diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1136 @@
1
+ # Copyright 2024 Stability AI, Kwai-Kolors Team and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import inspect
15
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
16
+
17
+ import torch
18
+ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
19
+
20
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
21
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
22
+ from ...loaders import IPAdapterMixin, StableDiffusionXLLoraLoaderMixin
23
+ from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
24
+ from ...models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor
25
+ from ...schedulers import KarrasDiffusionSchedulers
26
+ from ...utils import is_torch_xla_available, logging, replace_example_docstring
27
+ from ...utils.torch_utils import randn_tensor
28
+ from ..kolors.pipeline_output import KolorsPipelineOutput
29
+ from ..kolors.text_encoder import ChatGLMModel
30
+ from ..kolors.tokenizer import ChatGLMTokenizer
31
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
32
+ from .pag_utils import PAGMixin
33
+
34
+
35
+ if is_torch_xla_available():
36
+ import torch_xla.core.xla_model as xm
37
+
38
+ XLA_AVAILABLE = True
39
+ else:
40
+ XLA_AVAILABLE = False
41
+
42
+
43
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
44
+
45
+
46
+ EXAMPLE_DOC_STRING = """
47
+ Examples:
48
+ ```py
49
+ >>> import torch
50
+ >>> from diffusers import AutoPipelineForText2Image
51
+
52
+ >>> pipe = AutoPipelineForText2Image.from_pretrained(
53
+ ... "Kwai-Kolors/Kolors-diffusers",
54
+ ... variant="fp16",
55
+ ... torch_dtype=torch.float16,
56
+ ... enable_pag=True,
57
+ ... pag_applied_layers=["down.block_2.attentions_1", "up.block_0.attentions_1"],
58
+ ... )
59
+ >>> pipe = pipe.to("cuda")
60
+
61
+ >>> prompt = (
62
+ ... "A photo of a ladybug, macro, zoom, high quality, film, holding a wooden sign with the text 'KOLORS'"
63
+ ... )
64
+ >>> image = pipe(prompt, guidance_scale=5.5, pag_scale=1.5).images[0]
65
+ ```
66
+ """
67
+
68
+
69
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
70
+ def retrieve_timesteps(
71
+ scheduler,
72
+ num_inference_steps: Optional[int] = None,
73
+ device: Optional[Union[str, torch.device]] = None,
74
+ timesteps: Optional[List[int]] = None,
75
+ sigmas: Optional[List[float]] = None,
76
+ **kwargs,
77
+ ):
78
+ r"""
79
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
80
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
81
+
82
+ Args:
83
+ scheduler (`SchedulerMixin`):
84
+ The scheduler to get timesteps from.
85
+ num_inference_steps (`int`):
86
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
87
+ must be `None`.
88
+ device (`str` or `torch.device`, *optional*):
89
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
90
+ timesteps (`List[int]`, *optional*):
91
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
92
+ `num_inference_steps` and `sigmas` must be `None`.
93
+ sigmas (`List[float]`, *optional*):
94
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
95
+ `num_inference_steps` and `timesteps` must be `None`.
96
+
97
+ Returns:
98
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
99
+ second element is the number of inference steps.
100
+ """
101
+ if timesteps is not None and sigmas is not None:
102
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
103
+ if timesteps is not None:
104
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
105
+ if not accepts_timesteps:
106
+ raise ValueError(
107
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
108
+ f" timestep schedules. Please check whether you are using the correct scheduler."
109
+ )
110
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
111
+ timesteps = scheduler.timesteps
112
+ num_inference_steps = len(timesteps)
113
+ elif sigmas is not None:
114
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
115
+ if not accept_sigmas:
116
+ raise ValueError(
117
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
118
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
119
+ )
120
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
121
+ timesteps = scheduler.timesteps
122
+ num_inference_steps = len(timesteps)
123
+ else:
124
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
125
+ timesteps = scheduler.timesteps
126
+ return timesteps, num_inference_steps
127
+
128
+
129
+ class KolorsPAGPipeline(
130
+ DiffusionPipeline, StableDiffusionMixin, StableDiffusionXLLoraLoaderMixin, IPAdapterMixin, PAGMixin
131
+ ):
132
+ r"""
133
+ Pipeline for text-to-image generation using Kolors.
134
+
135
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
136
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
137
+
138
+ The pipeline also inherits the following loading methods:
139
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
140
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
141
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
142
+
143
+ Args:
144
+ vae ([`AutoencoderKL`]):
145
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
146
+ text_encoder ([`ChatGLMModel`]):
147
+ Frozen text-encoder. Kolors uses [ChatGLM3-6B](https://huggingface.co/THUDM/chatglm3-6b).
148
+ tokenizer (`ChatGLMTokenizer`):
149
+ Tokenizer of class
150
+ [ChatGLMTokenizer](https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py).
151
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
152
+ scheduler ([`SchedulerMixin`]):
153
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
154
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
155
+ force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"False"`):
156
+ Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
157
+ `Kwai-Kolors/Kolors-diffusers`.
158
+ pag_applied_layers (`str` or `List[str]``, *optional*, defaults to `"mid"`):
159
+ Set the transformer attention layers where to apply the perturbed attention guidance. Can be a string or a
160
+ list of strings with "down", "mid", "up", a whole transformer block or specific transformer block attention
161
+ layers, e.g.:
162
+ ["mid"] ["down", "mid"] ["down", "mid", "up.block_1"] ["down", "mid", "up.block_1.attentions_0",
163
+ "up.block_1.attentions_1"]
164
+ """
165
+
166
+ model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
167
+ _optional_components = [
168
+ "image_encoder",
169
+ "feature_extractor",
170
+ ]
171
+ _callback_tensor_inputs = [
172
+ "latents",
173
+ "prompt_embeds",
174
+ "negative_prompt_embeds",
175
+ "add_text_embeds",
176
+ "add_time_ids",
177
+ "negative_pooled_prompt_embeds",
178
+ "negative_add_time_ids",
179
+ ]
180
+
181
+ def __init__(
182
+ self,
183
+ vae: AutoencoderKL,
184
+ text_encoder: ChatGLMModel,
185
+ tokenizer: ChatGLMTokenizer,
186
+ unet: UNet2DConditionModel,
187
+ scheduler: KarrasDiffusionSchedulers,
188
+ image_encoder: CLIPVisionModelWithProjection = None,
189
+ feature_extractor: CLIPImageProcessor = None,
190
+ force_zeros_for_empty_prompt: bool = False,
191
+ pag_applied_layers: Union[str, List[str]] = "mid",
192
+ ):
193
+ super().__init__()
194
+
195
+ self.register_modules(
196
+ vae=vae,
197
+ text_encoder=text_encoder,
198
+ tokenizer=tokenizer,
199
+ unet=unet,
200
+ scheduler=scheduler,
201
+ image_encoder=image_encoder,
202
+ feature_extractor=feature_extractor,
203
+ )
204
+ self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
205
+ self.vae_scale_factor = (
206
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
207
+ )
208
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
209
+
210
+ self.default_sample_size = self.unet.config.sample_size
211
+
212
+ self.set_pag_applied_layers(pag_applied_layers)
213
+
214
+ # Copied from diffusers.pipelines.kolors.pipeline_kolors.KolorsPipeline.encode_prompt
215
+ def encode_prompt(
216
+ self,
217
+ prompt,
218
+ device: Optional[torch.device] = None,
219
+ num_images_per_prompt: int = 1,
220
+ do_classifier_free_guidance: bool = True,
221
+ negative_prompt=None,
222
+ prompt_embeds: Optional[torch.FloatTensor] = None,
223
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
224
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
225
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
226
+ max_sequence_length: int = 256,
227
+ ):
228
+ r"""
229
+ Encodes the prompt into text encoder hidden states.
230
+
231
+ Args:
232
+ prompt (`str` or `List[str]`, *optional*):
233
+ prompt to be encoded
234
+ device: (`torch.device`):
235
+ torch device
236
+ num_images_per_prompt (`int`):
237
+ number of images that should be generated per prompt
238
+ do_classifier_free_guidance (`bool`):
239
+ whether to use classifier free guidance or not
240
+ negative_prompt (`str` or `List[str]`, *optional*):
241
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
242
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
243
+ less than `1`).
244
+ prompt_embeds (`torch.FloatTensor`, *optional*):
245
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
246
+ provided, text embeddings will be generated from `prompt` input argument.
247
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
248
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
249
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
250
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
251
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
252
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
253
+ argument.
254
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
255
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
256
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
257
+ input argument.
258
+ max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
259
+ """
260
+ # from IPython import embed; embed(); exit()
261
+ device = device or self._execution_device
262
+
263
+ if prompt is not None and isinstance(prompt, str):
264
+ batch_size = 1
265
+ elif prompt is not None and isinstance(prompt, list):
266
+ batch_size = len(prompt)
267
+ else:
268
+ batch_size = prompt_embeds.shape[0]
269
+
270
+ # Define tokenizers and text encoders
271
+ tokenizers = [self.tokenizer]
272
+ text_encoders = [self.text_encoder]
273
+
274
+ if prompt_embeds is None:
275
+ prompt_embeds_list = []
276
+ for tokenizer, text_encoder in zip(tokenizers, text_encoders):
277
+ text_inputs = tokenizer(
278
+ prompt,
279
+ padding="max_length",
280
+ max_length=max_sequence_length,
281
+ truncation=True,
282
+ return_tensors="pt",
283
+ ).to(device)
284
+ output = text_encoder(
285
+ input_ids=text_inputs["input_ids"],
286
+ attention_mask=text_inputs["attention_mask"],
287
+ position_ids=text_inputs["position_ids"],
288
+ output_hidden_states=True,
289
+ )
290
+
291
+ # [max_sequence_length, batch, hidden_size] -> [batch, max_sequence_length, hidden_size]
292
+ # clone to have a contiguous tensor
293
+ prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
294
+ # [max_sequence_length, batch, hidden_size] -> [batch, hidden_size]
295
+ pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone()
296
+ bs_embed, seq_len, _ = prompt_embeds.shape
297
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
298
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
299
+
300
+ prompt_embeds_list.append(prompt_embeds)
301
+
302
+ prompt_embeds = prompt_embeds_list[0]
303
+
304
+ # get unconditional embeddings for classifier free guidance
305
+ zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
306
+
307
+ if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
308
+ negative_prompt_embeds = torch.zeros_like(prompt_embeds)
309
+ elif do_classifier_free_guidance and negative_prompt_embeds is None:
310
+ uncond_tokens: List[str]
311
+ if negative_prompt is None:
312
+ uncond_tokens = [""] * batch_size
313
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
314
+ raise TypeError(
315
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
316
+ f" {type(prompt)}."
317
+ )
318
+ elif isinstance(negative_prompt, str):
319
+ uncond_tokens = [negative_prompt]
320
+ elif batch_size != len(negative_prompt):
321
+ raise ValueError(
322
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
323
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
324
+ " the batch size of `prompt`."
325
+ )
326
+ else:
327
+ uncond_tokens = negative_prompt
328
+
329
+ negative_prompt_embeds_list = []
330
+
331
+ for tokenizer, text_encoder in zip(tokenizers, text_encoders):
332
+ uncond_input = tokenizer(
333
+ uncond_tokens,
334
+ padding="max_length",
335
+ max_length=max_sequence_length,
336
+ truncation=True,
337
+ return_tensors="pt",
338
+ ).to(device)
339
+ output = text_encoder(
340
+ input_ids=uncond_input["input_ids"],
341
+ attention_mask=uncond_input["attention_mask"],
342
+ position_ids=uncond_input["position_ids"],
343
+ output_hidden_states=True,
344
+ )
345
+
346
+ # [max_sequence_length, batch, hidden_size] -> [batch, max_sequence_length, hidden_size]
347
+ # clone to have a contiguous tensor
348
+ negative_prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
349
+ # [max_sequence_length, batch, hidden_size] -> [batch, hidden_size]
350
+ negative_pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone()
351
+
352
+ if do_classifier_free_guidance:
353
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
354
+ seq_len = negative_prompt_embeds.shape[1]
355
+
356
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device)
357
+
358
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
359
+ negative_prompt_embeds = negative_prompt_embeds.view(
360
+ batch_size * num_images_per_prompt, seq_len, -1
361
+ )
362
+
363
+ negative_prompt_embeds_list.append(negative_prompt_embeds)
364
+
365
+ negative_prompt_embeds = negative_prompt_embeds_list[0]
366
+
367
+ bs_embed = pooled_prompt_embeds.shape[0]
368
+ pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
369
+ bs_embed * num_images_per_prompt, -1
370
+ )
371
+
372
+ if do_classifier_free_guidance:
373
+ negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
374
+ bs_embed * num_images_per_prompt, -1
375
+ )
376
+
377
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
378
+
379
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
380
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
381
+ dtype = next(self.image_encoder.parameters()).dtype
382
+
383
+ if not isinstance(image, torch.Tensor):
384
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
385
+
386
+ image = image.to(device=device, dtype=dtype)
387
+ if output_hidden_states:
388
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
389
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
390
+ uncond_image_enc_hidden_states = self.image_encoder(
391
+ torch.zeros_like(image), output_hidden_states=True
392
+ ).hidden_states[-2]
393
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
394
+ num_images_per_prompt, dim=0
395
+ )
396
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
397
+ else:
398
+ image_embeds = self.image_encoder(image).image_embeds
399
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
400
+ uncond_image_embeds = torch.zeros_like(image_embeds)
401
+
402
+ return image_embeds, uncond_image_embeds
403
+
404
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
405
+ def prepare_ip_adapter_image_embeds(
406
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
407
+ ):
408
+ image_embeds = []
409
+ if do_classifier_free_guidance:
410
+ negative_image_embeds = []
411
+ if ip_adapter_image_embeds is None:
412
+ if not isinstance(ip_adapter_image, list):
413
+ ip_adapter_image = [ip_adapter_image]
414
+
415
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
416
+ raise ValueError(
417
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
418
+ )
419
+
420
+ for single_ip_adapter_image, image_proj_layer in zip(
421
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
422
+ ):
423
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
424
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
425
+ single_ip_adapter_image, device, 1, output_hidden_state
426
+ )
427
+
428
+ image_embeds.append(single_image_embeds[None, :])
429
+ if do_classifier_free_guidance:
430
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
431
+ else:
432
+ for single_image_embeds in ip_adapter_image_embeds:
433
+ if do_classifier_free_guidance:
434
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
435
+ negative_image_embeds.append(single_negative_image_embeds)
436
+ image_embeds.append(single_image_embeds)
437
+
438
+ ip_adapter_image_embeds = []
439
+ for i, single_image_embeds in enumerate(image_embeds):
440
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
441
+ if do_classifier_free_guidance:
442
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
443
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
444
+
445
+ single_image_embeds = single_image_embeds.to(device=device)
446
+ ip_adapter_image_embeds.append(single_image_embeds)
447
+
448
+ return ip_adapter_image_embeds
449
+
450
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
451
+ def prepare_extra_step_kwargs(self, generator, eta):
452
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
453
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
454
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
455
+ # and should be between [0, 1]
456
+
457
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
458
+ extra_step_kwargs = {}
459
+ if accepts_eta:
460
+ extra_step_kwargs["eta"] = eta
461
+
462
+ # check if the scheduler accepts generator
463
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
464
+ if accepts_generator:
465
+ extra_step_kwargs["generator"] = generator
466
+ return extra_step_kwargs
467
+
468
+ # Copied from diffusers.pipelines.kolors.pipeline_kolors.KolorsPipeline.check_inputs
469
+ def check_inputs(
470
+ self,
471
+ prompt,
472
+ num_inference_steps,
473
+ height,
474
+ width,
475
+ negative_prompt=None,
476
+ prompt_embeds=None,
477
+ pooled_prompt_embeds=None,
478
+ negative_prompt_embeds=None,
479
+ negative_pooled_prompt_embeds=None,
480
+ ip_adapter_image=None,
481
+ ip_adapter_image_embeds=None,
482
+ callback_on_step_end_tensor_inputs=None,
483
+ max_sequence_length=None,
484
+ ):
485
+ if not isinstance(num_inference_steps, int) or num_inference_steps <= 0:
486
+ raise ValueError(
487
+ f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type"
488
+ f" {type(num_inference_steps)}."
489
+ )
490
+
491
+ if height % 8 != 0 or width % 8 != 0:
492
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
493
+
494
+ if callback_on_step_end_tensor_inputs is not None and not all(
495
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
496
+ ):
497
+ raise ValueError(
498
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
499
+ )
500
+
501
+ if prompt is not None and prompt_embeds is not None:
502
+ raise ValueError(
503
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
504
+ " only forward one of the two."
505
+ )
506
+ elif prompt is None and prompt_embeds is None:
507
+ raise ValueError(
508
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
509
+ )
510
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
511
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
512
+
513
+ if negative_prompt is not None and negative_prompt_embeds is not None:
514
+ raise ValueError(
515
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
516
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
517
+ )
518
+
519
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
520
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
521
+ raise ValueError(
522
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
523
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
524
+ f" {negative_prompt_embeds.shape}."
525
+ )
526
+
527
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
528
+ raise ValueError(
529
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
530
+ )
531
+
532
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
533
+ raise ValueError(
534
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
535
+ )
536
+
537
+ if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
538
+ raise ValueError(
539
+ "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
540
+ )
541
+
542
+ if ip_adapter_image_embeds is not None:
543
+ if not isinstance(ip_adapter_image_embeds, list):
544
+ raise ValueError(
545
+ f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
546
+ )
547
+ elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
548
+ raise ValueError(
549
+ f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
550
+ )
551
+
552
+ if max_sequence_length is not None and max_sequence_length > 256:
553
+ raise ValueError(f"`max_sequence_length` cannot be greater than 256 but is {max_sequence_length}")
554
+
555
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
556
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
557
+ shape = (
558
+ batch_size,
559
+ num_channels_latents,
560
+ int(height) // self.vae_scale_factor,
561
+ int(width) // self.vae_scale_factor,
562
+ )
563
+ if isinstance(generator, list) and len(generator) != batch_size:
564
+ raise ValueError(
565
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
566
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
567
+ )
568
+
569
+ if latents is None:
570
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
571
+ else:
572
+ latents = latents.to(device)
573
+
574
+ # scale the initial noise by the standard deviation required by the scheduler
575
+ latents = latents * self.scheduler.init_noise_sigma
576
+ return latents
577
+
578
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids
579
+ def _get_add_time_ids(
580
+ self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
581
+ ):
582
+ add_time_ids = list(original_size + crops_coords_top_left + target_size)
583
+
584
+ passed_add_embed_dim = (
585
+ self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
586
+ )
587
+ expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
588
+
589
+ if expected_add_embed_dim != passed_add_embed_dim:
590
+ raise ValueError(
591
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
592
+ )
593
+
594
+ add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
595
+ return add_time_ids
596
+
597
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.upcast_vae
598
+ def upcast_vae(self):
599
+ dtype = self.vae.dtype
600
+ self.vae.to(dtype=torch.float32)
601
+ use_torch_2_0_or_xformers = isinstance(
602
+ self.vae.decoder.mid_block.attentions[0].processor,
603
+ (
604
+ AttnProcessor2_0,
605
+ XFormersAttnProcessor,
606
+ FusedAttnProcessor2_0,
607
+ ),
608
+ )
609
+ # if xformers or torch_2_0 is used attention block does not need
610
+ # to be in float32 which can save lots of memory
611
+ if use_torch_2_0_or_xformers:
612
+ self.vae.post_quant_conv.to(dtype)
613
+ self.vae.decoder.conv_in.to(dtype)
614
+ self.vae.decoder.mid_block.to(dtype)
615
+
616
+ # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
617
+ def get_guidance_scale_embedding(
618
+ self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
619
+ ) -> torch.Tensor:
620
+ """
621
+ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
622
+
623
+ Args:
624
+ w (`torch.Tensor`):
625
+ Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
626
+ embedding_dim (`int`, *optional*, defaults to 512):
627
+ Dimension of the embeddings to generate.
628
+ dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
629
+ Data type of the generated embeddings.
630
+
631
+ Returns:
632
+ `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
633
+ """
634
+ assert len(w.shape) == 1
635
+ w = w * 1000.0
636
+
637
+ half_dim = embedding_dim // 2
638
+ emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
639
+ emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
640
+ emb = w.to(dtype)[:, None] * emb[None, :]
641
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
642
+ if embedding_dim % 2 == 1: # zero pad
643
+ emb = torch.nn.functional.pad(emb, (0, 1))
644
+ assert emb.shape == (w.shape[0], embedding_dim)
645
+ return emb
646
+
647
+ @property
648
+ def guidance_scale(self):
649
+ return self._guidance_scale
650
+
651
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
652
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
653
+ # corresponds to doing no classifier free guidance.
654
+ @property
655
+ def do_classifier_free_guidance(self):
656
+ return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
657
+
658
+ @property
659
+ def cross_attention_kwargs(self):
660
+ return self._cross_attention_kwargs
661
+
662
+ @property
663
+ def denoising_end(self):
664
+ return self._denoising_end
665
+
666
+ @property
667
+ def num_timesteps(self):
668
+ return self._num_timesteps
669
+
670
+ @property
671
+ def interrupt(self):
672
+ return self._interrupt
673
+
674
+ @torch.no_grad()
675
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
676
+ def __call__(
677
+ self,
678
+ prompt: Union[str, List[str]] = None,
679
+ height: Optional[int] = None,
680
+ width: Optional[int] = None,
681
+ num_inference_steps: int = 50,
682
+ timesteps: List[int] = None,
683
+ sigmas: List[float] = None,
684
+ denoising_end: Optional[float] = None,
685
+ guidance_scale: float = 5.0,
686
+ negative_prompt: Optional[Union[str, List[str]]] = None,
687
+ num_images_per_prompt: Optional[int] = 1,
688
+ eta: float = 0.0,
689
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
690
+ latents: Optional[torch.Tensor] = None,
691
+ prompt_embeds: Optional[torch.Tensor] = None,
692
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
693
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
694
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
695
+ ip_adapter_image: Optional[PipelineImageInput] = None,
696
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
697
+ output_type: Optional[str] = "pil",
698
+ return_dict: bool = True,
699
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
700
+ original_size: Optional[Tuple[int, int]] = None,
701
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
702
+ target_size: Optional[Tuple[int, int]] = None,
703
+ negative_original_size: Optional[Tuple[int, int]] = None,
704
+ negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
705
+ negative_target_size: Optional[Tuple[int, int]] = None,
706
+ callback_on_step_end: Optional[
707
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
708
+ ] = None,
709
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
710
+ pag_scale: float = 3.0,
711
+ pag_adaptive_scale: float = 0.0,
712
+ max_sequence_length: int = 256,
713
+ ):
714
+ r"""
715
+ Function invoked when calling the pipeline for generation.
716
+
717
+ Args:
718
+ prompt (`str` or `List[str]`, *optional*):
719
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
720
+ instead.
721
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
722
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
723
+ Anything below 512 pixels won't work well for
724
+ [Kwai-Kolors/Kolors-diffusers](https://huggingface.co/Kwai-Kolors/Kolors-diffusers) and checkpoints
725
+ that are not specifically fine-tuned on low resolutions.
726
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
727
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
728
+ Anything below 512 pixels won't work well for
729
+ [Kwai-Kolors/Kolors-diffusers](https://huggingface.co/Kwai-Kolors/Kolors-diffusers) and checkpoints
730
+ that are not specifically fine-tuned on low resolutions.
731
+ num_inference_steps (`int`, *optional*, defaults to 50):
732
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
733
+ expense of slower inference.
734
+ timesteps (`List[int]`, *optional*):
735
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
736
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
737
+ passed will be used. Must be in descending order.
738
+ sigmas (`List[float]`, *optional*):
739
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
740
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
741
+ will be used.
742
+ denoising_end (`float`, *optional*):
743
+ When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
744
+ completed before it is intentionally prematurely terminated. As a result, the returned sample will
745
+ still retain a substantial amount of noise as determined by the discrete timesteps selected by the
746
+ scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
747
+ "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
748
+ Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
749
+ guidance_scale (`float`, *optional*, defaults to 5.0):
750
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
751
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
752
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
753
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
754
+ usually at the expense of lower image quality.
755
+ negative_prompt (`str` or `List[str]`, *optional*):
756
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
757
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
758
+ less than `1`).
759
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
760
+ The number of images to generate per prompt.
761
+ eta (`float`, *optional*, defaults to 0.0):
762
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
763
+ [`schedulers.DDIMScheduler`], will be ignored for others.
764
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
765
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
766
+ to make generation deterministic.
767
+ latents (`torch.Tensor`, *optional*):
768
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
769
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
770
+ tensor will ge generated by sampling using the supplied random `generator`.
771
+ prompt_embeds (`torch.Tensor`, *optional*):
772
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
773
+ provided, text embeddings will be generated from `prompt` input argument.
774
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
775
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
776
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
777
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
778
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
779
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
780
+ argument.
781
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
782
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
783
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
784
+ input argument.
785
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
786
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
787
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
788
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
789
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
790
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
791
+ output_type (`str`, *optional*, defaults to `"pil"`):
792
+ The output format of the generate image. Choose between
793
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
794
+ return_dict (`bool`, *optional*, defaults to `True`):
795
+ Whether or not to return a [`~pipelines.kolors.KolorsPipelineOutput`] instead of a plain tuple.
796
+ cross_attention_kwargs (`dict`, *optional*):
797
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
798
+ `self.processor` in
799
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
800
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
801
+ If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
802
+ `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
803
+ explained in section 2.2 of
804
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
805
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
806
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
807
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
808
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
809
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
810
+ target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
811
+ For most cases, `target_size` should be set to the desired height and width of the generated image. If
812
+ not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
813
+ section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
814
+ negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
815
+ To negatively condition the generation process based on a specific image resolution. Part of SDXL's
816
+ micro-conditioning as explained in section 2.2 of
817
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
818
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
819
+ negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
820
+ To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
821
+ micro-conditioning as explained in section 2.2 of
822
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
823
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
824
+ negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
825
+ To negatively condition the generation process based on a target image resolution. It should be as same
826
+ as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
827
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
828
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
829
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
830
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
831
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
832
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
833
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
834
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
835
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
836
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
837
+ `._callback_tensor_inputs` attribute of your pipeline class.
838
+ pag_scale (`float`, *optional*, defaults to 3.0):
839
+ The scale factor for the perturbed attention guidance. If it is set to 0.0, the perturbed attention
840
+ guidance will not be used.
841
+ pag_adaptive_scale (`float`, *optional*, defaults to 0.0):
842
+ The adaptive scale factor for the perturbed attention guidance. If it is set to 0.0, `pag_scale` is
843
+ used.
844
+ max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
845
+
846
+ Examples:
847
+
848
+ Returns:
849
+ [`~pipelines.kolors.KolorsPipelineOutput`] or `tuple`: [`~pipelines.kolors.KolorsPipelineOutput`] if
850
+ `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the
851
+ generated images.
852
+ """
853
+
854
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
855
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
856
+
857
+ # 0. Default height and width to unet
858
+ height = height or self.default_sample_size * self.vae_scale_factor
859
+ width = width or self.default_sample_size * self.vae_scale_factor
860
+
861
+ original_size = original_size or (height, width)
862
+ target_size = target_size or (height, width)
863
+
864
+ # 1. Check inputs. Raise error if not correct
865
+ self.check_inputs(
866
+ prompt,
867
+ num_inference_steps,
868
+ height,
869
+ width,
870
+ negative_prompt,
871
+ prompt_embeds,
872
+ pooled_prompt_embeds,
873
+ negative_prompt_embeds,
874
+ negative_pooled_prompt_embeds,
875
+ ip_adapter_image,
876
+ ip_adapter_image_embeds,
877
+ callback_on_step_end_tensor_inputs,
878
+ max_sequence_length=max_sequence_length,
879
+ )
880
+
881
+ self._guidance_scale = guidance_scale
882
+ self._cross_attention_kwargs = cross_attention_kwargs
883
+ self._denoising_end = denoising_end
884
+ self._interrupt = False
885
+ self._pag_scale = pag_scale
886
+ self._pag_adaptive_scale = pag_adaptive_scale
887
+
888
+ # 2. Define call parameters
889
+ if prompt is not None and isinstance(prompt, str):
890
+ batch_size = 1
891
+ elif prompt is not None and isinstance(prompt, list):
892
+ batch_size = len(prompt)
893
+ else:
894
+ batch_size = prompt_embeds.shape[0]
895
+
896
+ device = self._execution_device
897
+
898
+ # 3. Encode input prompt
899
+ (
900
+ prompt_embeds,
901
+ negative_prompt_embeds,
902
+ pooled_prompt_embeds,
903
+ negative_pooled_prompt_embeds,
904
+ ) = self.encode_prompt(
905
+ prompt=prompt,
906
+ device=device,
907
+ num_images_per_prompt=num_images_per_prompt,
908
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
909
+ negative_prompt=negative_prompt,
910
+ prompt_embeds=prompt_embeds,
911
+ pooled_prompt_embeds=pooled_prompt_embeds,
912
+ negative_prompt_embeds=negative_prompt_embeds,
913
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
914
+ )
915
+
916
+ # 4. Prepare timesteps
917
+ timesteps, num_inference_steps = retrieve_timesteps(
918
+ self.scheduler, num_inference_steps, device, timesteps, sigmas
919
+ )
920
+
921
+ # 5. Prepare latent variables
922
+ num_channels_latents = self.unet.config.in_channels
923
+ latents = self.prepare_latents(
924
+ batch_size * num_images_per_prompt,
925
+ num_channels_latents,
926
+ height,
927
+ width,
928
+ prompt_embeds.dtype,
929
+ device,
930
+ generator,
931
+ latents,
932
+ )
933
+
934
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
935
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
936
+
937
+ # 7. Prepare added time ids & embeddings
938
+ add_text_embeds = pooled_prompt_embeds
939
+ text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
940
+
941
+ add_time_ids = self._get_add_time_ids(
942
+ original_size,
943
+ crops_coords_top_left,
944
+ target_size,
945
+ dtype=prompt_embeds.dtype,
946
+ text_encoder_projection_dim=text_encoder_projection_dim,
947
+ )
948
+ if negative_original_size is not None and negative_target_size is not None:
949
+ negative_add_time_ids = self._get_add_time_ids(
950
+ negative_original_size,
951
+ negative_crops_coords_top_left,
952
+ negative_target_size,
953
+ dtype=prompt_embeds.dtype,
954
+ text_encoder_projection_dim=text_encoder_projection_dim,
955
+ )
956
+ else:
957
+ negative_add_time_ids = add_time_ids
958
+
959
+ if self.do_perturbed_attention_guidance:
960
+ prompt_embeds = self._prepare_perturbed_attention_guidance(
961
+ prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance
962
+ )
963
+ add_text_embeds = self._prepare_perturbed_attention_guidance(
964
+ add_text_embeds, negative_pooled_prompt_embeds, self.do_classifier_free_guidance
965
+ )
966
+ add_time_ids = self._prepare_perturbed_attention_guidance(
967
+ add_time_ids, negative_add_time_ids, self.do_classifier_free_guidance
968
+ )
969
+ elif self.do_classifier_free_guidance:
970
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
971
+ add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
972
+ add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
973
+
974
+ prompt_embeds = prompt_embeds.to(device)
975
+ add_text_embeds = add_text_embeds.to(device)
976
+ add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
977
+
978
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
979
+ image_embeds = self.prepare_ip_adapter_image_embeds(
980
+ ip_adapter_image,
981
+ ip_adapter_image_embeds,
982
+ device,
983
+ batch_size * num_images_per_prompt,
984
+ self.do_classifier_free_guidance,
985
+ )
986
+
987
+ for i, image_embeds in enumerate(ip_adapter_image_embeds):
988
+ negative_image_embeds = None
989
+ if self.do_classifier_free_guidance:
990
+ negative_image_embeds, image_embeds = image_embeds.chunk(2)
991
+
992
+ if self.do_perturbed_attention_guidance:
993
+ image_embeds = self._prepare_perturbed_attention_guidance(
994
+ image_embeds, negative_image_embeds, self.do_classifier_free_guidance
995
+ )
996
+ elif self.do_classifier_free_guidance:
997
+ image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0)
998
+ image_embeds = image_embeds.to(device)
999
+ ip_adapter_image_embeds[i] = image_embeds
1000
+
1001
+ # 8. Denoising loop
1002
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
1003
+
1004
+ # 8.1 Apply denoising_end
1005
+ if (
1006
+ self.denoising_end is not None
1007
+ and isinstance(self.denoising_end, float)
1008
+ and self.denoising_end > 0
1009
+ and self.denoising_end < 1
1010
+ ):
1011
+ discrete_timestep_cutoff = int(
1012
+ round(
1013
+ self.scheduler.config.num_train_timesteps
1014
+ - (self.denoising_end * self.scheduler.config.num_train_timesteps)
1015
+ )
1016
+ )
1017
+ num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
1018
+ timesteps = timesteps[:num_inference_steps]
1019
+
1020
+ # 9. Optionally get Guidance Scale Embedding
1021
+ timestep_cond = None
1022
+ if self.unet.config.time_cond_proj_dim is not None:
1023
+ guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
1024
+ timestep_cond = self.get_guidance_scale_embedding(
1025
+ guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
1026
+ ).to(device=device, dtype=latents.dtype)
1027
+
1028
+ if self.do_perturbed_attention_guidance:
1029
+ original_attn_proc = self.unet.attn_processors
1030
+ self._set_pag_attn_processor(
1031
+ pag_applied_layers=self.pag_applied_layers,
1032
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1033
+ )
1034
+
1035
+ self._num_timesteps = len(timesteps)
1036
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1037
+ for i, t in enumerate(timesteps):
1038
+ if self.interrupt:
1039
+ continue
1040
+
1041
+ # expand the latents if we are doing classifier free guidance
1042
+ latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0]))
1043
+
1044
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1045
+
1046
+ # predict the noise residual
1047
+ added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
1048
+
1049
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1050
+ added_cond_kwargs["image_embeds"] = image_embeds
1051
+
1052
+ noise_pred = self.unet(
1053
+ latent_model_input,
1054
+ t,
1055
+ encoder_hidden_states=prompt_embeds,
1056
+ timestep_cond=timestep_cond,
1057
+ cross_attention_kwargs=self.cross_attention_kwargs,
1058
+ added_cond_kwargs=added_cond_kwargs,
1059
+ return_dict=False,
1060
+ )[0]
1061
+
1062
+ # perform guidance
1063
+ if self.do_perturbed_attention_guidance:
1064
+ noise_pred = self._apply_perturbed_attention_guidance(
1065
+ noise_pred, self.do_classifier_free_guidance, self.guidance_scale, t
1066
+ )
1067
+ elif self.do_classifier_free_guidance:
1068
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1069
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
1070
+
1071
+ # compute the previous noisy sample x_t -> x_t-1
1072
+ latents_dtype = latents.dtype
1073
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1074
+ if latents.dtype != latents_dtype:
1075
+ if torch.backends.mps.is_available():
1076
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1077
+ latents = latents.to(latents_dtype)
1078
+
1079
+ if callback_on_step_end is not None:
1080
+ callback_kwargs = {}
1081
+ for k in callback_on_step_end_tensor_inputs:
1082
+ callback_kwargs[k] = locals()[k]
1083
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1084
+
1085
+ latents = callback_outputs.pop("latents", latents)
1086
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1087
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1088
+ add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
1089
+ negative_pooled_prompt_embeds = callback_outputs.pop(
1090
+ "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
1091
+ )
1092
+ add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
1093
+ negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids)
1094
+
1095
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1096
+ progress_bar.update()
1097
+
1098
+ if XLA_AVAILABLE:
1099
+ xm.mark_step()
1100
+
1101
+ if not output_type == "latent":
1102
+ # make sure the VAE is in float32 mode, as it overflows in float16
1103
+ needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
1104
+
1105
+ if needs_upcasting:
1106
+ self.upcast_vae()
1107
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
1108
+ elif latents.dtype != self.vae.dtype:
1109
+ if torch.backends.mps.is_available():
1110
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1111
+ self.vae = self.vae.to(latents.dtype)
1112
+
1113
+ # unscale/denormalize the latents
1114
+ latents = latents / self.vae.config.scaling_factor
1115
+
1116
+ image = self.vae.decode(latents, return_dict=False)[0]
1117
+
1118
+ # cast back to fp16 if needed
1119
+ if needs_upcasting:
1120
+ self.vae.to(dtype=torch.float16)
1121
+ else:
1122
+ image = latents
1123
+
1124
+ if not output_type == "latent":
1125
+ image = self.image_processor.postprocess(image, output_type=output_type)
1126
+
1127
+ # Offload all models
1128
+ self.maybe_free_model_hooks()
1129
+
1130
+ if self.do_perturbed_attention_guidance:
1131
+ self.unet.set_attn_processor(original_attn_proc)
1132
+
1133
+ if not return_dict:
1134
+ return (image,)
1135
+
1136
+ return KolorsPipelineOutput(images=image)