diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1111 @@
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
17
+
18
+ import numpy as np
19
+ import PIL.Image
20
+ import torch
21
+ import torch.nn.functional as F
22
+ from transformers import (
23
+ CLIPImageProcessor,
24
+ CLIPTextModel,
25
+ CLIPTextModelWithProjection,
26
+ CLIPTokenizer,
27
+ )
28
+
29
+ from diffusers.utils.import_utils import is_invisible_watermark_available
30
+
31
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
32
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
33
+ from ...loaders import FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin
34
+ from ...models import AutoencoderKL, ControlNetXSAdapter, UNet2DConditionModel, UNetControlNetXSModel
35
+ from ...models.attention_processor import (
36
+ AttnProcessor2_0,
37
+ XFormersAttnProcessor,
38
+ )
39
+ from ...models.lora import adjust_lora_scale_text_encoder
40
+ from ...schedulers import KarrasDiffusionSchedulers
41
+ from ...utils import (
42
+ USE_PEFT_BACKEND,
43
+ logging,
44
+ replace_example_docstring,
45
+ scale_lora_layers,
46
+ unscale_lora_layers,
47
+ )
48
+ from ...utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
49
+ from ..pipeline_utils import DiffusionPipeline
50
+ from ..stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
51
+
52
+
53
+ if is_invisible_watermark_available():
54
+ from ..stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
55
+
56
+
57
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
58
+
59
+
60
+ EXAMPLE_DOC_STRING = """
61
+ Examples:
62
+ ```py
63
+ >>> # !pip install opencv-python transformers accelerate
64
+ >>> from diffusers import StableDiffusionXLControlNetXSPipeline, ControlNetXSAdapter, AutoencoderKL
65
+ >>> from diffusers.utils import load_image
66
+ >>> import numpy as np
67
+ >>> import torch
68
+
69
+ >>> import cv2
70
+ >>> from PIL import Image
71
+
72
+ >>> prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting"
73
+ >>> negative_prompt = "low quality, bad quality, sketches"
74
+
75
+ >>> # download an image
76
+ >>> image = load_image(
77
+ ... "https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"
78
+ ... )
79
+
80
+ >>> # initialize the models and pipeline
81
+ >>> controlnet_conditioning_scale = 0.5
82
+ >>> vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
83
+ >>> controlnet = ControlNetXSAdapter.from_pretrained(
84
+ ... "UmerHA/Testing-ConrolNetXS-SDXL-canny", torch_dtype=torch.float16
85
+ ... )
86
+ >>> pipe = StableDiffusionXLControlNetXSPipeline.from_pretrained(
87
+ ... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, torch_dtype=torch.float16
88
+ ... )
89
+ >>> pipe.enable_model_cpu_offload()
90
+
91
+ >>> # get canny image
92
+ >>> image = np.array(image)
93
+ >>> image = cv2.Canny(image, 100, 200)
94
+ >>> image = image[:, :, None]
95
+ >>> image = np.concatenate([image, image, image], axis=2)
96
+ >>> canny_image = Image.fromarray(image)
97
+
98
+ >>> # generate image
99
+ >>> image = pipe(
100
+ ... prompt, controlnet_conditioning_scale=controlnet_conditioning_scale, image=canny_image
101
+ ... ).images[0]
102
+ ```
103
+ """
104
+
105
+
106
+ class StableDiffusionXLControlNetXSPipeline(
107
+ DiffusionPipeline,
108
+ TextualInversionLoaderMixin,
109
+ StableDiffusionXLLoraLoaderMixin,
110
+ FromSingleFileMixin,
111
+ ):
112
+ r"""
113
+ Pipeline for text-to-image generation using Stable Diffusion XL with ControlNet-XS guidance.
114
+
115
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
116
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
117
+
118
+ The pipeline also inherits the following loading methods:
119
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
120
+ - [`loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
121
+ - [`loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
122
+
123
+ Args:
124
+ vae ([`AutoencoderKL`]):
125
+ Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
126
+ text_encoder ([`~transformers.CLIPTextModel`]):
127
+ Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
128
+ text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]):
129
+ Second frozen text-encoder
130
+ ([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)).
131
+ tokenizer ([`~transformers.CLIPTokenizer`]):
132
+ A `CLIPTokenizer` to tokenize text.
133
+ tokenizer_2 ([`~transformers.CLIPTokenizer`]):
134
+ A `CLIPTokenizer` to tokenize text.
135
+ unet ([`UNet2DConditionModel`]):
136
+ A [`UNet2DConditionModel`] used to create a UNetControlNetXSModel to denoise the encoded image latents.
137
+ controlnet ([`ControlNetXSAdapter`]):
138
+ A [`ControlNetXSAdapter`] to be used in combination with `unet` to denoise the encoded image latents.
139
+ scheduler ([`SchedulerMixin`]):
140
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
141
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
142
+ force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
143
+ Whether the negative prompt embeddings should always be set to 0. Also see the config of
144
+ `stabilityai/stable-diffusion-xl-base-1-0`.
145
+ add_watermarker (`bool`, *optional*):
146
+ Whether to use the [invisible_watermark](https://github.com/ShieldMnt/invisible-watermark/) library to
147
+ watermark output images. If not defined, it defaults to `True` if the package is installed; otherwise no
148
+ watermarker is used.
149
+ """
150
+
151
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
152
+ _optional_components = [
153
+ "tokenizer",
154
+ "tokenizer_2",
155
+ "text_encoder",
156
+ "text_encoder_2",
157
+ "feature_extractor",
158
+ ]
159
+ _callback_tensor_inputs = [
160
+ "latents",
161
+ "prompt_embeds",
162
+ "negative_prompt_embeds",
163
+ "add_text_embeds",
164
+ "add_time_ids",
165
+ "negative_pooled_prompt_embeds",
166
+ "negative_add_time_ids",
167
+ ]
168
+
169
+ def __init__(
170
+ self,
171
+ vae: AutoencoderKL,
172
+ text_encoder: CLIPTextModel,
173
+ text_encoder_2: CLIPTextModelWithProjection,
174
+ tokenizer: CLIPTokenizer,
175
+ tokenizer_2: CLIPTokenizer,
176
+ unet: Union[UNet2DConditionModel, UNetControlNetXSModel],
177
+ controlnet: ControlNetXSAdapter,
178
+ scheduler: KarrasDiffusionSchedulers,
179
+ force_zeros_for_empty_prompt: bool = True,
180
+ add_watermarker: Optional[bool] = None,
181
+ feature_extractor: CLIPImageProcessor = None,
182
+ ):
183
+ super().__init__()
184
+
185
+ if isinstance(unet, UNet2DConditionModel):
186
+ unet = UNetControlNetXSModel.from_unet(unet, controlnet)
187
+
188
+ self.register_modules(
189
+ vae=vae,
190
+ text_encoder=text_encoder,
191
+ text_encoder_2=text_encoder_2,
192
+ tokenizer=tokenizer,
193
+ tokenizer_2=tokenizer_2,
194
+ unet=unet,
195
+ controlnet=controlnet,
196
+ scheduler=scheduler,
197
+ feature_extractor=feature_extractor,
198
+ )
199
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
200
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
201
+ self.control_image_processor = VaeImageProcessor(
202
+ vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
203
+ )
204
+ add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
205
+
206
+ if add_watermarker:
207
+ self.watermark = StableDiffusionXLWatermarker()
208
+ else:
209
+ self.watermark = None
210
+
211
+ self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
212
+
213
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
214
+ def encode_prompt(
215
+ self,
216
+ prompt: str,
217
+ prompt_2: Optional[str] = None,
218
+ device: Optional[torch.device] = None,
219
+ num_images_per_prompt: int = 1,
220
+ do_classifier_free_guidance: bool = True,
221
+ negative_prompt: Optional[str] = None,
222
+ negative_prompt_2: Optional[str] = None,
223
+ prompt_embeds: Optional[torch.Tensor] = None,
224
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
225
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
226
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
227
+ lora_scale: Optional[float] = None,
228
+ clip_skip: Optional[int] = None,
229
+ ):
230
+ r"""
231
+ Encodes the prompt into text encoder hidden states.
232
+
233
+ Args:
234
+ prompt (`str` or `List[str]`, *optional*):
235
+ prompt to be encoded
236
+ prompt_2 (`str` or `List[str]`, *optional*):
237
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
238
+ used in both text-encoders
239
+ device: (`torch.device`):
240
+ torch device
241
+ num_images_per_prompt (`int`):
242
+ number of images that should be generated per prompt
243
+ do_classifier_free_guidance (`bool`):
244
+ whether to use classifier free guidance or not
245
+ negative_prompt (`str` or `List[str]`, *optional*):
246
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
247
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
248
+ less than `1`).
249
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
250
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
251
+ `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
252
+ prompt_embeds (`torch.Tensor`, *optional*):
253
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
254
+ provided, text embeddings will be generated from `prompt` input argument.
255
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
256
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
257
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
258
+ argument.
259
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
260
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
261
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
262
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
263
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
264
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
265
+ input argument.
266
+ lora_scale (`float`, *optional*):
267
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
268
+ clip_skip (`int`, *optional*):
269
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
270
+ the output of the pre-final layer will be used for computing the prompt embeddings.
271
+ """
272
+ device = device or self._execution_device
273
+
274
+ # set lora scale so that monkey patched LoRA
275
+ # function of text encoder can correctly access it
276
+ if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
277
+ self._lora_scale = lora_scale
278
+
279
+ # dynamically adjust the LoRA scale
280
+ if self.text_encoder is not None:
281
+ if not USE_PEFT_BACKEND:
282
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
283
+ else:
284
+ scale_lora_layers(self.text_encoder, lora_scale)
285
+
286
+ if self.text_encoder_2 is not None:
287
+ if not USE_PEFT_BACKEND:
288
+ adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
289
+ else:
290
+ scale_lora_layers(self.text_encoder_2, lora_scale)
291
+
292
+ prompt = [prompt] if isinstance(prompt, str) else prompt
293
+
294
+ if prompt is not None:
295
+ batch_size = len(prompt)
296
+ else:
297
+ batch_size = prompt_embeds.shape[0]
298
+
299
+ # Define tokenizers and text encoders
300
+ tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
301
+ text_encoders = (
302
+ [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
303
+ )
304
+
305
+ if prompt_embeds is None:
306
+ prompt_2 = prompt_2 or prompt
307
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
308
+
309
+ # textual inversion: process multi-vector tokens if necessary
310
+ prompt_embeds_list = []
311
+ prompts = [prompt, prompt_2]
312
+ for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
313
+ if isinstance(self, TextualInversionLoaderMixin):
314
+ prompt = self.maybe_convert_prompt(prompt, tokenizer)
315
+
316
+ text_inputs = tokenizer(
317
+ prompt,
318
+ padding="max_length",
319
+ max_length=tokenizer.model_max_length,
320
+ truncation=True,
321
+ return_tensors="pt",
322
+ )
323
+
324
+ text_input_ids = text_inputs.input_ids
325
+ untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
326
+
327
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
328
+ text_input_ids, untruncated_ids
329
+ ):
330
+ removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
331
+ logger.warning(
332
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
333
+ f" {tokenizer.model_max_length} tokens: {removed_text}"
334
+ )
335
+
336
+ prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
337
+
338
+ # We are only ALWAYS interested in the pooled output of the final text encoder
339
+ pooled_prompt_embeds = prompt_embeds[0]
340
+ if clip_skip is None:
341
+ prompt_embeds = prompt_embeds.hidden_states[-2]
342
+ else:
343
+ # "2" because SDXL always indexes from the penultimate layer.
344
+ prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
345
+
346
+ prompt_embeds_list.append(prompt_embeds)
347
+
348
+ prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
349
+
350
+ # get unconditional embeddings for classifier free guidance
351
+ zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
352
+ if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
353
+ negative_prompt_embeds = torch.zeros_like(prompt_embeds)
354
+ negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
355
+ elif do_classifier_free_guidance and negative_prompt_embeds is None:
356
+ negative_prompt = negative_prompt or ""
357
+ negative_prompt_2 = negative_prompt_2 or negative_prompt
358
+
359
+ # normalize str to list
360
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
361
+ negative_prompt_2 = (
362
+ batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
363
+ )
364
+
365
+ uncond_tokens: List[str]
366
+ if prompt is not None and type(prompt) is not type(negative_prompt):
367
+ raise TypeError(
368
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
369
+ f" {type(prompt)}."
370
+ )
371
+ elif batch_size != len(negative_prompt):
372
+ raise ValueError(
373
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
374
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
375
+ " the batch size of `prompt`."
376
+ )
377
+ else:
378
+ uncond_tokens = [negative_prompt, negative_prompt_2]
379
+
380
+ negative_prompt_embeds_list = []
381
+ for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
382
+ if isinstance(self, TextualInversionLoaderMixin):
383
+ negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
384
+
385
+ max_length = prompt_embeds.shape[1]
386
+ uncond_input = tokenizer(
387
+ negative_prompt,
388
+ padding="max_length",
389
+ max_length=max_length,
390
+ truncation=True,
391
+ return_tensors="pt",
392
+ )
393
+
394
+ negative_prompt_embeds = text_encoder(
395
+ uncond_input.input_ids.to(device),
396
+ output_hidden_states=True,
397
+ )
398
+ # We are only ALWAYS interested in the pooled output of the final text encoder
399
+ negative_pooled_prompt_embeds = negative_prompt_embeds[0]
400
+ negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
401
+
402
+ negative_prompt_embeds_list.append(negative_prompt_embeds)
403
+
404
+ negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
405
+
406
+ if self.text_encoder_2 is not None:
407
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
408
+ else:
409
+ prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
410
+
411
+ bs_embed, seq_len, _ = prompt_embeds.shape
412
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
413
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
414
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
415
+
416
+ if do_classifier_free_guidance:
417
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
418
+ seq_len = negative_prompt_embeds.shape[1]
419
+
420
+ if self.text_encoder_2 is not None:
421
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
422
+ else:
423
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
424
+
425
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
426
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
427
+
428
+ pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
429
+ bs_embed * num_images_per_prompt, -1
430
+ )
431
+ if do_classifier_free_guidance:
432
+ negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
433
+ bs_embed * num_images_per_prompt, -1
434
+ )
435
+
436
+ if self.text_encoder is not None:
437
+ if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
438
+ # Retrieve the original scale by scaling back the LoRA layers
439
+ unscale_lora_layers(self.text_encoder, lora_scale)
440
+
441
+ if self.text_encoder_2 is not None:
442
+ if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
443
+ # Retrieve the original scale by scaling back the LoRA layers
444
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
445
+
446
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
447
+
448
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
449
+ def prepare_extra_step_kwargs(self, generator, eta):
450
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
451
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
452
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
453
+ # and should be between [0, 1]
454
+
455
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
456
+ extra_step_kwargs = {}
457
+ if accepts_eta:
458
+ extra_step_kwargs["eta"] = eta
459
+
460
+ # check if the scheduler accepts generator
461
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
462
+ if accepts_generator:
463
+ extra_step_kwargs["generator"] = generator
464
+ return extra_step_kwargs
465
+
466
+ def check_inputs(
467
+ self,
468
+ prompt,
469
+ prompt_2,
470
+ image,
471
+ negative_prompt=None,
472
+ negative_prompt_2=None,
473
+ prompt_embeds=None,
474
+ negative_prompt_embeds=None,
475
+ pooled_prompt_embeds=None,
476
+ negative_pooled_prompt_embeds=None,
477
+ controlnet_conditioning_scale=1.0,
478
+ control_guidance_start=0.0,
479
+ control_guidance_end=1.0,
480
+ callback_on_step_end_tensor_inputs=None,
481
+ ):
482
+ if callback_on_step_end_tensor_inputs is not None and not all(
483
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
484
+ ):
485
+ raise ValueError(
486
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
487
+ )
488
+
489
+ if prompt is not None and prompt_embeds is not None:
490
+ raise ValueError(
491
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
492
+ " only forward one of the two."
493
+ )
494
+ elif prompt_2 is not None and prompt_embeds is not None:
495
+ raise ValueError(
496
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
497
+ " only forward one of the two."
498
+ )
499
+ elif prompt is None and prompt_embeds is None:
500
+ raise ValueError(
501
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
502
+ )
503
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
504
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
505
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
506
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
507
+
508
+ if negative_prompt is not None and negative_prompt_embeds is not None:
509
+ raise ValueError(
510
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
511
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
512
+ )
513
+ elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
514
+ raise ValueError(
515
+ f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
516
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
517
+ )
518
+
519
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
520
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
521
+ raise ValueError(
522
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
523
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
524
+ f" {negative_prompt_embeds.shape}."
525
+ )
526
+
527
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
528
+ raise ValueError(
529
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
530
+ )
531
+
532
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
533
+ raise ValueError(
534
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
535
+ )
536
+
537
+ # Check `image` and ``controlnet_conditioning_scale``
538
+ is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
539
+ self.unet, torch._dynamo.eval_frame.OptimizedModule
540
+ )
541
+ if (
542
+ isinstance(self.unet, UNetControlNetXSModel)
543
+ or is_compiled
544
+ and isinstance(self.unet._orig_mod, UNetControlNetXSModel)
545
+ ):
546
+ self.check_image(image, prompt, prompt_embeds)
547
+ if not isinstance(controlnet_conditioning_scale, float):
548
+ raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
549
+ else:
550
+ assert False
551
+
552
+ start, end = control_guidance_start, control_guidance_end
553
+ if start >= end:
554
+ raise ValueError(
555
+ f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
556
+ )
557
+ if start < 0.0:
558
+ raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
559
+ if end > 1.0:
560
+ raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
561
+
562
+ # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
563
+ def check_image(self, image, prompt, prompt_embeds):
564
+ image_is_pil = isinstance(image, PIL.Image.Image)
565
+ image_is_tensor = isinstance(image, torch.Tensor)
566
+ image_is_np = isinstance(image, np.ndarray)
567
+ image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
568
+ image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
569
+ image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
570
+
571
+ if (
572
+ not image_is_pil
573
+ and not image_is_tensor
574
+ and not image_is_np
575
+ and not image_is_pil_list
576
+ and not image_is_tensor_list
577
+ and not image_is_np_list
578
+ ):
579
+ raise TypeError(
580
+ f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
581
+ )
582
+
583
+ if image_is_pil:
584
+ image_batch_size = 1
585
+ else:
586
+ image_batch_size = len(image)
587
+
588
+ if prompt is not None and isinstance(prompt, str):
589
+ prompt_batch_size = 1
590
+ elif prompt is not None and isinstance(prompt, list):
591
+ prompt_batch_size = len(prompt)
592
+ elif prompt_embeds is not None:
593
+ prompt_batch_size = prompt_embeds.shape[0]
594
+
595
+ if image_batch_size != 1 and image_batch_size != prompt_batch_size:
596
+ raise ValueError(
597
+ f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
598
+ )
599
+
600
+ def prepare_image(
601
+ self,
602
+ image,
603
+ width,
604
+ height,
605
+ batch_size,
606
+ num_images_per_prompt,
607
+ device,
608
+ dtype,
609
+ do_classifier_free_guidance=False,
610
+ ):
611
+ image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
612
+ image_batch_size = image.shape[0]
613
+
614
+ if image_batch_size == 1:
615
+ repeat_by = batch_size
616
+ else:
617
+ # image batch size is the same as prompt batch size
618
+ repeat_by = num_images_per_prompt
619
+
620
+ image = image.repeat_interleave(repeat_by, dim=0)
621
+
622
+ image = image.to(device=device, dtype=dtype)
623
+
624
+ if do_classifier_free_guidance:
625
+ image = torch.cat([image] * 2)
626
+
627
+ return image
628
+
629
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
630
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
631
+ shape = (
632
+ batch_size,
633
+ num_channels_latents,
634
+ int(height) // self.vae_scale_factor,
635
+ int(width) // self.vae_scale_factor,
636
+ )
637
+ if isinstance(generator, list) and len(generator) != batch_size:
638
+ raise ValueError(
639
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
640
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
641
+ )
642
+
643
+ if latents is None:
644
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
645
+ else:
646
+ latents = latents.to(device)
647
+
648
+ # scale the initial noise by the standard deviation required by the scheduler
649
+ latents = latents * self.scheduler.init_noise_sigma
650
+ return latents
651
+
652
+ def _get_add_time_ids(
653
+ self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
654
+ ):
655
+ add_time_ids = list(original_size + crops_coords_top_left + target_size)
656
+
657
+ passed_add_embed_dim = (
658
+ self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
659
+ )
660
+ expected_add_embed_dim = self.unet.base_add_embedding.linear_1.in_features
661
+
662
+ if expected_add_embed_dim != passed_add_embed_dim:
663
+ raise ValueError(
664
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
665
+ )
666
+
667
+ add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
668
+ return add_time_ids
669
+
670
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
671
+ def upcast_vae(self):
672
+ dtype = self.vae.dtype
673
+ self.vae.to(dtype=torch.float32)
674
+ use_torch_2_0_or_xformers = isinstance(
675
+ self.vae.decoder.mid_block.attentions[0].processor,
676
+ (
677
+ AttnProcessor2_0,
678
+ XFormersAttnProcessor,
679
+ ),
680
+ )
681
+ # if xformers or torch_2_0 is used attention block does not need
682
+ # to be in float32 which can save lots of memory
683
+ if use_torch_2_0_or_xformers:
684
+ self.vae.post_quant_conv.to(dtype)
685
+ self.vae.decoder.conv_in.to(dtype)
686
+ self.vae.decoder.mid_block.to(dtype)
687
+
688
+ @property
689
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.guidance_scale
690
+ def guidance_scale(self):
691
+ return self._guidance_scale
692
+
693
+ @property
694
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.clip_skip
695
+ def clip_skip(self):
696
+ return self._clip_skip
697
+
698
+ @property
699
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.do_classifier_free_guidance
700
+ def do_classifier_free_guidance(self):
701
+ return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
702
+
703
+ @property
704
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.cross_attention_kwargs
705
+ def cross_attention_kwargs(self):
706
+ return self._cross_attention_kwargs
707
+
708
+ @property
709
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.num_timesteps
710
+ def num_timesteps(self):
711
+ return self._num_timesteps
712
+
713
+ @torch.no_grad()
714
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
715
+ def __call__(
716
+ self,
717
+ prompt: Union[str, List[str]] = None,
718
+ prompt_2: Optional[Union[str, List[str]]] = None,
719
+ image: PipelineImageInput = None,
720
+ height: Optional[int] = None,
721
+ width: Optional[int] = None,
722
+ num_inference_steps: int = 50,
723
+ guidance_scale: float = 5.0,
724
+ negative_prompt: Optional[Union[str, List[str]]] = None,
725
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
726
+ num_images_per_prompt: Optional[int] = 1,
727
+ eta: float = 0.0,
728
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
729
+ latents: Optional[torch.Tensor] = None,
730
+ prompt_embeds: Optional[torch.Tensor] = None,
731
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
732
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
733
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
734
+ output_type: Optional[str] = "pil",
735
+ return_dict: bool = True,
736
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
737
+ controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
738
+ control_guidance_start: float = 0.0,
739
+ control_guidance_end: float = 1.0,
740
+ original_size: Tuple[int, int] = None,
741
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
742
+ target_size: Tuple[int, int] = None,
743
+ negative_original_size: Optional[Tuple[int, int]] = None,
744
+ negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
745
+ negative_target_size: Optional[Tuple[int, int]] = None,
746
+ clip_skip: Optional[int] = None,
747
+ callback_on_step_end: Optional[
748
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
749
+ ] = None,
750
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
751
+ ):
752
+ r"""
753
+ The call function to the pipeline for generation.
754
+
755
+ Args:
756
+ prompt (`str` or `List[str]`, *optional*):
757
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
758
+ prompt_2 (`str` or `List[str]`, *optional*):
759
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
760
+ used in both text-encoders.
761
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
762
+ `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
763
+ The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
764
+ specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
765
+ as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
766
+ width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
767
+ images must be passed as a list such that each element of the list can be correctly batched for input
768
+ to a single ControlNet.
769
+ height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
770
+ The height in pixels of the generated image. Anything below 512 pixels won't work well for
771
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
772
+ and checkpoints that are not specifically fine-tuned on low resolutions.
773
+ width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
774
+ The width in pixels of the generated image. Anything below 512 pixels won't work well for
775
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
776
+ and checkpoints that are not specifically fine-tuned on low resolutions.
777
+ num_inference_steps (`int`, *optional*, defaults to 50):
778
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
779
+ expense of slower inference.
780
+ guidance_scale (`float`, *optional*, defaults to 5.0):
781
+ A higher guidance scale value encourages the model to generate images closely linked to the text
782
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
783
+ negative_prompt (`str` or `List[str]`, *optional*):
784
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
785
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
786
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
787
+ The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2`
788
+ and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
789
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
790
+ The number of images to generate per prompt.
791
+ eta (`float`, *optional*, defaults to 0.0):
792
+ Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
793
+ to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
794
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
795
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
796
+ generation deterministic.
797
+ latents (`torch.Tensor`, *optional*):
798
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
799
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
800
+ tensor is generated by sampling using the supplied random `generator`.
801
+ prompt_embeds (`torch.Tensor`, *optional*):
802
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
803
+ provided, text embeddings are generated from the `prompt` input argument.
804
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
805
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
806
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
807
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
808
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
809
+ not provided, pooled text embeddings are generated from `prompt` input argument.
810
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
811
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
812
+ weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
813
+ argument.
814
+ output_type (`str`, *optional*, defaults to `"pil"`):
815
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
816
+ return_dict (`bool`, *optional*, defaults to `True`):
817
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
818
+ plain tuple.
819
+ cross_attention_kwargs (`dict`, *optional*):
820
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
821
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
822
+ controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
823
+ The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
824
+ to the residual in the original `unet`.
825
+ control_guidance_start (`float`, *optional*, defaults to 0.0):
826
+ The percentage of total steps at which the ControlNet starts applying.
827
+ control_guidance_end (`float`, *optional*, defaults to 1.0):
828
+ The percentage of total steps at which the ControlNet stops applying.
829
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
830
+ If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
831
+ `original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
832
+ explained in section 2.2 of
833
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
834
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
835
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
836
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
837
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
838
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
839
+ target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
840
+ For most cases, `target_size` should be set to the desired height and width of the generated image. If
841
+ not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
842
+ section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
843
+ negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
844
+ To negatively condition the generation process based on a specific image resolution. Part of SDXL's
845
+ micro-conditioning as explained in section 2.2 of
846
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
847
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
848
+ negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
849
+ To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
850
+ micro-conditioning as explained in section 2.2 of
851
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
852
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
853
+ negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
854
+ To negatively condition the generation process based on a target image resolution. It should be as same
855
+ as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
856
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
857
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
858
+ clip_skip (`int`, *optional*):
859
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
860
+ the output of the pre-final layer will be used for computing the prompt embeddings.
861
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
862
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
863
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
864
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
865
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
866
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
867
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
868
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
869
+ `._callback_tensor_inputs` attribute of your pipeine class.
870
+
871
+ Examples:
872
+
873
+ Returns:
874
+ [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`:
875
+ If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] is
876
+ returned, otherwise a `tuple` is returned containing the output images.
877
+ """
878
+
879
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
880
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
881
+
882
+ unet = self.unet._orig_mod if is_compiled_module(self.unet) else self.unet
883
+
884
+ # 1. Check inputs. Raise error if not correct
885
+ self.check_inputs(
886
+ prompt,
887
+ prompt_2,
888
+ image,
889
+ negative_prompt,
890
+ negative_prompt_2,
891
+ prompt_embeds,
892
+ negative_prompt_embeds,
893
+ pooled_prompt_embeds,
894
+ negative_pooled_prompt_embeds,
895
+ controlnet_conditioning_scale,
896
+ control_guidance_start,
897
+ control_guidance_end,
898
+ callback_on_step_end_tensor_inputs,
899
+ )
900
+
901
+ self._guidance_scale = guidance_scale
902
+ self._clip_skip = clip_skip
903
+ self._cross_attention_kwargs = cross_attention_kwargs
904
+ self._interrupt = False
905
+
906
+ # 2. Define call parameters
907
+ if prompt is not None and isinstance(prompt, str):
908
+ batch_size = 1
909
+ elif prompt is not None and isinstance(prompt, list):
910
+ batch_size = len(prompt)
911
+ else:
912
+ batch_size = prompt_embeds.shape[0]
913
+
914
+ device = self._execution_device
915
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
916
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
917
+ # corresponds to doing no classifier free guidance.
918
+ do_classifier_free_guidance = guidance_scale > 1.0
919
+
920
+ # 3. Encode input prompt
921
+ text_encoder_lora_scale = (
922
+ cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
923
+ )
924
+ (
925
+ prompt_embeds,
926
+ negative_prompt_embeds,
927
+ pooled_prompt_embeds,
928
+ negative_pooled_prompt_embeds,
929
+ ) = self.encode_prompt(
930
+ prompt,
931
+ prompt_2,
932
+ device,
933
+ num_images_per_prompt,
934
+ do_classifier_free_guidance,
935
+ negative_prompt,
936
+ negative_prompt_2,
937
+ prompt_embeds=prompt_embeds,
938
+ negative_prompt_embeds=negative_prompt_embeds,
939
+ pooled_prompt_embeds=pooled_prompt_embeds,
940
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
941
+ lora_scale=text_encoder_lora_scale,
942
+ clip_skip=clip_skip,
943
+ )
944
+
945
+ # 4. Prepare image
946
+ if isinstance(unet, UNetControlNetXSModel):
947
+ image = self.prepare_image(
948
+ image=image,
949
+ width=width,
950
+ height=height,
951
+ batch_size=batch_size * num_images_per_prompt,
952
+ num_images_per_prompt=num_images_per_prompt,
953
+ device=device,
954
+ dtype=unet.dtype,
955
+ do_classifier_free_guidance=do_classifier_free_guidance,
956
+ )
957
+ height, width = image.shape[-2:]
958
+ else:
959
+ assert False
960
+
961
+ # 5. Prepare timesteps
962
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
963
+ timesteps = self.scheduler.timesteps
964
+
965
+ # 6. Prepare latent variables
966
+ num_channels_latents = self.unet.in_channels
967
+ latents = self.prepare_latents(
968
+ batch_size * num_images_per_prompt,
969
+ num_channels_latents,
970
+ height,
971
+ width,
972
+ prompt_embeds.dtype,
973
+ device,
974
+ generator,
975
+ latents,
976
+ )
977
+
978
+ # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
979
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
980
+
981
+ # 7.1 Prepare added time ids & embeddings
982
+ if isinstance(image, list):
983
+ original_size = original_size or image[0].shape[-2:]
984
+ else:
985
+ original_size = original_size or image.shape[-2:]
986
+ target_size = target_size or (height, width)
987
+
988
+ add_text_embeds = pooled_prompt_embeds
989
+ if self.text_encoder_2 is None:
990
+ text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
991
+ else:
992
+ text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
993
+
994
+ add_time_ids = self._get_add_time_ids(
995
+ original_size,
996
+ crops_coords_top_left,
997
+ target_size,
998
+ dtype=prompt_embeds.dtype,
999
+ text_encoder_projection_dim=text_encoder_projection_dim,
1000
+ )
1001
+
1002
+ if negative_original_size is not None and negative_target_size is not None:
1003
+ negative_add_time_ids = self._get_add_time_ids(
1004
+ negative_original_size,
1005
+ negative_crops_coords_top_left,
1006
+ negative_target_size,
1007
+ dtype=prompt_embeds.dtype,
1008
+ text_encoder_projection_dim=text_encoder_projection_dim,
1009
+ )
1010
+ else:
1011
+ negative_add_time_ids = add_time_ids
1012
+
1013
+ if do_classifier_free_guidance:
1014
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
1015
+ add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
1016
+ add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
1017
+
1018
+ prompt_embeds = prompt_embeds.to(device)
1019
+ add_text_embeds = add_text_embeds.to(device)
1020
+ add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
1021
+
1022
+ # 8. Denoising loop
1023
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
1024
+ self._num_timesteps = len(timesteps)
1025
+ is_controlnet_compiled = is_compiled_module(self.unet)
1026
+ is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
1027
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1028
+ for i, t in enumerate(timesteps):
1029
+ # Relevant thread:
1030
+ # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
1031
+ if is_controlnet_compiled and is_torch_higher_equal_2_1:
1032
+ torch._inductor.cudagraph_mark_step_begin()
1033
+ # expand the latents if we are doing classifier free guidance
1034
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
1035
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1036
+
1037
+ added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
1038
+
1039
+ # predict the noise residual
1040
+ apply_control = (
1041
+ i / len(timesteps) >= control_guidance_start and (i + 1) / len(timesteps) <= control_guidance_end
1042
+ )
1043
+ noise_pred = self.unet(
1044
+ sample=latent_model_input,
1045
+ timestep=t,
1046
+ encoder_hidden_states=prompt_embeds,
1047
+ controlnet_cond=image,
1048
+ conditioning_scale=controlnet_conditioning_scale,
1049
+ cross_attention_kwargs=cross_attention_kwargs,
1050
+ added_cond_kwargs=added_cond_kwargs,
1051
+ return_dict=True,
1052
+ apply_control=apply_control,
1053
+ ).sample
1054
+
1055
+ # perform guidance
1056
+ if do_classifier_free_guidance:
1057
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1058
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
1059
+
1060
+ # compute the previous noisy sample x_t -> x_t-1
1061
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1062
+
1063
+ if callback_on_step_end is not None:
1064
+ callback_kwargs = {}
1065
+ for k in callback_on_step_end_tensor_inputs:
1066
+ callback_kwargs[k] = locals()[k]
1067
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1068
+
1069
+ latents = callback_outputs.pop("latents", latents)
1070
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1071
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1072
+
1073
+ # call the callback, if provided
1074
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1075
+ progress_bar.update()
1076
+
1077
+ # manually for max memory savings
1078
+ if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
1079
+ self.upcast_vae()
1080
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
1081
+
1082
+ if not output_type == "latent":
1083
+ # make sure the VAE is in float32 mode, as it overflows in float16
1084
+ needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
1085
+
1086
+ if needs_upcasting:
1087
+ self.upcast_vae()
1088
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
1089
+
1090
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
1091
+
1092
+ # cast back to fp16 if needed
1093
+ if needs_upcasting:
1094
+ self.vae.to(dtype=torch.float16)
1095
+ else:
1096
+ image = latents
1097
+
1098
+ if not output_type == "latent":
1099
+ # apply watermark if available
1100
+ if self.watermark is not None:
1101
+ image = self.watermark.apply_watermark(image)
1102
+
1103
+ image = self.image_processor.postprocess(image, output_type=output_type)
1104
+
1105
+ # Offload all models
1106
+ self.maybe_free_model_hooks()
1107
+
1108
+ if not return_dict:
1109
+ return (image,)
1110
+
1111
+ return StableDiffusionXLPipelineOutput(images=image)