diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +50 -53
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.0.dist-info/RECORD +0 -399
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -21,10 +21,14 @@ import numpy as np
|
|
21
21
|
import torch
|
22
22
|
|
23
23
|
from ..configuration_utils import ConfigMixin, register_to_config
|
24
|
-
from ..utils import deprecate, logging
|
24
|
+
from ..utils import deprecate, is_scipy_available, logging
|
25
|
+
from ..utils.torch_utils import randn_tensor
|
25
26
|
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
|
26
27
|
|
27
28
|
|
29
|
+
if is_scipy_available():
|
30
|
+
import scipy.stats
|
31
|
+
|
28
32
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
29
33
|
|
30
34
|
|
@@ -63,7 +67,7 @@ def betas_for_alpha_bar(
|
|
63
67
|
return math.exp(t * -12.0)
|
64
68
|
|
65
69
|
else:
|
66
|
-
raise ValueError(f"Unsupported
|
70
|
+
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
|
67
71
|
|
68
72
|
betas = []
|
69
73
|
for i in range(num_diffusion_timesteps):
|
@@ -108,11 +112,11 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
|
108
112
|
The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
|
109
113
|
`algorithm_type="dpmsolver++"`.
|
110
114
|
algorithm_type (`str`, defaults to `dpmsolver++`):
|
111
|
-
Algorithm type for the solver; can be `dpmsolver` or `dpmsolver++`. The
|
112
|
-
|
113
|
-
|
114
|
-
|
115
|
-
|
115
|
+
Algorithm type for the solver; can be `dpmsolver` or `dpmsolver++` or `sde-dpmsolver++`. The `dpmsolver`
|
116
|
+
type implements the algorithms in the [DPMSolver](https://huggingface.co/papers/2206.00927) paper, and the
|
117
|
+
`dpmsolver++` type implements the algorithms in the [DPMSolver++](https://huggingface.co/papers/2211.01095)
|
118
|
+
paper. It is recommended to use `dpmsolver++` or `sde-dpmsolver++` with `solver_order=2` for guided
|
119
|
+
sampling like in Stable Diffusion.
|
116
120
|
solver_type (`str`, defaults to `midpoint`):
|
117
121
|
Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
|
118
122
|
sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
|
@@ -122,9 +126,14 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
|
122
126
|
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
|
123
127
|
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
|
124
128
|
the sigmas are determined according to a sequence of noise levels {σi}.
|
129
|
+
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
|
130
|
+
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
|
131
|
+
use_beta_sigmas (`bool`, *optional*, defaults to `False`):
|
132
|
+
Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
|
133
|
+
Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
|
125
134
|
final_sigmas_type (`str`, *optional*, defaults to `"zero"`):
|
126
|
-
The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
|
127
|
-
is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
|
135
|
+
The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
|
136
|
+
sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
|
128
137
|
lambda_min_clipped (`float`, defaults to `-inf`):
|
129
138
|
Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
|
130
139
|
cosine (`squaredcos_cap_v2`) noise schedule.
|
@@ -153,10 +162,20 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
|
153
162
|
solver_type: str = "midpoint",
|
154
163
|
lower_order_final: bool = False,
|
155
164
|
use_karras_sigmas: Optional[bool] = False,
|
165
|
+
use_exponential_sigmas: Optional[bool] = False,
|
166
|
+
use_beta_sigmas: Optional[bool] = False,
|
167
|
+
use_flow_sigmas: Optional[bool] = False,
|
168
|
+
flow_shift: Optional[float] = 1.0,
|
156
169
|
final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min"
|
157
170
|
lambda_min_clipped: float = -float("inf"),
|
158
171
|
variance_type: Optional[str] = None,
|
159
172
|
):
|
173
|
+
if self.config.use_beta_sigmas and not is_scipy_available():
|
174
|
+
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
|
175
|
+
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
|
176
|
+
raise ValueError(
|
177
|
+
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
|
178
|
+
)
|
160
179
|
if algorithm_type == "dpmsolver":
|
161
180
|
deprecation_message = "algorithm_type `dpmsolver` is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
|
162
181
|
deprecate("algorithm_types=dpmsolver", "1.0.0", deprecation_message)
|
@@ -172,7 +191,7 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
|
172
191
|
# Glide cosine schedule
|
173
192
|
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
174
193
|
else:
|
175
|
-
raise NotImplementedError(f"{beta_schedule}
|
194
|
+
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
176
195
|
|
177
196
|
self.alphas = 1.0 - self.betas
|
178
197
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
@@ -186,18 +205,18 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
|
186
205
|
self.init_noise_sigma = 1.0
|
187
206
|
|
188
207
|
# settings for DPM-Solver
|
189
|
-
if algorithm_type not in ["dpmsolver", "dpmsolver++"]:
|
208
|
+
if algorithm_type not in ["dpmsolver", "dpmsolver++", "sde-dpmsolver++"]:
|
190
209
|
if algorithm_type == "deis":
|
191
210
|
self.register_to_config(algorithm_type="dpmsolver++")
|
192
211
|
else:
|
193
|
-
raise NotImplementedError(f"{algorithm_type}
|
212
|
+
raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
|
194
213
|
if solver_type not in ["midpoint", "heun"]:
|
195
214
|
if solver_type in ["logrho", "bh1", "bh2"]:
|
196
215
|
self.register_to_config(solver_type="midpoint")
|
197
216
|
else:
|
198
|
-
raise NotImplementedError(f"{solver_type}
|
217
|
+
raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
|
199
218
|
|
200
|
-
if algorithm_type
|
219
|
+
if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++"] and final_sigmas_type == "zero":
|
201
220
|
raise ValueError(
|
202
221
|
f"`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please chooose `sigma_min` instead."
|
203
222
|
)
|
@@ -247,12 +266,16 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
|
247
266
|
orders = [1, 2] * (steps // 2)
|
248
267
|
elif order == 1:
|
249
268
|
orders = [1] * steps
|
269
|
+
|
270
|
+
if self.config.final_sigmas_type == "zero":
|
271
|
+
orders[-1] = 1
|
272
|
+
|
250
273
|
return orders
|
251
274
|
|
252
275
|
@property
|
253
276
|
def step_index(self):
|
254
277
|
"""
|
255
|
-
The index counter for current timestep. It will
|
278
|
+
The index counter for current timestep. It will increase 1 after each scheduler step.
|
256
279
|
"""
|
257
280
|
return self._step_index
|
258
281
|
|
@@ -274,7 +297,12 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
|
274
297
|
"""
|
275
298
|
self._begin_index = begin_index
|
276
299
|
|
277
|
-
def set_timesteps(
|
300
|
+
def set_timesteps(
|
301
|
+
self,
|
302
|
+
num_inference_steps: int = None,
|
303
|
+
device: Union[str, torch.device] = None,
|
304
|
+
timesteps: Optional[List[int]] = None,
|
305
|
+
):
|
278
306
|
"""
|
279
307
|
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
280
308
|
|
@@ -283,24 +311,58 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
|
283
311
|
The number of diffusion steps used when generating samples with a pre-trained model.
|
284
312
|
device (`str` or `torch.device`, *optional*):
|
285
313
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
314
|
+
timesteps (`List[int]`, *optional*):
|
315
|
+
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
316
|
+
timestep spacing strategy of equal spacing between timesteps schedule is used. If `timesteps` is
|
317
|
+
passed, `num_inference_steps` must be `None`.
|
286
318
|
"""
|
319
|
+
if num_inference_steps is None and timesteps is None:
|
320
|
+
raise ValueError("Must pass exactly one of `num_inference_steps` or `timesteps`.")
|
321
|
+
if num_inference_steps is not None and timesteps is not None:
|
322
|
+
raise ValueError("Must pass exactly one of `num_inference_steps` or `timesteps`.")
|
323
|
+
if timesteps is not None and self.config.use_karras_sigmas:
|
324
|
+
raise ValueError("Cannot use `timesteps` when `config.use_karras_sigmas=True`.")
|
325
|
+
if timesteps is not None and self.config.use_exponential_sigmas:
|
326
|
+
raise ValueError("Cannot set `timesteps` with `config.use_exponential_sigmas = True`.")
|
327
|
+
if timesteps is not None and self.config.use_beta_sigmas:
|
328
|
+
raise ValueError("Cannot set `timesteps` with `config.use_beta_sigmas = True`.")
|
329
|
+
|
330
|
+
num_inference_steps = num_inference_steps or len(timesteps)
|
287
331
|
self.num_inference_steps = num_inference_steps
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
|
294
|
-
.
|
295
|
-
.
|
296
|
-
|
332
|
+
|
333
|
+
if timesteps is not None:
|
334
|
+
timesteps = np.array(timesteps).astype(np.int64)
|
335
|
+
else:
|
336
|
+
# Clipping the minimum of all lambda(t) for numerical stability.
|
337
|
+
# This is critical for cosine (squaredcos_cap_v2) noise schedule.
|
338
|
+
clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped)
|
339
|
+
clipped_idx = clipped_idx.item()
|
340
|
+
timesteps = (
|
341
|
+
np.linspace(0, self.config.num_train_timesteps - 1 - clipped_idx, num_inference_steps + 1)
|
342
|
+
.round()[::-1][:-1]
|
343
|
+
.copy()
|
344
|
+
.astype(np.int64)
|
345
|
+
)
|
297
346
|
|
298
347
|
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
|
348
|
+
log_sigmas = np.log(sigmas)
|
299
349
|
if self.config.use_karras_sigmas:
|
300
|
-
log_sigmas = np.log(sigmas)
|
301
350
|
sigmas = np.flip(sigmas).copy()
|
302
351
|
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
303
352
|
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
|
353
|
+
elif self.config.use_exponential_sigmas:
|
354
|
+
sigmas = np.flip(sigmas).copy()
|
355
|
+
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
356
|
+
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
357
|
+
elif self.config.use_beta_sigmas:
|
358
|
+
sigmas = np.flip(sigmas).copy()
|
359
|
+
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
360
|
+
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
361
|
+
elif self.config.use_flow_sigmas:
|
362
|
+
alphas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1)
|
363
|
+
sigmas = 1.0 - alphas
|
364
|
+
sigmas = np.flip(self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas))[:-1].copy()
|
365
|
+
timesteps = (sigmas * self.config.num_train_timesteps).copy()
|
304
366
|
else:
|
305
367
|
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
|
306
368
|
|
@@ -340,7 +402,7 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
|
340
402
|
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
341
403
|
|
342
404
|
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
|
343
|
-
def _threshold_sample(self, sample: torch.
|
405
|
+
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
|
344
406
|
"""
|
345
407
|
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
|
346
408
|
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
|
@@ -399,13 +461,17 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
|
399
461
|
|
400
462
|
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
|
401
463
|
def _sigma_to_alpha_sigma_t(self, sigma):
|
402
|
-
|
403
|
-
|
464
|
+
if self.config.use_flow_sigmas:
|
465
|
+
alpha_t = 1 - sigma
|
466
|
+
sigma_t = sigma
|
467
|
+
else:
|
468
|
+
alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
|
469
|
+
sigma_t = sigma * alpha_t
|
404
470
|
|
405
471
|
return alpha_t, sigma_t
|
406
472
|
|
407
473
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
|
408
|
-
def _convert_to_karras(self, in_sigmas: torch.
|
474
|
+
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
|
409
475
|
"""Constructs the noise schedule of Karras et al. (2022)."""
|
410
476
|
|
411
477
|
# Hack to make sure that other schedulers which copy this function don't break
|
@@ -430,13 +496,67 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
|
430
496
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
431
497
|
return sigmas
|
432
498
|
|
499
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
|
500
|
+
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
|
501
|
+
"""Constructs an exponential noise schedule."""
|
502
|
+
|
503
|
+
# Hack to make sure that other schedulers which copy this function don't break
|
504
|
+
# TODO: Add this logic to the other schedulers
|
505
|
+
if hasattr(self.config, "sigma_min"):
|
506
|
+
sigma_min = self.config.sigma_min
|
507
|
+
else:
|
508
|
+
sigma_min = None
|
509
|
+
|
510
|
+
if hasattr(self.config, "sigma_max"):
|
511
|
+
sigma_max = self.config.sigma_max
|
512
|
+
else:
|
513
|
+
sigma_max = None
|
514
|
+
|
515
|
+
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
516
|
+
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
517
|
+
|
518
|
+
sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
|
519
|
+
return sigmas
|
520
|
+
|
521
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
|
522
|
+
def _convert_to_beta(
|
523
|
+
self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
|
524
|
+
) -> torch.Tensor:
|
525
|
+
"""From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""
|
526
|
+
|
527
|
+
# Hack to make sure that other schedulers which copy this function don't break
|
528
|
+
# TODO: Add this logic to the other schedulers
|
529
|
+
if hasattr(self.config, "sigma_min"):
|
530
|
+
sigma_min = self.config.sigma_min
|
531
|
+
else:
|
532
|
+
sigma_min = None
|
533
|
+
|
534
|
+
if hasattr(self.config, "sigma_max"):
|
535
|
+
sigma_max = self.config.sigma_max
|
536
|
+
else:
|
537
|
+
sigma_max = None
|
538
|
+
|
539
|
+
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
540
|
+
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
541
|
+
|
542
|
+
sigmas = np.array(
|
543
|
+
[
|
544
|
+
sigma_min + (ppf * (sigma_max - sigma_min))
|
545
|
+
for ppf in [
|
546
|
+
scipy.stats.beta.ppf(timestep, alpha, beta)
|
547
|
+
for timestep in 1 - np.linspace(0, 1, num_inference_steps)
|
548
|
+
]
|
549
|
+
]
|
550
|
+
)
|
551
|
+
return sigmas
|
552
|
+
|
433
553
|
def convert_model_output(
|
434
554
|
self,
|
435
|
-
model_output: torch.
|
555
|
+
model_output: torch.Tensor,
|
436
556
|
*args,
|
437
|
-
sample: torch.
|
557
|
+
sample: torch.Tensor = None,
|
438
558
|
**kwargs,
|
439
|
-
) -> torch.
|
559
|
+
) -> torch.Tensor:
|
440
560
|
"""
|
441
561
|
Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
|
442
562
|
designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
|
@@ -450,13 +570,13 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
|
450
570
|
</Tip>
|
451
571
|
|
452
572
|
Args:
|
453
|
-
model_output (`torch.
|
573
|
+
model_output (`torch.Tensor`):
|
454
574
|
The direct output from the learned diffusion model.
|
455
|
-
sample (`torch.
|
575
|
+
sample (`torch.Tensor`):
|
456
576
|
A current instance of a sample created by the diffusion process.
|
457
577
|
|
458
578
|
Returns:
|
459
|
-
`torch.
|
579
|
+
`torch.Tensor`:
|
460
580
|
The converted model output.
|
461
581
|
"""
|
462
582
|
timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
|
@@ -472,10 +592,10 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
|
472
592
|
"Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
473
593
|
)
|
474
594
|
# DPM-Solver++ needs to solve an integral of the data prediction model.
|
475
|
-
if self.config.algorithm_type
|
595
|
+
if self.config.algorithm_type in ["dpmsolver++", "sde-dpmsolver++"]:
|
476
596
|
if self.config.prediction_type == "epsilon":
|
477
597
|
# DPM-Solver and DPM-Solver++ only need the "mean" output.
|
478
|
-
if self.config.variance_type in ["learned_range"]:
|
598
|
+
if self.config.variance_type in ["learned", "learned_range"]:
|
479
599
|
model_output = model_output[:, :3]
|
480
600
|
sigma = self.sigmas[self.step_index]
|
481
601
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
|
@@ -486,61 +606,73 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
|
486
606
|
sigma = self.sigmas[self.step_index]
|
487
607
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
|
488
608
|
x0_pred = alpha_t * sample - sigma_t * model_output
|
609
|
+
elif self.config.prediction_type == "flow_prediction":
|
610
|
+
sigma_t = self.sigmas[self.step_index]
|
611
|
+
x0_pred = sample - sigma_t * model_output
|
489
612
|
else:
|
490
613
|
raise ValueError(
|
491
|
-
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`,
|
492
|
-
"
|
614
|
+
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
|
615
|
+
"`v_prediction`, or `flow_prediction` for the DPMSolverSinglestepScheduler."
|
493
616
|
)
|
494
617
|
|
495
618
|
if self.config.thresholding:
|
496
619
|
x0_pred = self._threshold_sample(x0_pred)
|
497
620
|
|
498
621
|
return x0_pred
|
622
|
+
|
499
623
|
# DPM-Solver needs to solve an integral of the noise prediction model.
|
500
624
|
elif self.config.algorithm_type == "dpmsolver":
|
501
625
|
if self.config.prediction_type == "epsilon":
|
502
626
|
# DPM-Solver and DPM-Solver++ only need the "mean" output.
|
503
|
-
if self.config.variance_type in ["learned_range"]:
|
504
|
-
|
505
|
-
|
627
|
+
if self.config.variance_type in ["learned", "learned_range"]:
|
628
|
+
epsilon = model_output[:, :3]
|
629
|
+
else:
|
630
|
+
epsilon = model_output
|
506
631
|
elif self.config.prediction_type == "sample":
|
507
632
|
sigma = self.sigmas[self.step_index]
|
508
633
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
|
509
634
|
epsilon = (sample - alpha_t * model_output) / sigma_t
|
510
|
-
return epsilon
|
511
635
|
elif self.config.prediction_type == "v_prediction":
|
512
636
|
sigma = self.sigmas[self.step_index]
|
513
637
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
|
514
638
|
epsilon = alpha_t * model_output + sigma_t * sample
|
515
|
-
return epsilon
|
516
639
|
else:
|
517
640
|
raise ValueError(
|
518
641
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
|
519
642
|
" `v_prediction` for the DPMSolverSinglestepScheduler."
|
520
643
|
)
|
521
644
|
|
645
|
+
if self.config.thresholding:
|
646
|
+
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
|
647
|
+
x0_pred = (sample - sigma_t * epsilon) / alpha_t
|
648
|
+
x0_pred = self._threshold_sample(x0_pred)
|
649
|
+
epsilon = (sample - alpha_t * x0_pred) / sigma_t
|
650
|
+
|
651
|
+
return epsilon
|
652
|
+
|
522
653
|
def dpm_solver_first_order_update(
|
523
654
|
self,
|
524
|
-
model_output: torch.
|
655
|
+
model_output: torch.Tensor,
|
525
656
|
*args,
|
526
|
-
sample: torch.
|
657
|
+
sample: torch.Tensor = None,
|
658
|
+
noise: Optional[torch.Tensor] = None,
|
527
659
|
**kwargs,
|
528
|
-
) -> torch.
|
660
|
+
) -> torch.Tensor:
|
529
661
|
"""
|
530
662
|
One step for the first-order DPMSolver (equivalent to DDIM).
|
531
663
|
|
532
664
|
Args:
|
533
|
-
model_output (`torch.
|
665
|
+
model_output (`torch.Tensor`):
|
534
666
|
The direct output from the learned diffusion model.
|
535
667
|
timestep (`int`):
|
536
668
|
The current discrete timestep in the diffusion chain.
|
537
669
|
prev_timestep (`int`):
|
538
670
|
The previous discrete timestep in the diffusion chain.
|
539
|
-
sample (`torch.
|
671
|
+
sample (`torch.Tensor`):
|
540
672
|
A current instance of a sample created by the diffusion process.
|
541
673
|
|
542
674
|
Returns:
|
543
|
-
`torch.
|
675
|
+
`torch.Tensor`:
|
544
676
|
The sample tensor at the previous timestep.
|
545
677
|
"""
|
546
678
|
timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
|
@@ -573,31 +705,39 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
|
573
705
|
x_t = (sigma_t / sigma_s) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * model_output
|
574
706
|
elif self.config.algorithm_type == "dpmsolver":
|
575
707
|
x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output
|
708
|
+
elif self.config.algorithm_type == "sde-dpmsolver++":
|
709
|
+
assert noise is not None
|
710
|
+
x_t = (
|
711
|
+
(sigma_t / sigma_s * torch.exp(-h)) * sample
|
712
|
+
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output
|
713
|
+
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
|
714
|
+
)
|
576
715
|
return x_t
|
577
716
|
|
578
717
|
def singlestep_dpm_solver_second_order_update(
|
579
718
|
self,
|
580
|
-
model_output_list: List[torch.
|
719
|
+
model_output_list: List[torch.Tensor],
|
581
720
|
*args,
|
582
|
-
sample: torch.
|
721
|
+
sample: torch.Tensor = None,
|
722
|
+
noise: Optional[torch.Tensor] = None,
|
583
723
|
**kwargs,
|
584
|
-
) -> torch.
|
724
|
+
) -> torch.Tensor:
|
585
725
|
"""
|
586
726
|
One step for the second-order singlestep DPMSolver that computes the solution at time `prev_timestep` from the
|
587
727
|
time `timestep_list[-2]`.
|
588
728
|
|
589
729
|
Args:
|
590
|
-
model_output_list (`List[torch.
|
730
|
+
model_output_list (`List[torch.Tensor]`):
|
591
731
|
The direct outputs from learned diffusion model at current and latter timesteps.
|
592
732
|
timestep (`int`):
|
593
733
|
The current and latter discrete timestep in the diffusion chain.
|
594
734
|
prev_timestep (`int`):
|
595
735
|
The previous discrete timestep in the diffusion chain.
|
596
|
-
sample (`torch.
|
736
|
+
sample (`torch.Tensor`):
|
597
737
|
A current instance of a sample created by the diffusion process.
|
598
738
|
|
599
739
|
Returns:
|
600
|
-
`torch.
|
740
|
+
`torch.Tensor`:
|
601
741
|
The sample tensor at the previous timestep.
|
602
742
|
"""
|
603
743
|
timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
|
@@ -667,31 +807,48 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
|
667
807
|
- (sigma_t * (torch.exp(h) - 1.0)) * D0
|
668
808
|
- (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
|
669
809
|
)
|
810
|
+
elif self.config.algorithm_type == "sde-dpmsolver++":
|
811
|
+
assert noise is not None
|
812
|
+
if self.config.solver_type == "midpoint":
|
813
|
+
x_t = (
|
814
|
+
(sigma_t / sigma_s1 * torch.exp(-h)) * sample
|
815
|
+
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
|
816
|
+
+ 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
|
817
|
+
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
|
818
|
+
)
|
819
|
+
elif self.config.solver_type == "heun":
|
820
|
+
x_t = (
|
821
|
+
(sigma_t / sigma_s1 * torch.exp(-h)) * sample
|
822
|
+
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
|
823
|
+
+ (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
|
824
|
+
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
|
825
|
+
)
|
670
826
|
return x_t
|
671
827
|
|
672
828
|
def singlestep_dpm_solver_third_order_update(
|
673
829
|
self,
|
674
|
-
model_output_list: List[torch.
|
830
|
+
model_output_list: List[torch.Tensor],
|
675
831
|
*args,
|
676
|
-
sample: torch.
|
832
|
+
sample: torch.Tensor = None,
|
833
|
+
noise: Optional[torch.Tensor] = None,
|
677
834
|
**kwargs,
|
678
|
-
) -> torch.
|
835
|
+
) -> torch.Tensor:
|
679
836
|
"""
|
680
837
|
One step for the third-order singlestep DPMSolver that computes the solution at time `prev_timestep` from the
|
681
838
|
time `timestep_list[-3]`.
|
682
839
|
|
683
840
|
Args:
|
684
|
-
model_output_list (`List[torch.
|
841
|
+
model_output_list (`List[torch.Tensor]`):
|
685
842
|
The direct outputs from learned diffusion model at current and latter timesteps.
|
686
843
|
timestep (`int`):
|
687
844
|
The current and latter discrete timestep in the diffusion chain.
|
688
845
|
prev_timestep (`int`):
|
689
846
|
The previous discrete timestep in the diffusion chain.
|
690
|
-
sample (`torch.
|
847
|
+
sample (`torch.Tensor`):
|
691
848
|
A current instance of a sample created by diffusion process.
|
692
849
|
|
693
850
|
Returns:
|
694
|
-
`torch.
|
851
|
+
`torch.Tensor`:
|
695
852
|
The sample tensor at the previous timestep.
|
696
853
|
"""
|
697
854
|
|
@@ -771,33 +928,51 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
|
771
928
|
- (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
|
772
929
|
- (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2
|
773
930
|
)
|
931
|
+
elif self.config.algorithm_type == "sde-dpmsolver++":
|
932
|
+
assert noise is not None
|
933
|
+
if self.config.solver_type == "midpoint":
|
934
|
+
x_t = (
|
935
|
+
(sigma_t / sigma_s2 * torch.exp(-h)) * sample
|
936
|
+
+ (alpha_t * (1.0 - torch.exp(-2.0 * h))) * D0
|
937
|
+
+ (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1_1
|
938
|
+
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
|
939
|
+
)
|
940
|
+
elif self.config.solver_type == "heun":
|
941
|
+
x_t = (
|
942
|
+
(sigma_t / sigma_s2 * torch.exp(-h)) * sample
|
943
|
+
+ (alpha_t * (1.0 - torch.exp(-2.0 * h))) * D0
|
944
|
+
+ (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
|
945
|
+
+ (alpha_t * ((1.0 - torch.exp(-2.0 * h) + (-2.0 * h)) / (-2.0 * h) ** 2 - 0.5)) * D2
|
946
|
+
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
|
947
|
+
)
|
774
948
|
return x_t
|
775
949
|
|
776
950
|
def singlestep_dpm_solver_update(
|
777
951
|
self,
|
778
|
-
model_output_list: List[torch.
|
952
|
+
model_output_list: List[torch.Tensor],
|
779
953
|
*args,
|
780
|
-
sample: torch.
|
954
|
+
sample: torch.Tensor = None,
|
781
955
|
order: int = None,
|
956
|
+
noise: Optional[torch.Tensor] = None,
|
782
957
|
**kwargs,
|
783
|
-
) -> torch.
|
958
|
+
) -> torch.Tensor:
|
784
959
|
"""
|
785
960
|
One step for the singlestep DPMSolver.
|
786
961
|
|
787
962
|
Args:
|
788
|
-
model_output_list (`List[torch.
|
963
|
+
model_output_list (`List[torch.Tensor]`):
|
789
964
|
The direct outputs from learned diffusion model at current and latter timesteps.
|
790
965
|
timestep (`int`):
|
791
966
|
The current and latter discrete timestep in the diffusion chain.
|
792
967
|
prev_timestep (`int`):
|
793
968
|
The previous discrete timestep in the diffusion chain.
|
794
|
-
sample (`torch.
|
969
|
+
sample (`torch.Tensor`):
|
795
970
|
A current instance of a sample created by diffusion process.
|
796
971
|
order (`int`):
|
797
972
|
The solver order at this step.
|
798
973
|
|
799
974
|
Returns:
|
800
|
-
`torch.
|
975
|
+
`torch.Tensor`:
|
801
976
|
The sample tensor at the previous timestep.
|
802
977
|
"""
|
803
978
|
timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
|
@@ -827,11 +1002,11 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
|
827
1002
|
)
|
828
1003
|
|
829
1004
|
if order == 1:
|
830
|
-
return self.dpm_solver_first_order_update(model_output_list[-1], sample=sample)
|
1005
|
+
return self.dpm_solver_first_order_update(model_output_list[-1], sample=sample, noise=noise)
|
831
1006
|
elif order == 2:
|
832
|
-
return self.singlestep_dpm_solver_second_order_update(model_output_list, sample=sample)
|
1007
|
+
return self.singlestep_dpm_solver_second_order_update(model_output_list, sample=sample, noise=noise)
|
833
1008
|
elif order == 3:
|
834
|
-
return self.singlestep_dpm_solver_third_order_update(model_output_list, sample=sample)
|
1009
|
+
return self.singlestep_dpm_solver_third_order_update(model_output_list, sample=sample, noise=noise)
|
835
1010
|
else:
|
836
1011
|
raise ValueError(f"Order must be 1, 2, 3, got {order}")
|
837
1012
|
|
@@ -870,9 +1045,10 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
|
870
1045
|
|
871
1046
|
def step(
|
872
1047
|
self,
|
873
|
-
model_output: torch.
|
874
|
-
timestep: int,
|
875
|
-
sample: torch.
|
1048
|
+
model_output: torch.Tensor,
|
1049
|
+
timestep: Union[int, torch.Tensor],
|
1050
|
+
sample: torch.Tensor,
|
1051
|
+
generator=None,
|
876
1052
|
return_dict: bool = True,
|
877
1053
|
) -> Union[SchedulerOutput, Tuple]:
|
878
1054
|
"""
|
@@ -880,11 +1056,11 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
|
880
1056
|
the singlestep DPMSolver.
|
881
1057
|
|
882
1058
|
Args:
|
883
|
-
model_output (`torch.
|
1059
|
+
model_output (`torch.Tensor`):
|
884
1060
|
The direct output from learned diffusion model.
|
885
1061
|
timestep (`int`):
|
886
1062
|
The current discrete timestep in the diffusion chain.
|
887
|
-
sample (`torch.
|
1063
|
+
sample (`torch.Tensor`):
|
888
1064
|
A current instance of a sample created by the diffusion process.
|
889
1065
|
return_dict (`bool`):
|
890
1066
|
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
|
@@ -908,6 +1084,13 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
|
908
1084
|
self.model_outputs[i] = self.model_outputs[i + 1]
|
909
1085
|
self.model_outputs[-1] = model_output
|
910
1086
|
|
1087
|
+
if self.config.algorithm_type == "sde-dpmsolver++":
|
1088
|
+
noise = randn_tensor(
|
1089
|
+
model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
|
1090
|
+
)
|
1091
|
+
else:
|
1092
|
+
noise = None
|
1093
|
+
|
911
1094
|
order = self.order_list[self.step_index]
|
912
1095
|
|
913
1096
|
# For img2img denoising might start with order>1 which is not possible
|
@@ -919,9 +1102,11 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
|
919
1102
|
if order == 1:
|
920
1103
|
self.sample = sample
|
921
1104
|
|
922
|
-
prev_sample = self.singlestep_dpm_solver_update(
|
1105
|
+
prev_sample = self.singlestep_dpm_solver_update(
|
1106
|
+
self.model_outputs, sample=self.sample, order=order, noise=noise
|
1107
|
+
)
|
923
1108
|
|
924
|
-
# upon completion increase step index by one
|
1109
|
+
# upon completion increase step index by one, noise=noise
|
925
1110
|
self._step_index += 1
|
926
1111
|
|
927
1112
|
if not return_dict:
|
@@ -929,17 +1114,17 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
|
929
1114
|
|
930
1115
|
return SchedulerOutput(prev_sample=prev_sample)
|
931
1116
|
|
932
|
-
def scale_model_input(self, sample: torch.
|
1117
|
+
def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
933
1118
|
"""
|
934
1119
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
935
1120
|
current timestep.
|
936
1121
|
|
937
1122
|
Args:
|
938
|
-
sample (`torch.
|
1123
|
+
sample (`torch.Tensor`):
|
939
1124
|
The input sample.
|
940
1125
|
|
941
1126
|
Returns:
|
942
|
-
`torch.
|
1127
|
+
`torch.Tensor`:
|
943
1128
|
A scaled input sample.
|
944
1129
|
"""
|
945
1130
|
return sample
|
@@ -947,10 +1132,10 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
|
947
1132
|
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.add_noise
|
948
1133
|
def add_noise(
|
949
1134
|
self,
|
950
|
-
original_samples: torch.
|
951
|
-
noise: torch.
|
1135
|
+
original_samples: torch.Tensor,
|
1136
|
+
noise: torch.Tensor,
|
952
1137
|
timesteps: torch.IntTensor,
|
953
|
-
) -> torch.
|
1138
|
+
) -> torch.Tensor:
|
954
1139
|
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
955
1140
|
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
|
956
1141
|
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
@@ -961,10 +1146,14 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
|
961
1146
|
schedule_timesteps = self.timesteps.to(original_samples.device)
|
962
1147
|
timesteps = timesteps.to(original_samples.device)
|
963
1148
|
|
964
|
-
# begin_index is None when the scheduler is used for training
|
1149
|
+
# begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index
|
965
1150
|
if self.begin_index is None:
|
966
1151
|
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
|
1152
|
+
elif self.step_index is not None:
|
1153
|
+
# add_noise is called after first denoising step (for inpainting)
|
1154
|
+
step_indices = [self.step_index] * timesteps.shape[0]
|
967
1155
|
else:
|
1156
|
+
# add noise is called before first denoising step to create initial latent(img2img)
|
968
1157
|
step_indices = [self.begin_index] * timesteps.shape[0]
|
969
1158
|
|
970
1159
|
sigma = sigmas[step_indices].flatten()
|