_size * num_images_per_prompt,
869
+ )
870
+ if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None:
871
+ negative_image_embeds = self.prepare_ip_adapter_image_embeds(
872
+ negative_ip_adapter_image,
873
+ negative_ip_adapter_image_embeds,
874
+ device,
875
+ batch_size * num_images_per_prompt,
876
+ )
877
+
878
+ # 6. Denoising loop
879
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
880
+ for i, t in enumerate(timesteps):
881
+ if self.interrupt:
882
+ continue
883
+
884
+ if image_embeds is not None:
885
+ self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds
886
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
887
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
888
+
889
+ noise_pred = self.transformer(
890
+ hidden_states=latents,
891
+ timestep=timestep / 1000,
892
+ guidance=guidance,
893
+ pooled_projections=pooled_prompt_embeds,
894
+ encoder_hidden_states=prompt_embeds,
895
+ txt_ids=text_ids,
896
+ img_ids=latent_image_ids,
897
+ joint_attention_kwargs=self.joint_attention_kwargs,
898
+ return_dict=False,
899
+ )[0]
900
+
901
+ if do_true_cfg:
902
+ if negative_image_embeds is not None:
903
+ self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds
904
+ neg_noise_pred = self.transformer(
905
+ hidden_states=latents,
906
+ timestep=timestep / 1000,
907
+ guidance=guidance,
908
+ pooled_projections=negative_pooled_prompt_embeds,
909
+ encoder_hidden_states=negative_prompt_embeds,
910
+ txt_ids=text_ids,
911
+ img_ids=latent_image_ids,
912
+ joint_attention_kwargs=self.joint_attention_kwargs,
913
+ return_dict=False,
914
+ )[0]
915
+ noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
916
+
917
+ # compute the previous noisy sample x_t -> x_t-1
918
+ latents_dtype = latents.dtype
919
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
920
+
921
+ if latents.dtype != latents_dtype:
922
+ if torch.backends.mps.is_available():
923
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
924
+ latents = latents.to(latents_dtype)
925
+
926
+ if callback_on_step_end is not None:
927
+ callback_kwargs = {}
928
+ for k in callback_on_step_end_tensor_inputs:
929
+ callback_kwargs[k] = locals()[k]
930
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
931
+
932
+ latents = callback_outputs.pop("latents", latents)
933
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
934
+
935
+ # call the callback, if provided
936
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
937
+ progress_bar.update()
938
+
939
+ if XLA_AVAILABLE:
940
+ xm.mark_step()
941
+
942
+ if output_type == "latent":
943
+ image = latents
944
+
945
+ else:
946
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
947
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
948
+ image = self.vae.decode(latents, return_dict=False)[0]
949
+ image = self.image_processor.postprocess(image, output_type=output_type)
950
+
951
+ # Offload all models
952
+ self.maybe_free_model_hooks()
953
+
954
+ if not return_dict:
955
+ return (image,)
956
+
957
+ return FluxPipelineOutput(images=image)