diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -21,10 +21,14 @@ import numpy as np
21
21
  import torch
22
22
 
23
23
  from ..configuration_utils import ConfigMixin, register_to_config
24
- from ..utils import deprecate, logging
24
+ from ..utils import deprecate, is_scipy_available, logging
25
+ from ..utils.torch_utils import randn_tensor
25
26
  from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
26
27
 
27
28
 
29
+ if is_scipy_available():
30
+ import scipy.stats
31
+
28
32
  logger = logging.get_logger(__name__) # pylint: disable=invalid-name
29
33
 
30
34
 
@@ -63,7 +67,7 @@ def betas_for_alpha_bar(
63
67
  return math.exp(t * -12.0)
64
68
 
65
69
  else:
66
- raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
70
+ raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
67
71
 
68
72
  betas = []
69
73
  for i in range(num_diffusion_timesteps):
@@ -108,11 +112,11 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
108
112
  The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
109
113
  `algorithm_type="dpmsolver++"`.
110
114
  algorithm_type (`str`, defaults to `dpmsolver++`):
111
- Algorithm type for the solver; can be `dpmsolver` or `dpmsolver++`. The
112
- `dpmsolver` type implements the algorithms in the [DPMSolver](https://huggingface.co/papers/2206.00927)
113
- paper, and the `dpmsolver++` type implements the algorithms in the
114
- [DPMSolver++](https://huggingface.co/papers/2211.01095) paper. It is recommended to use `dpmsolver++` or
115
- `sde-dpmsolver++` with `solver_order=2` for guided sampling like in Stable Diffusion.
115
+ Algorithm type for the solver; can be `dpmsolver` or `dpmsolver++` or `sde-dpmsolver++`. The `dpmsolver`
116
+ type implements the algorithms in the [DPMSolver](https://huggingface.co/papers/2206.00927) paper, and the
117
+ `dpmsolver++` type implements the algorithms in the [DPMSolver++](https://huggingface.co/papers/2211.01095)
118
+ paper. It is recommended to use `dpmsolver++` or `sde-dpmsolver++` with `solver_order=2` for guided
119
+ sampling like in Stable Diffusion.
116
120
  solver_type (`str`, defaults to `midpoint`):
117
121
  Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
118
122
  sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
@@ -122,9 +126,14 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
122
126
  use_karras_sigmas (`bool`, *optional*, defaults to `False`):
123
127
  Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
124
128
  the sigmas are determined according to a sequence of noise levels {σi}.
129
+ use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
130
+ Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
131
+ use_beta_sigmas (`bool`, *optional*, defaults to `False`):
132
+ Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
133
+ Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
125
134
  final_sigmas_type (`str`, *optional*, defaults to `"zero"`):
126
- The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final sigma
127
- is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
135
+ The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
136
+ sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
128
137
  lambda_min_clipped (`float`, defaults to `-inf`):
129
138
  Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
130
139
  cosine (`squaredcos_cap_v2`) noise schedule.
@@ -153,10 +162,20 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
153
162
  solver_type: str = "midpoint",
154
163
  lower_order_final: bool = False,
155
164
  use_karras_sigmas: Optional[bool] = False,
165
+ use_exponential_sigmas: Optional[bool] = False,
166
+ use_beta_sigmas: Optional[bool] = False,
167
+ use_flow_sigmas: Optional[bool] = False,
168
+ flow_shift: Optional[float] = 1.0,
156
169
  final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min"
157
170
  lambda_min_clipped: float = -float("inf"),
158
171
  variance_type: Optional[str] = None,
159
172
  ):
173
+ if self.config.use_beta_sigmas and not is_scipy_available():
174
+ raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
175
+ if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
176
+ raise ValueError(
177
+ "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
178
+ )
160
179
  if algorithm_type == "dpmsolver":
161
180
  deprecation_message = "algorithm_type `dpmsolver` is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
162
181
  deprecate("algorithm_types=dpmsolver", "1.0.0", deprecation_message)
@@ -172,7 +191,7 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
172
191
  # Glide cosine schedule
173
192
  self.betas = betas_for_alpha_bar(num_train_timesteps)
174
193
  else:
175
- raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
194
+ raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
176
195
 
177
196
  self.alphas = 1.0 - self.betas
178
197
  self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
@@ -186,18 +205,18 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
186
205
  self.init_noise_sigma = 1.0
187
206
 
188
207
  # settings for DPM-Solver
189
- if algorithm_type not in ["dpmsolver", "dpmsolver++"]:
208
+ if algorithm_type not in ["dpmsolver", "dpmsolver++", "sde-dpmsolver++"]:
190
209
  if algorithm_type == "deis":
191
210
  self.register_to_config(algorithm_type="dpmsolver++")
192
211
  else:
193
- raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}")
212
+ raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
194
213
  if solver_type not in ["midpoint", "heun"]:
195
214
  if solver_type in ["logrho", "bh1", "bh2"]:
196
215
  self.register_to_config(solver_type="midpoint")
197
216
  else:
198
- raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}")
217
+ raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
199
218
 
200
- if algorithm_type != "dpmsolver++" and final_sigmas_type == "zero":
219
+ if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++"] and final_sigmas_type == "zero":
201
220
  raise ValueError(
202
221
  f"`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please chooose `sigma_min` instead."
203
222
  )
@@ -247,12 +266,16 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
247
266
  orders = [1, 2] * (steps // 2)
248
267
  elif order == 1:
249
268
  orders = [1] * steps
269
+
270
+ if self.config.final_sigmas_type == "zero":
271
+ orders[-1] = 1
272
+
250
273
  return orders
251
274
 
252
275
  @property
253
276
  def step_index(self):
254
277
  """
255
- The index counter for current timestep. It will increae 1 after each scheduler step.
278
+ The index counter for current timestep. It will increase 1 after each scheduler step.
256
279
  """
257
280
  return self._step_index
258
281
 
@@ -274,7 +297,12 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
274
297
  """
275
298
  self._begin_index = begin_index
276
299
 
277
- def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
300
+ def set_timesteps(
301
+ self,
302
+ num_inference_steps: int = None,
303
+ device: Union[str, torch.device] = None,
304
+ timesteps: Optional[List[int]] = None,
305
+ ):
278
306
  """
279
307
  Sets the discrete timesteps used for the diffusion chain (to be run before inference).
280
308
 
@@ -283,24 +311,58 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
283
311
  The number of diffusion steps used when generating samples with a pre-trained model.
284
312
  device (`str` or `torch.device`, *optional*):
285
313
  The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
314
+ timesteps (`List[int]`, *optional*):
315
+ Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
316
+ timestep spacing strategy of equal spacing between timesteps schedule is used. If `timesteps` is
317
+ passed, `num_inference_steps` must be `None`.
286
318
  """
319
+ if num_inference_steps is None and timesteps is None:
320
+ raise ValueError("Must pass exactly one of `num_inference_steps` or `timesteps`.")
321
+ if num_inference_steps is not None and timesteps is not None:
322
+ raise ValueError("Must pass exactly one of `num_inference_steps` or `timesteps`.")
323
+ if timesteps is not None and self.config.use_karras_sigmas:
324
+ raise ValueError("Cannot use `timesteps` when `config.use_karras_sigmas=True`.")
325
+ if timesteps is not None and self.config.use_exponential_sigmas:
326
+ raise ValueError("Cannot set `timesteps` with `config.use_exponential_sigmas = True`.")
327
+ if timesteps is not None and self.config.use_beta_sigmas:
328
+ raise ValueError("Cannot set `timesteps` with `config.use_beta_sigmas = True`.")
329
+
330
+ num_inference_steps = num_inference_steps or len(timesteps)
287
331
  self.num_inference_steps = num_inference_steps
288
- # Clipping the minimum of all lambda(t) for numerical stability.
289
- # This is critical for cosine (squaredcos_cap_v2) noise schedule.
290
- clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped)
291
- timesteps = (
292
- np.linspace(0, self.config.num_train_timesteps - 1 - clipped_idx, num_inference_steps + 1)
293
- .round()[::-1][:-1]
294
- .copy()
295
- .astype(np.int64)
296
- )
332
+
333
+ if timesteps is not None:
334
+ timesteps = np.array(timesteps).astype(np.int64)
335
+ else:
336
+ # Clipping the minimum of all lambda(t) for numerical stability.
337
+ # This is critical for cosine (squaredcos_cap_v2) noise schedule.
338
+ clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped)
339
+ clipped_idx = clipped_idx.item()
340
+ timesteps = (
341
+ np.linspace(0, self.config.num_train_timesteps - 1 - clipped_idx, num_inference_steps + 1)
342
+ .round()[::-1][:-1]
343
+ .copy()
344
+ .astype(np.int64)
345
+ )
297
346
 
298
347
  sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
348
+ log_sigmas = np.log(sigmas)
299
349
  if self.config.use_karras_sigmas:
300
- log_sigmas = np.log(sigmas)
301
350
  sigmas = np.flip(sigmas).copy()
302
351
  sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
303
352
  timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
353
+ elif self.config.use_exponential_sigmas:
354
+ sigmas = np.flip(sigmas).copy()
355
+ sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
356
+ timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
357
+ elif self.config.use_beta_sigmas:
358
+ sigmas = np.flip(sigmas).copy()
359
+ sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
360
+ timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
361
+ elif self.config.use_flow_sigmas:
362
+ alphas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1)
363
+ sigmas = 1.0 - alphas
364
+ sigmas = np.flip(self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas))[:-1].copy()
365
+ timesteps = (sigmas * self.config.num_train_timesteps).copy()
304
366
  else:
305
367
  sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
306
368
 
@@ -340,7 +402,7 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
340
402
  self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
341
403
 
342
404
  # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
343
- def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
405
+ def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
344
406
  """
345
407
  "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
346
408
  prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
@@ -399,13 +461,17 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
399
461
 
400
462
  # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
401
463
  def _sigma_to_alpha_sigma_t(self, sigma):
402
- alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
403
- sigma_t = sigma * alpha_t
464
+ if self.config.use_flow_sigmas:
465
+ alpha_t = 1 - sigma
466
+ sigma_t = sigma
467
+ else:
468
+ alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
469
+ sigma_t = sigma * alpha_t
404
470
 
405
471
  return alpha_t, sigma_t
406
472
 
407
473
  # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
408
- def _convert_to_karras(self, in_sigmas: torch.FloatTensor, num_inference_steps) -> torch.FloatTensor:
474
+ def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
409
475
  """Constructs the noise schedule of Karras et al. (2022)."""
410
476
 
411
477
  # Hack to make sure that other schedulers which copy this function don't break
@@ -430,13 +496,67 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
430
496
  sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
431
497
  return sigmas
432
498
 
499
+ # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
500
+ def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
501
+ """Constructs an exponential noise schedule."""
502
+
503
+ # Hack to make sure that other schedulers which copy this function don't break
504
+ # TODO: Add this logic to the other schedulers
505
+ if hasattr(self.config, "sigma_min"):
506
+ sigma_min = self.config.sigma_min
507
+ else:
508
+ sigma_min = None
509
+
510
+ if hasattr(self.config, "sigma_max"):
511
+ sigma_max = self.config.sigma_max
512
+ else:
513
+ sigma_max = None
514
+
515
+ sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
516
+ sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
517
+
518
+ sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
519
+ return sigmas
520
+
521
+ # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
522
+ def _convert_to_beta(
523
+ self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
524
+ ) -> torch.Tensor:
525
+ """From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""
526
+
527
+ # Hack to make sure that other schedulers which copy this function don't break
528
+ # TODO: Add this logic to the other schedulers
529
+ if hasattr(self.config, "sigma_min"):
530
+ sigma_min = self.config.sigma_min
531
+ else:
532
+ sigma_min = None
533
+
534
+ if hasattr(self.config, "sigma_max"):
535
+ sigma_max = self.config.sigma_max
536
+ else:
537
+ sigma_max = None
538
+
539
+ sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
540
+ sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
541
+
542
+ sigmas = np.array(
543
+ [
544
+ sigma_min + (ppf * (sigma_max - sigma_min))
545
+ for ppf in [
546
+ scipy.stats.beta.ppf(timestep, alpha, beta)
547
+ for timestep in 1 - np.linspace(0, 1, num_inference_steps)
548
+ ]
549
+ ]
550
+ )
551
+ return sigmas
552
+
433
553
  def convert_model_output(
434
554
  self,
435
- model_output: torch.FloatTensor,
555
+ model_output: torch.Tensor,
436
556
  *args,
437
- sample: torch.FloatTensor = None,
557
+ sample: torch.Tensor = None,
438
558
  **kwargs,
439
- ) -> torch.FloatTensor:
559
+ ) -> torch.Tensor:
440
560
  """
441
561
  Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
442
562
  designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
@@ -450,13 +570,13 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
450
570
  </Tip>
451
571
 
452
572
  Args:
453
- model_output (`torch.FloatTensor`):
573
+ model_output (`torch.Tensor`):
454
574
  The direct output from the learned diffusion model.
455
- sample (`torch.FloatTensor`):
575
+ sample (`torch.Tensor`):
456
576
  A current instance of a sample created by the diffusion process.
457
577
 
458
578
  Returns:
459
- `torch.FloatTensor`:
579
+ `torch.Tensor`:
460
580
  The converted model output.
461
581
  """
462
582
  timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
@@ -472,10 +592,10 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
472
592
  "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
473
593
  )
474
594
  # DPM-Solver++ needs to solve an integral of the data prediction model.
475
- if self.config.algorithm_type == "dpmsolver++":
595
+ if self.config.algorithm_type in ["dpmsolver++", "sde-dpmsolver++"]:
476
596
  if self.config.prediction_type == "epsilon":
477
597
  # DPM-Solver and DPM-Solver++ only need the "mean" output.
478
- if self.config.variance_type in ["learned_range"]:
598
+ if self.config.variance_type in ["learned", "learned_range"]:
479
599
  model_output = model_output[:, :3]
480
600
  sigma = self.sigmas[self.step_index]
481
601
  alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
@@ -486,61 +606,73 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
486
606
  sigma = self.sigmas[self.step_index]
487
607
  alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
488
608
  x0_pred = alpha_t * sample - sigma_t * model_output
609
+ elif self.config.prediction_type == "flow_prediction":
610
+ sigma_t = self.sigmas[self.step_index]
611
+ x0_pred = sample - sigma_t * model_output
489
612
  else:
490
613
  raise ValueError(
491
- f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
492
- " `v_prediction` for the DPMSolverSinglestepScheduler."
614
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
615
+ "`v_prediction`, or `flow_prediction` for the DPMSolverSinglestepScheduler."
493
616
  )
494
617
 
495
618
  if self.config.thresholding:
496
619
  x0_pred = self._threshold_sample(x0_pred)
497
620
 
498
621
  return x0_pred
622
+
499
623
  # DPM-Solver needs to solve an integral of the noise prediction model.
500
624
  elif self.config.algorithm_type == "dpmsolver":
501
625
  if self.config.prediction_type == "epsilon":
502
626
  # DPM-Solver and DPM-Solver++ only need the "mean" output.
503
- if self.config.variance_type in ["learned_range"]:
504
- model_output = model_output[:, :3]
505
- return model_output
627
+ if self.config.variance_type in ["learned", "learned_range"]:
628
+ epsilon = model_output[:, :3]
629
+ else:
630
+ epsilon = model_output
506
631
  elif self.config.prediction_type == "sample":
507
632
  sigma = self.sigmas[self.step_index]
508
633
  alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
509
634
  epsilon = (sample - alpha_t * model_output) / sigma_t
510
- return epsilon
511
635
  elif self.config.prediction_type == "v_prediction":
512
636
  sigma = self.sigmas[self.step_index]
513
637
  alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
514
638
  epsilon = alpha_t * model_output + sigma_t * sample
515
- return epsilon
516
639
  else:
517
640
  raise ValueError(
518
641
  f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
519
642
  " `v_prediction` for the DPMSolverSinglestepScheduler."
520
643
  )
521
644
 
645
+ if self.config.thresholding:
646
+ alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
647
+ x0_pred = (sample - sigma_t * epsilon) / alpha_t
648
+ x0_pred = self._threshold_sample(x0_pred)
649
+ epsilon = (sample - alpha_t * x0_pred) / sigma_t
650
+
651
+ return epsilon
652
+
522
653
  def dpm_solver_first_order_update(
523
654
  self,
524
- model_output: torch.FloatTensor,
655
+ model_output: torch.Tensor,
525
656
  *args,
526
- sample: torch.FloatTensor = None,
657
+ sample: torch.Tensor = None,
658
+ noise: Optional[torch.Tensor] = None,
527
659
  **kwargs,
528
- ) -> torch.FloatTensor:
660
+ ) -> torch.Tensor:
529
661
  """
530
662
  One step for the first-order DPMSolver (equivalent to DDIM).
531
663
 
532
664
  Args:
533
- model_output (`torch.FloatTensor`):
665
+ model_output (`torch.Tensor`):
534
666
  The direct output from the learned diffusion model.
535
667
  timestep (`int`):
536
668
  The current discrete timestep in the diffusion chain.
537
669
  prev_timestep (`int`):
538
670
  The previous discrete timestep in the diffusion chain.
539
- sample (`torch.FloatTensor`):
671
+ sample (`torch.Tensor`):
540
672
  A current instance of a sample created by the diffusion process.
541
673
 
542
674
  Returns:
543
- `torch.FloatTensor`:
675
+ `torch.Tensor`:
544
676
  The sample tensor at the previous timestep.
545
677
  """
546
678
  timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
@@ -573,31 +705,39 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
573
705
  x_t = (sigma_t / sigma_s) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * model_output
574
706
  elif self.config.algorithm_type == "dpmsolver":
575
707
  x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output
708
+ elif self.config.algorithm_type == "sde-dpmsolver++":
709
+ assert noise is not None
710
+ x_t = (
711
+ (sigma_t / sigma_s * torch.exp(-h)) * sample
712
+ + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output
713
+ + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
714
+ )
576
715
  return x_t
577
716
 
578
717
  def singlestep_dpm_solver_second_order_update(
579
718
  self,
580
- model_output_list: List[torch.FloatTensor],
719
+ model_output_list: List[torch.Tensor],
581
720
  *args,
582
- sample: torch.FloatTensor = None,
721
+ sample: torch.Tensor = None,
722
+ noise: Optional[torch.Tensor] = None,
583
723
  **kwargs,
584
- ) -> torch.FloatTensor:
724
+ ) -> torch.Tensor:
585
725
  """
586
726
  One step for the second-order singlestep DPMSolver that computes the solution at time `prev_timestep` from the
587
727
  time `timestep_list[-2]`.
588
728
 
589
729
  Args:
590
- model_output_list (`List[torch.FloatTensor]`):
730
+ model_output_list (`List[torch.Tensor]`):
591
731
  The direct outputs from learned diffusion model at current and latter timesteps.
592
732
  timestep (`int`):
593
733
  The current and latter discrete timestep in the diffusion chain.
594
734
  prev_timestep (`int`):
595
735
  The previous discrete timestep in the diffusion chain.
596
- sample (`torch.FloatTensor`):
736
+ sample (`torch.Tensor`):
597
737
  A current instance of a sample created by the diffusion process.
598
738
 
599
739
  Returns:
600
- `torch.FloatTensor`:
740
+ `torch.Tensor`:
601
741
  The sample tensor at the previous timestep.
602
742
  """
603
743
  timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
@@ -667,31 +807,48 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
667
807
  - (sigma_t * (torch.exp(h) - 1.0)) * D0
668
808
  - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
669
809
  )
810
+ elif self.config.algorithm_type == "sde-dpmsolver++":
811
+ assert noise is not None
812
+ if self.config.solver_type == "midpoint":
813
+ x_t = (
814
+ (sigma_t / sigma_s1 * torch.exp(-h)) * sample
815
+ + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
816
+ + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
817
+ + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
818
+ )
819
+ elif self.config.solver_type == "heun":
820
+ x_t = (
821
+ (sigma_t / sigma_s1 * torch.exp(-h)) * sample
822
+ + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
823
+ + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
824
+ + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
825
+ )
670
826
  return x_t
671
827
 
672
828
  def singlestep_dpm_solver_third_order_update(
673
829
  self,
674
- model_output_list: List[torch.FloatTensor],
830
+ model_output_list: List[torch.Tensor],
675
831
  *args,
676
- sample: torch.FloatTensor = None,
832
+ sample: torch.Tensor = None,
833
+ noise: Optional[torch.Tensor] = None,
677
834
  **kwargs,
678
- ) -> torch.FloatTensor:
835
+ ) -> torch.Tensor:
679
836
  """
680
837
  One step for the third-order singlestep DPMSolver that computes the solution at time `prev_timestep` from the
681
838
  time `timestep_list[-3]`.
682
839
 
683
840
  Args:
684
- model_output_list (`List[torch.FloatTensor]`):
841
+ model_output_list (`List[torch.Tensor]`):
685
842
  The direct outputs from learned diffusion model at current and latter timesteps.
686
843
  timestep (`int`):
687
844
  The current and latter discrete timestep in the diffusion chain.
688
845
  prev_timestep (`int`):
689
846
  The previous discrete timestep in the diffusion chain.
690
- sample (`torch.FloatTensor`):
847
+ sample (`torch.Tensor`):
691
848
  A current instance of a sample created by diffusion process.
692
849
 
693
850
  Returns:
694
- `torch.FloatTensor`:
851
+ `torch.Tensor`:
695
852
  The sample tensor at the previous timestep.
696
853
  """
697
854
 
@@ -771,33 +928,51 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
771
928
  - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
772
929
  - (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2
773
930
  )
931
+ elif self.config.algorithm_type == "sde-dpmsolver++":
932
+ assert noise is not None
933
+ if self.config.solver_type == "midpoint":
934
+ x_t = (
935
+ (sigma_t / sigma_s2 * torch.exp(-h)) * sample
936
+ + (alpha_t * (1.0 - torch.exp(-2.0 * h))) * D0
937
+ + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1_1
938
+ + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
939
+ )
940
+ elif self.config.solver_type == "heun":
941
+ x_t = (
942
+ (sigma_t / sigma_s2 * torch.exp(-h)) * sample
943
+ + (alpha_t * (1.0 - torch.exp(-2.0 * h))) * D0
944
+ + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
945
+ + (alpha_t * ((1.0 - torch.exp(-2.0 * h) + (-2.0 * h)) / (-2.0 * h) ** 2 - 0.5)) * D2
946
+ + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
947
+ )
774
948
  return x_t
775
949
 
776
950
  def singlestep_dpm_solver_update(
777
951
  self,
778
- model_output_list: List[torch.FloatTensor],
952
+ model_output_list: List[torch.Tensor],
779
953
  *args,
780
- sample: torch.FloatTensor = None,
954
+ sample: torch.Tensor = None,
781
955
  order: int = None,
956
+ noise: Optional[torch.Tensor] = None,
782
957
  **kwargs,
783
- ) -> torch.FloatTensor:
958
+ ) -> torch.Tensor:
784
959
  """
785
960
  One step for the singlestep DPMSolver.
786
961
 
787
962
  Args:
788
- model_output_list (`List[torch.FloatTensor]`):
963
+ model_output_list (`List[torch.Tensor]`):
789
964
  The direct outputs from learned diffusion model at current and latter timesteps.
790
965
  timestep (`int`):
791
966
  The current and latter discrete timestep in the diffusion chain.
792
967
  prev_timestep (`int`):
793
968
  The previous discrete timestep in the diffusion chain.
794
- sample (`torch.FloatTensor`):
969
+ sample (`torch.Tensor`):
795
970
  A current instance of a sample created by diffusion process.
796
971
  order (`int`):
797
972
  The solver order at this step.
798
973
 
799
974
  Returns:
800
- `torch.FloatTensor`:
975
+ `torch.Tensor`:
801
976
  The sample tensor at the previous timestep.
802
977
  """
803
978
  timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
@@ -827,11 +1002,11 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
827
1002
  )
828
1003
 
829
1004
  if order == 1:
830
- return self.dpm_solver_first_order_update(model_output_list[-1], sample=sample)
1005
+ return self.dpm_solver_first_order_update(model_output_list[-1], sample=sample, noise=noise)
831
1006
  elif order == 2:
832
- return self.singlestep_dpm_solver_second_order_update(model_output_list, sample=sample)
1007
+ return self.singlestep_dpm_solver_second_order_update(model_output_list, sample=sample, noise=noise)
833
1008
  elif order == 3:
834
- return self.singlestep_dpm_solver_third_order_update(model_output_list, sample=sample)
1009
+ return self.singlestep_dpm_solver_third_order_update(model_output_list, sample=sample, noise=noise)
835
1010
  else:
836
1011
  raise ValueError(f"Order must be 1, 2, 3, got {order}")
837
1012
 
@@ -870,9 +1045,10 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
870
1045
 
871
1046
  def step(
872
1047
  self,
873
- model_output: torch.FloatTensor,
874
- timestep: int,
875
- sample: torch.FloatTensor,
1048
+ model_output: torch.Tensor,
1049
+ timestep: Union[int, torch.Tensor],
1050
+ sample: torch.Tensor,
1051
+ generator=None,
876
1052
  return_dict: bool = True,
877
1053
  ) -> Union[SchedulerOutput, Tuple]:
878
1054
  """
@@ -880,11 +1056,11 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
880
1056
  the singlestep DPMSolver.
881
1057
 
882
1058
  Args:
883
- model_output (`torch.FloatTensor`):
1059
+ model_output (`torch.Tensor`):
884
1060
  The direct output from learned diffusion model.
885
1061
  timestep (`int`):
886
1062
  The current discrete timestep in the diffusion chain.
887
- sample (`torch.FloatTensor`):
1063
+ sample (`torch.Tensor`):
888
1064
  A current instance of a sample created by the diffusion process.
889
1065
  return_dict (`bool`):
890
1066
  Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
@@ -908,6 +1084,13 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
908
1084
  self.model_outputs[i] = self.model_outputs[i + 1]
909
1085
  self.model_outputs[-1] = model_output
910
1086
 
1087
+ if self.config.algorithm_type == "sde-dpmsolver++":
1088
+ noise = randn_tensor(
1089
+ model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
1090
+ )
1091
+ else:
1092
+ noise = None
1093
+
911
1094
  order = self.order_list[self.step_index]
912
1095
 
913
1096
  # For img2img denoising might start with order>1 which is not possible
@@ -919,9 +1102,11 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
919
1102
  if order == 1:
920
1103
  self.sample = sample
921
1104
 
922
- prev_sample = self.singlestep_dpm_solver_update(self.model_outputs, sample=self.sample, order=order)
1105
+ prev_sample = self.singlestep_dpm_solver_update(
1106
+ self.model_outputs, sample=self.sample, order=order, noise=noise
1107
+ )
923
1108
 
924
- # upon completion increase step index by one
1109
+ # upon completion increase step index by one, noise=noise
925
1110
  self._step_index += 1
926
1111
 
927
1112
  if not return_dict:
@@ -929,17 +1114,17 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
929
1114
 
930
1115
  return SchedulerOutput(prev_sample=prev_sample)
931
1116
 
932
- def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
1117
+ def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
933
1118
  """
934
1119
  Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
935
1120
  current timestep.
936
1121
 
937
1122
  Args:
938
- sample (`torch.FloatTensor`):
1123
+ sample (`torch.Tensor`):
939
1124
  The input sample.
940
1125
 
941
1126
  Returns:
942
- `torch.FloatTensor`:
1127
+ `torch.Tensor`:
943
1128
  A scaled input sample.
944
1129
  """
945
1130
  return sample
@@ -947,10 +1132,10 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
947
1132
  # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.add_noise
948
1133
  def add_noise(
949
1134
  self,
950
- original_samples: torch.FloatTensor,
951
- noise: torch.FloatTensor,
1135
+ original_samples: torch.Tensor,
1136
+ noise: torch.Tensor,
952
1137
  timesteps: torch.IntTensor,
953
- ) -> torch.FloatTensor:
1138
+ ) -> torch.Tensor:
954
1139
  # Make sure sigmas and timesteps have the same device and dtype as original_samples
955
1140
  sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
956
1141
  if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
@@ -961,10 +1146,14 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
961
1146
  schedule_timesteps = self.timesteps.to(original_samples.device)
962
1147
  timesteps = timesteps.to(original_samples.device)
963
1148
 
964
- # begin_index is None when the scheduler is used for training
1149
+ # begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index
965
1150
  if self.begin_index is None:
966
1151
  step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
1152
+ elif self.step_index is not None:
1153
+ # add_noise is called after first denoising step (for inpainting)
1154
+ step_indices = [self.step_index] * timesteps.shape[0]
967
1155
  else:
1156
+ # add noise is called before first denoising step to create initial latent(img2img)
968
1157
  step_indices = [self.begin_index] * timesteps.shape[0]
969
1158
 
970
1159
  sigma = sigmas[step_indices].flatten()