diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +50 -53
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.0.dist-info/RECORD +0 -399
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,183 @@
|
|
1
|
+
import os
|
2
|
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
3
|
+
|
4
|
+
import torch
|
5
|
+
from torch import nn
|
6
|
+
|
7
|
+
from ...models.controlnets.controlnet import ControlNetModel, ControlNetOutput
|
8
|
+
from ...models.modeling_utils import ModelMixin
|
9
|
+
from ...utils import logging
|
10
|
+
|
11
|
+
|
12
|
+
logger = logging.get_logger(__name__)
|
13
|
+
|
14
|
+
|
15
|
+
class MultiControlNetModel(ModelMixin):
|
16
|
+
r"""
|
17
|
+
Multiple `ControlNetModel` wrapper class for Multi-ControlNet
|
18
|
+
|
19
|
+
This module is a wrapper for multiple instances of the `ControlNetModel`. The `forward()` API is designed to be
|
20
|
+
compatible with `ControlNetModel`.
|
21
|
+
|
22
|
+
Args:
|
23
|
+
controlnets (`List[ControlNetModel]`):
|
24
|
+
Provides additional conditioning to the unet during the denoising process. You must set multiple
|
25
|
+
`ControlNetModel` as a list.
|
26
|
+
"""
|
27
|
+
|
28
|
+
def __init__(self, controlnets: Union[List[ControlNetModel], Tuple[ControlNetModel]]):
|
29
|
+
super().__init__()
|
30
|
+
self.nets = nn.ModuleList(controlnets)
|
31
|
+
|
32
|
+
def forward(
|
33
|
+
self,
|
34
|
+
sample: torch.Tensor,
|
35
|
+
timestep: Union[torch.Tensor, float, int],
|
36
|
+
encoder_hidden_states: torch.Tensor,
|
37
|
+
controlnet_cond: List[torch.tensor],
|
38
|
+
conditioning_scale: List[float],
|
39
|
+
class_labels: Optional[torch.Tensor] = None,
|
40
|
+
timestep_cond: Optional[torch.Tensor] = None,
|
41
|
+
attention_mask: Optional[torch.Tensor] = None,
|
42
|
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
43
|
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
44
|
+
guess_mode: bool = False,
|
45
|
+
return_dict: bool = True,
|
46
|
+
) -> Union[ControlNetOutput, Tuple]:
|
47
|
+
for i, (image, scale, controlnet) in enumerate(zip(controlnet_cond, conditioning_scale, self.nets)):
|
48
|
+
down_samples, mid_sample = controlnet(
|
49
|
+
sample=sample,
|
50
|
+
timestep=timestep,
|
51
|
+
encoder_hidden_states=encoder_hidden_states,
|
52
|
+
controlnet_cond=image,
|
53
|
+
conditioning_scale=scale,
|
54
|
+
class_labels=class_labels,
|
55
|
+
timestep_cond=timestep_cond,
|
56
|
+
attention_mask=attention_mask,
|
57
|
+
added_cond_kwargs=added_cond_kwargs,
|
58
|
+
cross_attention_kwargs=cross_attention_kwargs,
|
59
|
+
guess_mode=guess_mode,
|
60
|
+
return_dict=return_dict,
|
61
|
+
)
|
62
|
+
|
63
|
+
# merge samples
|
64
|
+
if i == 0:
|
65
|
+
down_block_res_samples, mid_block_res_sample = down_samples, mid_sample
|
66
|
+
else:
|
67
|
+
down_block_res_samples = [
|
68
|
+
samples_prev + samples_curr
|
69
|
+
for samples_prev, samples_curr in zip(down_block_res_samples, down_samples)
|
70
|
+
]
|
71
|
+
mid_block_res_sample += mid_sample
|
72
|
+
|
73
|
+
return down_block_res_samples, mid_block_res_sample
|
74
|
+
|
75
|
+
def save_pretrained(
|
76
|
+
self,
|
77
|
+
save_directory: Union[str, os.PathLike],
|
78
|
+
is_main_process: bool = True,
|
79
|
+
save_function: Callable = None,
|
80
|
+
safe_serialization: bool = True,
|
81
|
+
variant: Optional[str] = None,
|
82
|
+
):
|
83
|
+
"""
|
84
|
+
Save a model and its configuration file to a directory, so that it can be re-loaded using the
|
85
|
+
`[`~models.controlnets.multicontrolnet.MultiControlNetModel.from_pretrained`]` class method.
|
86
|
+
|
87
|
+
Arguments:
|
88
|
+
save_directory (`str` or `os.PathLike`):
|
89
|
+
Directory to which to save. Will be created if it doesn't exist.
|
90
|
+
is_main_process (`bool`, *optional*, defaults to `True`):
|
91
|
+
Whether the process calling this is the main process or not. Useful when in distributed training like
|
92
|
+
TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
|
93
|
+
the main process to avoid race conditions.
|
94
|
+
save_function (`Callable`):
|
95
|
+
The function to use to save the state dictionary. Useful on distributed training like TPUs when one
|
96
|
+
need to replace `torch.save` by another method. Can be configured with the environment variable
|
97
|
+
`DIFFUSERS_SAVE_MODE`.
|
98
|
+
safe_serialization (`bool`, *optional*, defaults to `True`):
|
99
|
+
Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
100
|
+
variant (`str`, *optional*):
|
101
|
+
If specified, weights are saved in the format pytorch_model.<variant>.bin.
|
102
|
+
"""
|
103
|
+
for idx, controlnet in enumerate(self.nets):
|
104
|
+
suffix = "" if idx == 0 else f"_{idx}"
|
105
|
+
controlnet.save_pretrained(
|
106
|
+
save_directory + suffix,
|
107
|
+
is_main_process=is_main_process,
|
108
|
+
save_function=save_function,
|
109
|
+
safe_serialization=safe_serialization,
|
110
|
+
variant=variant,
|
111
|
+
)
|
112
|
+
|
113
|
+
@classmethod
|
114
|
+
def from_pretrained(cls, pretrained_model_path: Optional[Union[str, os.PathLike]], **kwargs):
|
115
|
+
r"""
|
116
|
+
Instantiate a pretrained MultiControlNet model from multiple pre-trained controlnet models.
|
117
|
+
|
118
|
+
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
|
119
|
+
the model, you should first set it back in training mode with `model.train()`.
|
120
|
+
|
121
|
+
The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
|
122
|
+
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
|
123
|
+
task.
|
124
|
+
|
125
|
+
The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
|
126
|
+
weights are discarded.
|
127
|
+
|
128
|
+
Parameters:
|
129
|
+
pretrained_model_path (`os.PathLike`):
|
130
|
+
A path to a *directory* containing model weights saved using
|
131
|
+
[`~models.controlnets.multicontrolnet.MultiControlNetModel.save_pretrained`], e.g.,
|
132
|
+
`./my_model_directory/controlnet`.
|
133
|
+
torch_dtype (`str` or `torch.dtype`, *optional*):
|
134
|
+
Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype
|
135
|
+
will be automatically derived from the model's weights.
|
136
|
+
output_loading_info(`bool`, *optional*, defaults to `False`):
|
137
|
+
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
|
138
|
+
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
|
139
|
+
A map that specifies where each submodule should go. It doesn't need to be refined to each
|
140
|
+
parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
|
141
|
+
same device.
|
142
|
+
|
143
|
+
To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
|
144
|
+
more information about each option see [designing a device
|
145
|
+
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
|
146
|
+
max_memory (`Dict`, *optional*):
|
147
|
+
A dictionary device identifier to maximum memory. Will default to the maximum memory available for each
|
148
|
+
GPU and the available CPU RAM if unset.
|
149
|
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
150
|
+
Speed up model loading by not initializing the weights and only loading the pre-trained weights. This
|
151
|
+
also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the
|
152
|
+
model. This is only supported when torch version >= 1.9.0. If you are using an older version of torch,
|
153
|
+
setting this argument to `True` will raise an error.
|
154
|
+
variant (`str`, *optional*):
|
155
|
+
If specified load weights from `variant` filename, *e.g.* pytorch_model.<variant>.bin. `variant` is
|
156
|
+
ignored when using `from_flax`.
|
157
|
+
use_safetensors (`bool`, *optional*, defaults to `None`):
|
158
|
+
If set to `None`, the `safetensors` weights will be downloaded if they're available **and** if the
|
159
|
+
`safetensors` library is installed. If set to `True`, the model will be forcibly loaded from
|
160
|
+
`safetensors` weights. If set to `False`, loading will *not* use `safetensors`.
|
161
|
+
"""
|
162
|
+
idx = 0
|
163
|
+
controlnets = []
|
164
|
+
|
165
|
+
# load controlnet and append to list until no controlnet directory exists anymore
|
166
|
+
# first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained`
|
167
|
+
# second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ...
|
168
|
+
model_path_to_load = pretrained_model_path
|
169
|
+
while os.path.isdir(model_path_to_load):
|
170
|
+
controlnet = ControlNetModel.from_pretrained(model_path_to_load, **kwargs)
|
171
|
+
controlnets.append(controlnet)
|
172
|
+
|
173
|
+
idx += 1
|
174
|
+
model_path_to_load = pretrained_model_path + f"_{idx}"
|
175
|
+
|
176
|
+
logger.info(f"{len(controlnets)} controlnets loaded from {pretrained_model_path}.")
|
177
|
+
|
178
|
+
if len(controlnets) == 0:
|
179
|
+
raise ValueError(
|
180
|
+
f"No ControlNets found under {os.path.dirname(pretrained_model_path)}. Expected at least {pretrained_model_path + '_0'}."
|
181
|
+
)
|
182
|
+
|
183
|
+
return cls(controlnets)
|
diffusers/models/downsampling.py
CHANGED
@@ -102,7 +102,6 @@ class Downsample2D(nn.Module):
|
|
102
102
|
self.padding = padding
|
103
103
|
stride = 2
|
104
104
|
self.name = name
|
105
|
-
conv_cls = nn.Conv2d
|
106
105
|
|
107
106
|
if norm_type == "ln_norm":
|
108
107
|
self.norm = nn.LayerNorm(channels, eps, elementwise_affine)
|
@@ -114,7 +113,7 @@ class Downsample2D(nn.Module):
|
|
114
113
|
raise ValueError(f"unknown norm_type: {norm_type}")
|
115
114
|
|
116
115
|
if use_conv:
|
117
|
-
conv =
|
116
|
+
conv = nn.Conv2d(
|
118
117
|
self.channels, self.out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias
|
119
118
|
)
|
120
119
|
else:
|
@@ -130,7 +129,7 @@ class Downsample2D(nn.Module):
|
|
130
129
|
else:
|
131
130
|
self.conv = conv
|
132
131
|
|
133
|
-
def forward(self, hidden_states: torch.
|
132
|
+
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
134
133
|
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
135
134
|
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
136
135
|
deprecate("scale", "1.0.0", deprecation_message)
|
@@ -181,24 +180,24 @@ class FirDownsample2D(nn.Module):
|
|
181
180
|
|
182
181
|
def _downsample_2d(
|
183
182
|
self,
|
184
|
-
hidden_states: torch.
|
185
|
-
weight: Optional[torch.
|
186
|
-
kernel: Optional[torch.
|
183
|
+
hidden_states: torch.Tensor,
|
184
|
+
weight: Optional[torch.Tensor] = None,
|
185
|
+
kernel: Optional[torch.Tensor] = None,
|
187
186
|
factor: int = 2,
|
188
187
|
gain: float = 1,
|
189
|
-
) -> torch.
|
188
|
+
) -> torch.Tensor:
|
190
189
|
"""Fused `Conv2d()` followed by `downsample_2d()`.
|
191
190
|
Padding is performed only once at the beginning, not between the operations. The fused op is considerably more
|
192
191
|
efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of
|
193
192
|
arbitrary order.
|
194
193
|
|
195
194
|
Args:
|
196
|
-
hidden_states (`torch.
|
195
|
+
hidden_states (`torch.Tensor`):
|
197
196
|
Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
|
198
|
-
weight (`torch.
|
197
|
+
weight (`torch.Tensor`, *optional*):
|
199
198
|
Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be
|
200
199
|
performed by `inChannels = x.shape[0] // numGroups`.
|
201
|
-
kernel (`torch.
|
200
|
+
kernel (`torch.Tensor`, *optional*):
|
202
201
|
FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which
|
203
202
|
corresponds to average pooling.
|
204
203
|
factor (`int`, *optional*, default to `2`):
|
@@ -207,7 +206,7 @@ class FirDownsample2D(nn.Module):
|
|
207
206
|
Scaling factor for signal magnitude.
|
208
207
|
|
209
208
|
Returns:
|
210
|
-
output (`torch.
|
209
|
+
output (`torch.Tensor`):
|
211
210
|
Tensor of the shape `[N, C, H // factor, W // factor]` or `[N, H // factor, W // factor, C]`, and same
|
212
211
|
datatype as `x`.
|
213
212
|
"""
|
@@ -245,7 +244,7 @@ class FirDownsample2D(nn.Module):
|
|
245
244
|
|
246
245
|
return output
|
247
246
|
|
248
|
-
def forward(self, hidden_states: torch.
|
247
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
249
248
|
if self.use_conv:
|
250
249
|
downsample_input = self._downsample_2d(hidden_states, weight=self.Conv2d_0.weight, kernel=self.fir_kernel)
|
251
250
|
hidden_states = downsample_input + self.Conv2d_0.bias.reshape(1, -1, 1, 1)
|
@@ -286,12 +285,80 @@ class KDownsample2D(nn.Module):
|
|
286
285
|
return F.conv2d(inputs, weight, stride=2)
|
287
286
|
|
288
287
|
|
288
|
+
class CogVideoXDownsample3D(nn.Module):
|
289
|
+
# Todo: Wait for paper relase.
|
290
|
+
r"""
|
291
|
+
A 3D Downsampling layer using in [CogVideoX]() by Tsinghua University & ZhipuAI
|
292
|
+
|
293
|
+
Args:
|
294
|
+
in_channels (`int`):
|
295
|
+
Number of channels in the input image.
|
296
|
+
out_channels (`int`):
|
297
|
+
Number of channels produced by the convolution.
|
298
|
+
kernel_size (`int`, defaults to `3`):
|
299
|
+
Size of the convolving kernel.
|
300
|
+
stride (`int`, defaults to `2`):
|
301
|
+
Stride of the convolution.
|
302
|
+
padding (`int`, defaults to `0`):
|
303
|
+
Padding added to all four sides of the input.
|
304
|
+
compress_time (`bool`, defaults to `False`):
|
305
|
+
Whether or not to compress the time dimension.
|
306
|
+
"""
|
307
|
+
|
308
|
+
def __init__(
|
309
|
+
self,
|
310
|
+
in_channels: int,
|
311
|
+
out_channels: int,
|
312
|
+
kernel_size: int = 3,
|
313
|
+
stride: int = 2,
|
314
|
+
padding: int = 0,
|
315
|
+
compress_time: bool = False,
|
316
|
+
):
|
317
|
+
super().__init__()
|
318
|
+
|
319
|
+
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding)
|
320
|
+
self.compress_time = compress_time
|
321
|
+
|
322
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
323
|
+
if self.compress_time:
|
324
|
+
batch_size, channels, frames, height, width = x.shape
|
325
|
+
|
326
|
+
# (batch_size, channels, frames, height, width) -> (batch_size, height, width, channels, frames) -> (batch_size * height * width, channels, frames)
|
327
|
+
x = x.permute(0, 3, 4, 1, 2).reshape(batch_size * height * width, channels, frames)
|
328
|
+
|
329
|
+
if x.shape[-1] % 2 == 1:
|
330
|
+
x_first, x_rest = x[..., 0], x[..., 1:]
|
331
|
+
if x_rest.shape[-1] > 0:
|
332
|
+
# (batch_size * height * width, channels, frames - 1) -> (batch_size * height * width, channels, (frames - 1) // 2)
|
333
|
+
x_rest = F.avg_pool1d(x_rest, kernel_size=2, stride=2)
|
334
|
+
|
335
|
+
x = torch.cat([x_first[..., None], x_rest], dim=-1)
|
336
|
+
# (batch_size * height * width, channels, (frames // 2) + 1) -> (batch_size, height, width, channels, (frames // 2) + 1) -> (batch_size, channels, (frames // 2) + 1, height, width)
|
337
|
+
x = x.reshape(batch_size, height, width, channels, x.shape[-1]).permute(0, 3, 4, 1, 2)
|
338
|
+
else:
|
339
|
+
# (batch_size * height * width, channels, frames) -> (batch_size * height * width, channels, frames // 2)
|
340
|
+
x = F.avg_pool1d(x, kernel_size=2, stride=2)
|
341
|
+
# (batch_size * height * width, channels, frames // 2) -> (batch_size, height, width, channels, frames // 2) -> (batch_size, channels, frames // 2, height, width)
|
342
|
+
x = x.reshape(batch_size, height, width, channels, x.shape[-1]).permute(0, 3, 4, 1, 2)
|
343
|
+
|
344
|
+
# Pad the tensor
|
345
|
+
pad = (0, 1, 0, 1)
|
346
|
+
x = F.pad(x, pad, mode="constant", value=0)
|
347
|
+
batch_size, channels, frames, height, width = x.shape
|
348
|
+
# (batch_size, channels, frames, height, width) -> (batch_size, frames, channels, height, width) -> (batch_size * frames, channels, height, width)
|
349
|
+
x = x.permute(0, 2, 1, 3, 4).reshape(batch_size * frames, channels, height, width)
|
350
|
+
x = self.conv(x)
|
351
|
+
# (batch_size * frames, channels, height, width) -> (batch_size, frames, channels, height, width) -> (batch_size, channels, frames, height, width)
|
352
|
+
x = x.reshape(batch_size, frames, x.shape[1], x.shape[2], x.shape[3]).permute(0, 2, 1, 3, 4)
|
353
|
+
return x
|
354
|
+
|
355
|
+
|
289
356
|
def downsample_2d(
|
290
|
-
hidden_states: torch.
|
291
|
-
kernel: Optional[torch.
|
357
|
+
hidden_states: torch.Tensor,
|
358
|
+
kernel: Optional[torch.Tensor] = None,
|
292
359
|
factor: int = 2,
|
293
360
|
gain: float = 1,
|
294
|
-
) -> torch.
|
361
|
+
) -> torch.Tensor:
|
295
362
|
r"""Downsample2D a batch of 2D images with the given filter.
|
296
363
|
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the
|
297
364
|
given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the
|
@@ -299,9 +366,9 @@ def downsample_2d(
|
|
299
366
|
shape is a multiple of the downsampling factor.
|
300
367
|
|
301
368
|
Args:
|
302
|
-
hidden_states (`torch.
|
369
|
+
hidden_states (`torch.Tensor`)
|
303
370
|
Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
|
304
|
-
kernel (`torch.
|
371
|
+
kernel (`torch.Tensor`, *optional*):
|
305
372
|
FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which
|
306
373
|
corresponds to average pooling.
|
307
374
|
factor (`int`, *optional*, default to `2`):
|
@@ -310,7 +377,7 @@ def downsample_2d(
|
|
310
377
|
Scaling factor for signal magnitude.
|
311
378
|
|
312
379
|
Returns:
|
313
|
-
output (`torch.
|
380
|
+
output (`torch.Tensor`):
|
314
381
|
Tensor of the shape `[N, C, H // factor, W // factor]`
|
315
382
|
"""
|
316
383
|
|