diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +50 -53
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.0.dist-info/RECORD +0 -399
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -22,14 +22,16 @@ import torch
|
|
22
22
|
import torch.nn.functional as F
|
23
23
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
24
24
|
|
25
|
+
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
|
25
26
|
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
26
|
-
from ...loaders import FromSingleFileMixin, IPAdapterMixin,
|
27
|
-
from ...models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel
|
27
|
+
from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
28
|
+
from ...models import AutoencoderKL, ControlNetModel, ImageProjection, MultiControlNetModel, UNet2DConditionModel
|
28
29
|
from ...models.lora import adjust_lora_scale_text_encoder
|
29
30
|
from ...schedulers import KarrasDiffusionSchedulers
|
30
31
|
from ...utils import (
|
31
32
|
USE_PEFT_BACKEND,
|
32
33
|
deprecate,
|
34
|
+
is_torch_xla_available,
|
33
35
|
logging,
|
34
36
|
replace_example_docstring,
|
35
37
|
scale_lora_layers,
|
@@ -39,9 +41,15 @@ from ...utils.torch_utils import is_compiled_module, is_torch_version, randn_ten
|
|
39
41
|
from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
40
42
|
from ..stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
|
41
43
|
from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
42
|
-
from .multicontrolnet import MultiControlNetModel
|
43
44
|
|
44
45
|
|
46
|
+
if is_torch_xla_available():
|
47
|
+
import torch_xla.core.xla_model as xm
|
48
|
+
|
49
|
+
XLA_AVAILABLE = True
|
50
|
+
else:
|
51
|
+
XLA_AVAILABLE = False
|
52
|
+
|
45
53
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
46
54
|
|
47
55
|
|
@@ -97,9 +105,10 @@ def retrieve_timesteps(
|
|
97
105
|
num_inference_steps: Optional[int] = None,
|
98
106
|
device: Optional[Union[str, torch.device]] = None,
|
99
107
|
timesteps: Optional[List[int]] = None,
|
108
|
+
sigmas: Optional[List[float]] = None,
|
100
109
|
**kwargs,
|
101
110
|
):
|
102
|
-
"""
|
111
|
+
r"""
|
103
112
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
104
113
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
105
114
|
|
@@ -107,19 +116,23 @@ def retrieve_timesteps(
|
|
107
116
|
scheduler (`SchedulerMixin`):
|
108
117
|
The scheduler to get timesteps from.
|
109
118
|
num_inference_steps (`int`):
|
110
|
-
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
111
|
-
|
119
|
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
120
|
+
must be `None`.
|
112
121
|
device (`str` or `torch.device`, *optional*):
|
113
122
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
114
123
|
timesteps (`List[int]`, *optional*):
|
115
|
-
|
116
|
-
|
117
|
-
|
124
|
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
125
|
+
`num_inference_steps` and `sigmas` must be `None`.
|
126
|
+
sigmas (`List[float]`, *optional*):
|
127
|
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
128
|
+
`num_inference_steps` and `timesteps` must be `None`.
|
118
129
|
|
119
130
|
Returns:
|
120
131
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
121
132
|
second element is the number of inference steps.
|
122
133
|
"""
|
134
|
+
if timesteps is not None and sigmas is not None:
|
135
|
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
123
136
|
if timesteps is not None:
|
124
137
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
125
138
|
if not accepts_timesteps:
|
@@ -130,6 +143,16 @@ def retrieve_timesteps(
|
|
130
143
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
131
144
|
timesteps = scheduler.timesteps
|
132
145
|
num_inference_steps = len(timesteps)
|
146
|
+
elif sigmas is not None:
|
147
|
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
148
|
+
if not accept_sigmas:
|
149
|
+
raise ValueError(
|
150
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
151
|
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
152
|
+
)
|
153
|
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
154
|
+
timesteps = scheduler.timesteps
|
155
|
+
num_inference_steps = len(timesteps)
|
133
156
|
else:
|
134
157
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
135
158
|
timesteps = scheduler.timesteps
|
@@ -140,7 +163,7 @@ class StableDiffusionControlNetPipeline(
|
|
140
163
|
DiffusionPipeline,
|
141
164
|
StableDiffusionMixin,
|
142
165
|
TextualInversionLoaderMixin,
|
143
|
-
|
166
|
+
StableDiffusionLoraLoaderMixin,
|
144
167
|
IPAdapterMixin,
|
145
168
|
FromSingleFileMixin,
|
146
169
|
):
|
@@ -152,8 +175,8 @@ class StableDiffusionControlNetPipeline(
|
|
152
175
|
|
153
176
|
The pipeline also inherits the following loading methods:
|
154
177
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
155
|
-
- [`~loaders.
|
156
|
-
- [`~loaders.
|
178
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
179
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
157
180
|
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
158
181
|
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
159
182
|
|
@@ -246,8 +269,8 @@ class StableDiffusionControlNetPipeline(
|
|
246
269
|
num_images_per_prompt,
|
247
270
|
do_classifier_free_guidance,
|
248
271
|
negative_prompt=None,
|
249
|
-
prompt_embeds: Optional[torch.
|
250
|
-
negative_prompt_embeds: Optional[torch.
|
272
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
273
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
251
274
|
lora_scale: Optional[float] = None,
|
252
275
|
**kwargs,
|
253
276
|
):
|
@@ -279,8 +302,8 @@ class StableDiffusionControlNetPipeline(
|
|
279
302
|
num_images_per_prompt,
|
280
303
|
do_classifier_free_guidance,
|
281
304
|
negative_prompt=None,
|
282
|
-
prompt_embeds: Optional[torch.
|
283
|
-
negative_prompt_embeds: Optional[torch.
|
305
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
306
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
284
307
|
lora_scale: Optional[float] = None,
|
285
308
|
clip_skip: Optional[int] = None,
|
286
309
|
):
|
@@ -300,10 +323,10 @@ class StableDiffusionControlNetPipeline(
|
|
300
323
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
301
324
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
302
325
|
less than `1`).
|
303
|
-
prompt_embeds (`torch.
|
326
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
304
327
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
305
328
|
provided, text embeddings will be generated from `prompt` input argument.
|
306
|
-
negative_prompt_embeds (`torch.
|
329
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
307
330
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
308
331
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
309
332
|
argument.
|
@@ -315,7 +338,7 @@ class StableDiffusionControlNetPipeline(
|
|
315
338
|
"""
|
316
339
|
# set lora scale so that monkey patched LoRA
|
317
340
|
# function of text encoder can correctly access it
|
318
|
-
if lora_scale is not None and isinstance(self,
|
341
|
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
319
342
|
self._lora_scale = lora_scale
|
320
343
|
|
321
344
|
# dynamically adjust the LoRA scale
|
@@ -447,9 +470,10 @@ class StableDiffusionControlNetPipeline(
|
|
447
470
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
448
471
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
449
472
|
|
450
|
-
if
|
451
|
-
|
452
|
-
|
473
|
+
if self.text_encoder is not None:
|
474
|
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
475
|
+
# Retrieve the original scale by scaling back the LoRA layers
|
476
|
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
453
477
|
|
454
478
|
return prompt_embeds, negative_prompt_embeds
|
455
479
|
|
@@ -482,6 +506,9 @@ class StableDiffusionControlNetPipeline(
|
|
482
506
|
def prepare_ip_adapter_image_embeds(
|
483
507
|
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
484
508
|
):
|
509
|
+
image_embeds = []
|
510
|
+
if do_classifier_free_guidance:
|
511
|
+
negative_image_embeds = []
|
485
512
|
if ip_adapter_image_embeds is None:
|
486
513
|
if not isinstance(ip_adapter_image, list):
|
487
514
|
ip_adapter_image = [ip_adapter_image]
|
@@ -491,7 +518,6 @@ class StableDiffusionControlNetPipeline(
|
|
491
518
|
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
492
519
|
)
|
493
520
|
|
494
|
-
image_embeds = []
|
495
521
|
for single_ip_adapter_image, image_proj_layer in zip(
|
496
522
|
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
497
523
|
):
|
@@ -499,36 +525,28 @@ class StableDiffusionControlNetPipeline(
|
|
499
525
|
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
500
526
|
single_ip_adapter_image, device, 1, output_hidden_state
|
501
527
|
)
|
502
|
-
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
503
|
-
single_negative_image_embeds = torch.stack(
|
504
|
-
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
505
|
-
)
|
506
528
|
|
529
|
+
image_embeds.append(single_image_embeds[None, :])
|
507
530
|
if do_classifier_free_guidance:
|
508
|
-
|
509
|
-
single_image_embeds = single_image_embeds.to(device)
|
510
|
-
|
511
|
-
image_embeds.append(single_image_embeds)
|
531
|
+
negative_image_embeds.append(single_negative_image_embeds[None, :])
|
512
532
|
else:
|
513
|
-
repeat_dims = [1]
|
514
|
-
image_embeds = []
|
515
533
|
for single_image_embeds in ip_adapter_image_embeds:
|
516
534
|
if do_classifier_free_guidance:
|
517
535
|
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
518
|
-
|
519
|
-
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
520
|
-
)
|
521
|
-
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
522
|
-
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
523
|
-
)
|
524
|
-
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
525
|
-
else:
|
526
|
-
single_image_embeds = single_image_embeds.repeat(
|
527
|
-
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
528
|
-
)
|
536
|
+
negative_image_embeds.append(single_negative_image_embeds)
|
529
537
|
image_embeds.append(single_image_embeds)
|
530
538
|
|
531
|
-
|
539
|
+
ip_adapter_image_embeds = []
|
540
|
+
for i, single_image_embeds in enumerate(image_embeds):
|
541
|
+
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
542
|
+
if do_classifier_free_guidance:
|
543
|
+
single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
|
544
|
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
|
545
|
+
|
546
|
+
single_image_embeds = single_image_embeds.to(device=device)
|
547
|
+
ip_adapter_image_embeds.append(single_image_embeds)
|
548
|
+
|
549
|
+
return ip_adapter_image_embeds
|
532
550
|
|
533
551
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
534
552
|
def run_safety_checker(self, image, device, dtype):
|
@@ -661,9 +679,9 @@ class StableDiffusionControlNetPipeline(
|
|
661
679
|
raise ValueError(
|
662
680
|
f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
|
663
681
|
)
|
664
|
-
|
665
|
-
|
666
|
-
|
682
|
+
else:
|
683
|
+
for image_ in image:
|
684
|
+
self.check_image(image_, prompt, prompt_embeds)
|
667
685
|
else:
|
668
686
|
assert False
|
669
687
|
|
@@ -807,7 +825,12 @@ class StableDiffusionControlNetPipeline(
|
|
807
825
|
|
808
826
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
809
827
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
810
|
-
shape = (
|
828
|
+
shape = (
|
829
|
+
batch_size,
|
830
|
+
num_channels_latents,
|
831
|
+
int(height) // self.vae_scale_factor,
|
832
|
+
int(width) // self.vae_scale_factor,
|
833
|
+
)
|
811
834
|
if isinstance(generator, list) and len(generator) != batch_size:
|
812
835
|
raise ValueError(
|
813
836
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
@@ -824,20 +847,22 @@ class StableDiffusionControlNetPipeline(
|
|
824
847
|
return latents
|
825
848
|
|
826
849
|
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
827
|
-
def get_guidance_scale_embedding(
|
850
|
+
def get_guidance_scale_embedding(
|
851
|
+
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
852
|
+
) -> torch.Tensor:
|
828
853
|
"""
|
829
854
|
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
830
855
|
|
831
856
|
Args:
|
832
|
-
|
833
|
-
|
857
|
+
w (`torch.Tensor`):
|
858
|
+
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
834
859
|
embedding_dim (`int`, *optional*, defaults to 512):
|
835
|
-
|
836
|
-
dtype:
|
837
|
-
|
860
|
+
Dimension of the embeddings to generate.
|
861
|
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
862
|
+
Data type of the generated embeddings.
|
838
863
|
|
839
864
|
Returns:
|
840
|
-
`torch.
|
865
|
+
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
841
866
|
"""
|
842
867
|
assert len(w.shape) == 1
|
843
868
|
w = w * 1000.0
|
@@ -875,6 +900,10 @@ class StableDiffusionControlNetPipeline(
|
|
875
900
|
def num_timesteps(self):
|
876
901
|
return self._num_timesteps
|
877
902
|
|
903
|
+
@property
|
904
|
+
def interrupt(self):
|
905
|
+
return self._interrupt
|
906
|
+
|
878
907
|
@torch.no_grad()
|
879
908
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
880
909
|
def __call__(
|
@@ -885,16 +914,17 @@ class StableDiffusionControlNetPipeline(
|
|
885
914
|
width: Optional[int] = None,
|
886
915
|
num_inference_steps: int = 50,
|
887
916
|
timesteps: List[int] = None,
|
917
|
+
sigmas: List[float] = None,
|
888
918
|
guidance_scale: float = 7.5,
|
889
919
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
890
920
|
num_images_per_prompt: Optional[int] = 1,
|
891
921
|
eta: float = 0.0,
|
892
922
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
893
|
-
latents: Optional[torch.
|
894
|
-
prompt_embeds: Optional[torch.
|
895
|
-
negative_prompt_embeds: Optional[torch.
|
923
|
+
latents: Optional[torch.Tensor] = None,
|
924
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
925
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
896
926
|
ip_adapter_image: Optional[PipelineImageInput] = None,
|
897
|
-
ip_adapter_image_embeds: Optional[List[torch.
|
927
|
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
898
928
|
output_type: Optional[str] = "pil",
|
899
929
|
return_dict: bool = True,
|
900
930
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
@@ -903,7 +933,9 @@ class StableDiffusionControlNetPipeline(
|
|
903
933
|
control_guidance_start: Union[float, List[float]] = 0.0,
|
904
934
|
control_guidance_end: Union[float, List[float]] = 1.0,
|
905
935
|
clip_skip: Optional[int] = None,
|
906
|
-
callback_on_step_end: Optional[
|
936
|
+
callback_on_step_end: Optional[
|
937
|
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
938
|
+
] = None,
|
907
939
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
908
940
|
**kwargs,
|
909
941
|
):
|
@@ -913,16 +945,16 @@ class StableDiffusionControlNetPipeline(
|
|
913
945
|
Args:
|
914
946
|
prompt (`str` or `List[str]`, *optional*):
|
915
947
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
916
|
-
image (`torch.
|
917
|
-
`List[List[torch.
|
948
|
+
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
949
|
+
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
918
950
|
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
|
919
|
-
specified as `torch.
|
920
|
-
|
921
|
-
|
922
|
-
|
923
|
-
|
924
|
-
each will be paired with each prompt in the `prompt` list. This also applies to multiple
|
925
|
-
where a list of image lists can be passed to batch for each prompt and each ControlNet.
|
951
|
+
specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
|
952
|
+
as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
|
953
|
+
width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
|
954
|
+
images must be passed as a list such that each element of the list can be correctly batched for input
|
955
|
+
to a single ControlNet. When `prompt` is a list, and if a list of images is passed for a single
|
956
|
+
ControlNet, each will be paired with each prompt in the `prompt` list. This also applies to multiple
|
957
|
+
ControlNets, where a list of image lists can be passed to batch for each prompt and each ControlNet.
|
926
958
|
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
927
959
|
The height in pixels of the generated image.
|
928
960
|
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
@@ -934,6 +966,10 @@ class StableDiffusionControlNetPipeline(
|
|
934
966
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
935
967
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
936
968
|
passed will be used. Must be in descending order.
|
969
|
+
sigmas (`List[float]`, *optional*):
|
970
|
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
971
|
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
972
|
+
will be used.
|
937
973
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
938
974
|
A higher guidance scale value encourages the model to generate images closely linked to the text
|
939
975
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
@@ -948,22 +984,22 @@ class StableDiffusionControlNetPipeline(
|
|
948
984
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
949
985
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
950
986
|
generation deterministic.
|
951
|
-
latents (`torch.
|
987
|
+
latents (`torch.Tensor`, *optional*):
|
952
988
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
953
989
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
954
990
|
tensor is generated by sampling using the supplied random `generator`.
|
955
|
-
prompt_embeds (`torch.
|
991
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
956
992
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
957
993
|
provided, text embeddings are generated from the `prompt` input argument.
|
958
|
-
negative_prompt_embeds (`torch.
|
994
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
959
995
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
960
996
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
961
997
|
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
962
|
-
ip_adapter_image_embeds (`List[torch.
|
963
|
-
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
964
|
-
Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
965
|
-
if `do_classifier_free_guidance` is set to `True`.
|
966
|
-
|
998
|
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
999
|
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
1000
|
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
1001
|
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
1002
|
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
967
1003
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
968
1004
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
969
1005
|
return_dict (`bool`, *optional*, defaults to `True`):
|
@@ -971,7 +1007,7 @@ class StableDiffusionControlNetPipeline(
|
|
971
1007
|
plain tuple.
|
972
1008
|
callback (`Callable`, *optional*):
|
973
1009
|
A function that calls every `callback_steps` steps during inference. The function is called with the
|
974
|
-
following arguments: `callback(step: int, timestep: int, latents: torch.
|
1010
|
+
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
975
1011
|
callback_steps (`int`, *optional*, defaults to 1):
|
976
1012
|
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
977
1013
|
every step.
|
@@ -992,15 +1028,15 @@ class StableDiffusionControlNetPipeline(
|
|
992
1028
|
clip_skip (`int`, *optional*):
|
993
1029
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
994
1030
|
the output of the pre-final layer will be used for computing the prompt embeddings.
|
995
|
-
callback_on_step_end (`Callable`, *optional*):
|
996
|
-
A function
|
997
|
-
with the following arguments: `callback_on_step_end(self:
|
998
|
-
callback_kwargs: Dict)`. `callback_kwargs` will include a
|
999
|
-
`callback_on_step_end_tensor_inputs`.
|
1031
|
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
1032
|
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
1033
|
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
1034
|
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
1035
|
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
1000
1036
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1001
1037
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1002
1038
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1003
|
-
`._callback_tensor_inputs` attribute of your
|
1039
|
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
1004
1040
|
|
1005
1041
|
Examples:
|
1006
1042
|
|
@@ -1028,6 +1064,9 @@ class StableDiffusionControlNetPipeline(
|
|
1028
1064
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
1029
1065
|
)
|
1030
1066
|
|
1067
|
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
1068
|
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
1069
|
+
|
1031
1070
|
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
1032
1071
|
|
1033
1072
|
# align format for control guidance
|
@@ -1061,6 +1100,7 @@ class StableDiffusionControlNetPipeline(
|
|
1061
1100
|
self._guidance_scale = guidance_scale
|
1062
1101
|
self._clip_skip = clip_skip
|
1063
1102
|
self._cross_attention_kwargs = cross_attention_kwargs
|
1103
|
+
self._interrupt = False
|
1064
1104
|
|
1065
1105
|
# 2. Define call parameters
|
1066
1106
|
if prompt is not None and isinstance(prompt, str):
|
@@ -1155,7 +1195,9 @@ class StableDiffusionControlNetPipeline(
|
|
1155
1195
|
assert False
|
1156
1196
|
|
1157
1197
|
# 5. Prepare timesteps
|
1158
|
-
timesteps, num_inference_steps = retrieve_timesteps(
|
1198
|
+
timesteps, num_inference_steps = retrieve_timesteps(
|
1199
|
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
1200
|
+
)
|
1159
1201
|
self._num_timesteps = len(timesteps)
|
1160
1202
|
|
1161
1203
|
# 6. Prepare latent variables
|
@@ -1205,6 +1247,9 @@ class StableDiffusionControlNetPipeline(
|
|
1205
1247
|
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
|
1206
1248
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1207
1249
|
for i, t in enumerate(timesteps):
|
1250
|
+
if self.interrupt:
|
1251
|
+
continue
|
1252
|
+
|
1208
1253
|
# Relevant thread:
|
1209
1254
|
# https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
|
1210
1255
|
if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
|
@@ -1242,7 +1287,7 @@ class StableDiffusionControlNetPipeline(
|
|
1242
1287
|
)
|
1243
1288
|
|
1244
1289
|
if guess_mode and self.do_classifier_free_guidance:
|
1245
|
-
#
|
1290
|
+
# Inferred ControlNet only for the conditional batch.
|
1246
1291
|
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
1247
1292
|
# add 0 to the unconditional batch to keep it unchanged.
|
1248
1293
|
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
@@ -1286,6 +1331,8 @@ class StableDiffusionControlNetPipeline(
|
|
1286
1331
|
step_idx = i // getattr(self.scheduler, "order", 1)
|
1287
1332
|
callback(step_idx, t, latents)
|
1288
1333
|
|
1334
|
+
if XLA_AVAILABLE:
|
1335
|
+
xm.mark_step()
|
1289
1336
|
# If we do sequential model offloading, let's offload unet and controlnet
|
1290
1337
|
# manually for max memory savings
|
1291
1338
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
@@ -240,7 +240,7 @@ class BlipDiffusionControlNetPipeline(DiffusionPipeline):
|
|
240
240
|
condtioning_image: PIL.Image.Image,
|
241
241
|
source_subject_category: List[str],
|
242
242
|
target_subject_category: List[str],
|
243
|
-
latents: Optional[torch.
|
243
|
+
latents: Optional[torch.Tensor] = None,
|
244
244
|
guidance_scale: float = 7.5,
|
245
245
|
height: int = 512,
|
246
246
|
width: int = 512,
|
@@ -266,7 +266,7 @@ class BlipDiffusionControlNetPipeline(DiffusionPipeline):
|
|
266
266
|
The source subject category.
|
267
267
|
target_subject_category (`List[str]`):
|
268
268
|
The target subject category.
|
269
|
-
latents (`torch.
|
269
|
+
latents (`torch.Tensor`, *optional*):
|
270
270
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
271
271
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
272
272
|
tensor will ge generated by random sampling.
|