diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -21,11 +21,15 @@ import numpy as np
21
21
  import torch
22
22
 
23
23
  from ..configuration_utils import ConfigMixin, register_to_config
24
- from ..utils import deprecate
24
+ from ..utils import deprecate, is_scipy_available
25
25
  from ..utils.torch_utils import randn_tensor
26
26
  from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
27
27
 
28
28
 
29
+ if is_scipy_available():
30
+ import scipy.stats
31
+
32
+
29
33
  # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
30
34
  def betas_for_alpha_bar(
31
35
  num_diffusion_timesteps,
@@ -61,7 +65,7 @@ def betas_for_alpha_bar(
61
65
  return math.exp(t * -12.0)
62
66
 
63
67
  else:
64
- raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
68
+ raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
65
69
 
66
70
  betas = []
67
71
  for i in range(num_diffusion_timesteps):
@@ -78,11 +82,11 @@ def rescale_zero_terminal_snr(betas):
78
82
 
79
83
 
80
84
  Args:
81
- betas (`torch.FloatTensor`):
85
+ betas (`torch.Tensor`):
82
86
  the betas that the scheduler is being initialized with.
83
87
 
84
88
  Returns:
85
- `torch.FloatTensor`: rescaled betas with zero terminal SNR
89
+ `torch.Tensor`: rescaled betas with zero terminal SNR
86
90
  """
87
91
  # Convert betas to alphas_bar_sqrt
88
92
  alphas = 1.0 - betas
@@ -161,13 +165,18 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
161
165
  use_karras_sigmas (`bool`, *optional*, defaults to `False`):
162
166
  Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
163
167
  the sigmas are determined according to a sequence of noise levels {σi}.
168
+ use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
169
+ Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
170
+ use_beta_sigmas (`bool`, *optional*, defaults to `False`):
171
+ Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
172
+ Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
164
173
  use_lu_lambdas (`bool`, *optional*, defaults to `False`):
165
174
  Whether to use the uniform-logSNR for step sizes proposed by Lu's DPM-Solver in the noise schedule during
166
175
  the sampling process. If `True`, the sigmas and time steps are determined according to a sequence of
167
176
  `lambda(t)`.
168
177
  final_sigmas_type (`str`, defaults to `"zero"`):
169
- The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final sigma
170
- is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
178
+ The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
179
+ sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
171
180
  lambda_min_clipped (`float`, defaults to `-inf`):
172
181
  Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
173
182
  cosine (`squaredcos_cap_v2`) noise schedule.
@@ -206,7 +215,11 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
206
215
  lower_order_final: bool = True,
207
216
  euler_at_final: bool = False,
208
217
  use_karras_sigmas: Optional[bool] = False,
218
+ use_exponential_sigmas: Optional[bool] = False,
219
+ use_beta_sigmas: Optional[bool] = False,
209
220
  use_lu_lambdas: Optional[bool] = False,
221
+ use_flow_sigmas: Optional[bool] = False,
222
+ flow_shift: Optional[float] = 1.0,
210
223
  final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min"
211
224
  lambda_min_clipped: float = -float("inf"),
212
225
  variance_type: Optional[str] = None,
@@ -214,6 +227,12 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
214
227
  steps_offset: int = 0,
215
228
  rescale_betas_zero_snr: bool = False,
216
229
  ):
230
+ if self.config.use_beta_sigmas and not is_scipy_available():
231
+ raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
232
+ if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
233
+ raise ValueError(
234
+ "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
235
+ )
217
236
  if algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
218
237
  deprecation_message = f"algorithm_type {algorithm_type} is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
219
238
  deprecate("algorithm_types dpmsolver and sde-dpmsolver", "1.0.0", deprecation_message)
@@ -229,7 +248,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
229
248
  # Glide cosine schedule
230
249
  self.betas = betas_for_alpha_bar(num_train_timesteps)
231
250
  else:
232
- raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
251
+ raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
233
252
 
234
253
  if rescale_betas_zero_snr:
235
254
  self.betas = rescale_zero_terminal_snr(self.betas)
@@ -256,13 +275,13 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
256
275
  if algorithm_type == "deis":
257
276
  self.register_to_config(algorithm_type="dpmsolver++")
258
277
  else:
259
- raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}")
278
+ raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
260
279
 
261
280
  if solver_type not in ["midpoint", "heun"]:
262
281
  if solver_type in ["logrho", "bh1", "bh2"]:
263
282
  self.register_to_config(solver_type="midpoint")
264
283
  else:
265
- raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}")
284
+ raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
266
285
 
267
286
  if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++"] and final_sigmas_type == "zero":
268
287
  raise ValueError(
@@ -282,7 +301,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
282
301
  @property
283
302
  def step_index(self):
284
303
  """
285
- The index counter for current timestep. It will increae 1 after each scheduler step.
304
+ The index counter for current timestep. It will increase 1 after each scheduler step.
286
305
  """
287
306
  return self._step_index
288
307
 
@@ -303,7 +322,12 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
303
322
  """
304
323
  self._begin_index = begin_index
305
324
 
306
- def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None):
325
+ def set_timesteps(
326
+ self,
327
+ num_inference_steps: int = None,
328
+ device: Union[str, torch.device] = None,
329
+ timesteps: Optional[List[int]] = None,
330
+ ):
307
331
  """
308
332
  Sets the discrete timesteps used for the diffusion chain (to be run before inference).
309
333
 
@@ -312,33 +336,58 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
312
336
  The number of diffusion steps used when generating samples with a pre-trained model.
313
337
  device (`str` or `torch.device`, *optional*):
314
338
  The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
339
+ timesteps (`List[int]`, *optional*):
340
+ Custom timesteps used to support arbitrary timesteps schedule. If `None`, timesteps will be generated
341
+ based on the `timestep_spacing` attribute. If `timesteps` is passed, `num_inference_steps` and `sigmas`
342
+ must be `None`, and `timestep_spacing` attribute will be ignored.
315
343
  """
316
- # Clipping the minimum of all lambda(t) for numerical stability.
317
- # This is critical for cosine (squaredcos_cap_v2) noise schedule.
318
- clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped)
319
- last_timestep = ((self.config.num_train_timesteps - clipped_idx).numpy()).item()
320
-
321
- # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
322
- if self.config.timestep_spacing == "linspace":
323
- timesteps = (
324
- np.linspace(0, last_timestep - 1, num_inference_steps + 1).round()[::-1][:-1].copy().astype(np.int64)
325
- )
326
- elif self.config.timestep_spacing == "leading":
327
- step_ratio = last_timestep // (num_inference_steps + 1)
328
- # creates integer timesteps by multiplying by ratio
329
- # casting to int to avoid issues when num_inference_step is power of 3
330
- timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64)
331
- timesteps += self.config.steps_offset
332
- elif self.config.timestep_spacing == "trailing":
333
- step_ratio = self.config.num_train_timesteps / num_inference_steps
334
- # creates integer timesteps by multiplying by ratio
335
- # casting to int to avoid issues when num_inference_step is power of 3
336
- timesteps = np.arange(last_timestep, 0, -step_ratio).round().copy().astype(np.int64)
337
- timesteps -= 1
344
+ if num_inference_steps is None and timesteps is None:
345
+ raise ValueError("Must pass exactly one of `num_inference_steps` or `timesteps`.")
346
+ if num_inference_steps is not None and timesteps is not None:
347
+ raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")
348
+ if timesteps is not None and self.config.use_karras_sigmas:
349
+ raise ValueError("Cannot use `timesteps` with `config.use_karras_sigmas = True`")
350
+ if timesteps is not None and self.config.use_lu_lambdas:
351
+ raise ValueError("Cannot use `timesteps` with `config.use_lu_lambdas = True`")
352
+ if timesteps is not None and self.config.use_exponential_sigmas:
353
+ raise ValueError("Cannot set `timesteps` with `config.use_exponential_sigmas = True`.")
354
+ if timesteps is not None and self.config.use_beta_sigmas:
355
+ raise ValueError("Cannot set `timesteps` with `config.use_beta_sigmas = True`.")
356
+
357
+ if timesteps is not None:
358
+ timesteps = np.array(timesteps).astype(np.int64)
338
359
  else:
339
- raise ValueError(
340
- f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
341
- )
360
+ # Clipping the minimum of all lambda(t) for numerical stability.
361
+ # This is critical for cosine (squaredcos_cap_v2) noise schedule.
362
+ clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped)
363
+ last_timestep = ((self.config.num_train_timesteps - clipped_idx).numpy()).item()
364
+
365
+ # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
366
+ if self.config.timestep_spacing == "linspace":
367
+ timesteps = (
368
+ np.linspace(0, last_timestep - 1, num_inference_steps + 1)
369
+ .round()[::-1][:-1]
370
+ .copy()
371
+ .astype(np.int64)
372
+ )
373
+ elif self.config.timestep_spacing == "leading":
374
+ step_ratio = last_timestep // (num_inference_steps + 1)
375
+ # creates integer timesteps by multiplying by ratio
376
+ # casting to int to avoid issues when num_inference_step is power of 3
377
+ timesteps = (
378
+ (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64)
379
+ )
380
+ timesteps += self.config.steps_offset
381
+ elif self.config.timestep_spacing == "trailing":
382
+ step_ratio = self.config.num_train_timesteps / num_inference_steps
383
+ # creates integer timesteps by multiplying by ratio
384
+ # casting to int to avoid issues when num_inference_step is power of 3
385
+ timesteps = np.arange(last_timestep, 0, -step_ratio).round().copy().astype(np.int64)
386
+ timesteps -= 1
387
+ else:
388
+ raise ValueError(
389
+ f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
390
+ )
342
391
 
343
392
  sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
344
393
  log_sigmas = np.log(sigmas)
@@ -352,6 +401,19 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
352
401
  lambdas = self._convert_to_lu(in_lambdas=lambdas, num_inference_steps=num_inference_steps)
353
402
  sigmas = np.exp(lambdas)
354
403
  timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
404
+ elif self.config.use_exponential_sigmas:
405
+ sigmas = np.flip(sigmas).copy()
406
+ sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
407
+ timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
408
+ elif self.config.use_beta_sigmas:
409
+ sigmas = np.flip(sigmas).copy()
410
+ sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
411
+ timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
412
+ elif self.config.use_flow_sigmas:
413
+ alphas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1)
414
+ sigmas = 1.0 - alphas
415
+ sigmas = np.flip(self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas))[:-1].copy()
416
+ timesteps = (sigmas * self.config.num_train_timesteps).copy()
355
417
  else:
356
418
  sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
357
419
 
@@ -382,7 +444,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
382
444
  self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
383
445
 
384
446
  # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
385
- def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
447
+ def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
386
448
  """
387
449
  "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
388
450
  prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
@@ -440,13 +502,17 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
440
502
  return t
441
503
 
442
504
  def _sigma_to_alpha_sigma_t(self, sigma):
443
- alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
444
- sigma_t = sigma * alpha_t
505
+ if self.config.use_flow_sigmas:
506
+ alpha_t = 1 - sigma
507
+ sigma_t = sigma
508
+ else:
509
+ alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
510
+ sigma_t = sigma * alpha_t
445
511
 
446
512
  return alpha_t, sigma_t
447
513
 
448
514
  # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
449
- def _convert_to_karras(self, in_sigmas: torch.FloatTensor, num_inference_steps) -> torch.FloatTensor:
515
+ def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
450
516
  """Constructs the noise schedule of Karras et al. (2022)."""
451
517
 
452
518
  # Hack to make sure that other schedulers which copy this function don't break
@@ -471,7 +537,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
471
537
  sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
472
538
  return sigmas
473
539
 
474
- def _convert_to_lu(self, in_lambdas: torch.FloatTensor, num_inference_steps) -> torch.FloatTensor:
540
+ def _convert_to_lu(self, in_lambdas: torch.Tensor, num_inference_steps) -> torch.Tensor:
475
541
  """Constructs the noise schedule of Lu et al. (2022)."""
476
542
 
477
543
  lambda_min: float = in_lambdas[-1].item()
@@ -484,13 +550,67 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
484
550
  lambdas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
485
551
  return lambdas
486
552
 
553
+ # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
554
+ def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
555
+ """Constructs an exponential noise schedule."""
556
+
557
+ # Hack to make sure that other schedulers which copy this function don't break
558
+ # TODO: Add this logic to the other schedulers
559
+ if hasattr(self.config, "sigma_min"):
560
+ sigma_min = self.config.sigma_min
561
+ else:
562
+ sigma_min = None
563
+
564
+ if hasattr(self.config, "sigma_max"):
565
+ sigma_max = self.config.sigma_max
566
+ else:
567
+ sigma_max = None
568
+
569
+ sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
570
+ sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
571
+
572
+ sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
573
+ return sigmas
574
+
575
+ # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
576
+ def _convert_to_beta(
577
+ self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
578
+ ) -> torch.Tensor:
579
+ """From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""
580
+
581
+ # Hack to make sure that other schedulers which copy this function don't break
582
+ # TODO: Add this logic to the other schedulers
583
+ if hasattr(self.config, "sigma_min"):
584
+ sigma_min = self.config.sigma_min
585
+ else:
586
+ sigma_min = None
587
+
588
+ if hasattr(self.config, "sigma_max"):
589
+ sigma_max = self.config.sigma_max
590
+ else:
591
+ sigma_max = None
592
+
593
+ sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
594
+ sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
595
+
596
+ sigmas = np.array(
597
+ [
598
+ sigma_min + (ppf * (sigma_max - sigma_min))
599
+ for ppf in [
600
+ scipy.stats.beta.ppf(timestep, alpha, beta)
601
+ for timestep in 1 - np.linspace(0, 1, num_inference_steps)
602
+ ]
603
+ ]
604
+ )
605
+ return sigmas
606
+
487
607
  def convert_model_output(
488
608
  self,
489
- model_output: torch.FloatTensor,
609
+ model_output: torch.Tensor,
490
610
  *args,
491
- sample: torch.FloatTensor = None,
611
+ sample: torch.Tensor = None,
492
612
  **kwargs,
493
- ) -> torch.FloatTensor:
613
+ ) -> torch.Tensor:
494
614
  """
495
615
  Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
496
616
  designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
@@ -504,13 +624,13 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
504
624
  </Tip>
505
625
 
506
626
  Args:
507
- model_output (`torch.FloatTensor`):
627
+ model_output (`torch.Tensor`):
508
628
  The direct output from the learned diffusion model.
509
- sample (`torch.FloatTensor`):
629
+ sample (`torch.Tensor`):
510
630
  A current instance of a sample created by the diffusion process.
511
631
 
512
632
  Returns:
513
- `torch.FloatTensor`:
633
+ `torch.Tensor`:
514
634
  The converted model output.
515
635
  """
516
636
  timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
@@ -541,10 +661,13 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
541
661
  sigma = self.sigmas[self.step_index]
542
662
  alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
543
663
  x0_pred = alpha_t * sample - sigma_t * model_output
664
+ elif self.config.prediction_type == "flow_prediction":
665
+ sigma_t = self.sigmas[self.step_index]
666
+ x0_pred = sample - sigma_t * model_output
544
667
  else:
545
668
  raise ValueError(
546
- f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
547
- " `v_prediction` for the DPMSolverMultistepScheduler."
669
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
670
+ "`v_prediction`, or `flow_prediction` for the DPMSolverMultistepScheduler."
548
671
  )
549
672
 
550
673
  if self.config.thresholding:
@@ -585,23 +708,23 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
585
708
 
586
709
  def dpm_solver_first_order_update(
587
710
  self,
588
- model_output: torch.FloatTensor,
711
+ model_output: torch.Tensor,
589
712
  *args,
590
- sample: torch.FloatTensor = None,
591
- noise: Optional[torch.FloatTensor] = None,
713
+ sample: torch.Tensor = None,
714
+ noise: Optional[torch.Tensor] = None,
592
715
  **kwargs,
593
- ) -> torch.FloatTensor:
716
+ ) -> torch.Tensor:
594
717
  """
595
718
  One step for the first-order DPMSolver (equivalent to DDIM).
596
719
 
597
720
  Args:
598
- model_output (`torch.FloatTensor`):
721
+ model_output (`torch.Tensor`):
599
722
  The direct output from the learned diffusion model.
600
- sample (`torch.FloatTensor`):
723
+ sample (`torch.Tensor`):
601
724
  A current instance of a sample created by the diffusion process.
602
725
 
603
726
  Returns:
604
- `torch.FloatTensor`:
727
+ `torch.Tensor`:
605
728
  The sample tensor at the previous timestep.
606
729
  """
607
730
  timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
@@ -654,23 +777,23 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
654
777
 
655
778
  def multistep_dpm_solver_second_order_update(
656
779
  self,
657
- model_output_list: List[torch.FloatTensor],
780
+ model_output_list: List[torch.Tensor],
658
781
  *args,
659
- sample: torch.FloatTensor = None,
660
- noise: Optional[torch.FloatTensor] = None,
782
+ sample: torch.Tensor = None,
783
+ noise: Optional[torch.Tensor] = None,
661
784
  **kwargs,
662
- ) -> torch.FloatTensor:
785
+ ) -> torch.Tensor:
663
786
  """
664
787
  One step for the second-order multistep DPMSolver.
665
788
 
666
789
  Args:
667
- model_output_list (`List[torch.FloatTensor]`):
790
+ model_output_list (`List[torch.Tensor]`):
668
791
  The direct outputs from learned diffusion model at current and latter timesteps.
669
- sample (`torch.FloatTensor`):
792
+ sample (`torch.Tensor`):
670
793
  A current instance of a sample created by the diffusion process.
671
794
 
672
795
  Returns:
673
- `torch.FloatTensor`:
796
+ `torch.Tensor`:
674
797
  The sample tensor at the previous timestep.
675
798
  """
676
799
  timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
@@ -777,22 +900,23 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
777
900
 
778
901
  def multistep_dpm_solver_third_order_update(
779
902
  self,
780
- model_output_list: List[torch.FloatTensor],
903
+ model_output_list: List[torch.Tensor],
781
904
  *args,
782
- sample: torch.FloatTensor = None,
905
+ sample: torch.Tensor = None,
906
+ noise: Optional[torch.Tensor] = None,
783
907
  **kwargs,
784
- ) -> torch.FloatTensor:
908
+ ) -> torch.Tensor:
785
909
  """
786
910
  One step for the third-order multistep DPMSolver.
787
911
 
788
912
  Args:
789
- model_output_list (`List[torch.FloatTensor]`):
913
+ model_output_list (`List[torch.Tensor]`):
790
914
  The direct outputs from learned diffusion model at current and latter timesteps.
791
- sample (`torch.FloatTensor`):
915
+ sample (`torch.Tensor`):
792
916
  A current instance of a sample created by diffusion process.
793
917
 
794
918
  Returns:
795
- `torch.FloatTensor`:
919
+ `torch.Tensor`:
796
920
  The sample tensor at the previous timestep.
797
921
  """
798
922
 
@@ -858,6 +982,15 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
858
982
  - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
859
983
  - (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2
860
984
  )
985
+ elif self.config.algorithm_type == "sde-dpmsolver++":
986
+ assert noise is not None
987
+ x_t = (
988
+ (sigma_t / sigma_s0 * torch.exp(-h)) * sample
989
+ + (alpha_t * (1.0 - torch.exp(-2.0 * h))) * D0
990
+ + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
991
+ + (alpha_t * ((1.0 - torch.exp(-2.0 * h) - 2.0 * h) / (2.0 * h) ** 2 - 0.5)) * D2
992
+ + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
993
+ )
861
994
  return x_t
862
995
 
863
996
  def index_for_timestep(self, timestep, schedule_timesteps=None):
@@ -893,11 +1026,11 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
893
1026
 
894
1027
  def step(
895
1028
  self,
896
- model_output: torch.FloatTensor,
897
- timestep: int,
898
- sample: torch.FloatTensor,
1029
+ model_output: torch.Tensor,
1030
+ timestep: Union[int, torch.Tensor],
1031
+ sample: torch.Tensor,
899
1032
  generator=None,
900
- variance_noise: Optional[torch.FloatTensor] = None,
1033
+ variance_noise: Optional[torch.Tensor] = None,
901
1034
  return_dict: bool = True,
902
1035
  ) -> Union[SchedulerOutput, Tuple]:
903
1036
  """
@@ -905,15 +1038,15 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
905
1038
  the multistep DPMSolver.
906
1039
 
907
1040
  Args:
908
- model_output (`torch.FloatTensor`):
1041
+ model_output (`torch.Tensor`):
909
1042
  The direct output from learned diffusion model.
910
1043
  timestep (`int`):
911
1044
  The current discrete timestep in the diffusion chain.
912
- sample (`torch.FloatTensor`):
1045
+ sample (`torch.Tensor`):
913
1046
  A current instance of a sample created by the diffusion process.
914
1047
  generator (`torch.Generator`, *optional*):
915
1048
  A random number generator.
916
- variance_noise (`torch.FloatTensor`):
1049
+ variance_noise (`torch.Tensor`):
917
1050
  Alternative to generating noise with `generator` by directly providing the noise for the variance
918
1051
  itself. Useful for methods such as [`LEdits++`].
919
1052
  return_dict (`bool`):
@@ -964,7 +1097,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
964
1097
  elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
965
1098
  prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise)
966
1099
  else:
967
- prev_sample = self.multistep_dpm_solver_third_order_update(self.model_outputs, sample=sample)
1100
+ prev_sample = self.multistep_dpm_solver_third_order_update(self.model_outputs, sample=sample, noise=noise)
968
1101
 
969
1102
  if self.lower_order_nums < self.config.solver_order:
970
1103
  self.lower_order_nums += 1
@@ -980,27 +1113,27 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
980
1113
 
981
1114
  return SchedulerOutput(prev_sample=prev_sample)
982
1115
 
983
- def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
1116
+ def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
984
1117
  """
985
1118
  Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
986
1119
  current timestep.
987
1120
 
988
1121
  Args:
989
- sample (`torch.FloatTensor`):
1122
+ sample (`torch.Tensor`):
990
1123
  The input sample.
991
1124
 
992
1125
  Returns:
993
- `torch.FloatTensor`:
1126
+ `torch.Tensor`:
994
1127
  A scaled input sample.
995
1128
  """
996
1129
  return sample
997
1130
 
998
1131
  def add_noise(
999
1132
  self,
1000
- original_samples: torch.FloatTensor,
1001
- noise: torch.FloatTensor,
1133
+ original_samples: torch.Tensor,
1134
+ noise: torch.Tensor,
1002
1135
  timesteps: torch.IntTensor,
1003
- ) -> torch.FloatTensor:
1136
+ ) -> torch.Tensor:
1004
1137
  # Make sure sigmas and timesteps have the same device and dtype as original_samples
1005
1138
  sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
1006
1139
  if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
@@ -1011,10 +1144,14 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
1011
1144
  schedule_timesteps = self.timesteps.to(original_samples.device)
1012
1145
  timesteps = timesteps.to(original_samples.device)
1013
1146
 
1014
- # begin_index is None when the scheduler is used for training
1147
+ # begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index
1015
1148
  if self.begin_index is None:
1016
1149
  step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
1150
+ elif self.step_index is not None:
1151
+ # add_noise is called after first denoising step (for inpainting)
1152
+ step_indices = [self.step_index] * timesteps.shape[0]
1017
1153
  else:
1154
+ # add noise is called before first denoising step to create initial latent(img2img)
1018
1155
  step_indices = [self.begin_index] * timesteps.shape[0]
1019
1156
 
1020
1157
  sigma = sigmas[step_indices].flatten()
@@ -182,9 +182,9 @@ class FlaxDPMSolverMultistepScheduler(FlaxSchedulerMixin, ConfigMixin):
182
182
 
183
183
  # settings for DPM-Solver
184
184
  if self.config.algorithm_type not in ["dpmsolver", "dpmsolver++"]:
185
- raise NotImplementedError(f"{self.config.algorithm_type} does is not implemented for {self.__class__}")
185
+ raise NotImplementedError(f"{self.config.algorithm_type} is not implemented for {self.__class__}")
186
186
  if self.config.solver_type not in ["midpoint", "heun"]:
187
- raise NotImplementedError(f"{self.config.solver_type} does is not implemented for {self.__class__}")
187
+ raise NotImplementedError(f"{self.config.solver_type} is not implemented for {self.__class__}")
188
188
 
189
189
  # standard deviation of the initial noise distribution
190
190
  init_noise_sigma = jnp.array(1.0, dtype=self.dtype)