diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -31,23 +31,103 @@ class AdaLayerNorm(nn.Module):
31
31
 
32
32
  Parameters:
33
33
  embedding_dim (`int`): The size of each embedding vector.
34
- num_embeddings (`int`): The size of the embeddings dictionary.
34
+ num_embeddings (`int`, *optional*): The size of the embeddings dictionary.
35
+ output_dim (`int`, *optional*):
36
+ norm_elementwise_affine (`bool`, defaults to `False):
37
+ norm_eps (`bool`, defaults to `False`):
38
+ chunk_dim (`int`, defaults to `0`):
35
39
  """
36
40
 
37
- def __init__(self, embedding_dim: int, num_embeddings: int):
41
+ def __init__(
42
+ self,
43
+ embedding_dim: int,
44
+ num_embeddings: Optional[int] = None,
45
+ output_dim: Optional[int] = None,
46
+ norm_elementwise_affine: bool = False,
47
+ norm_eps: float = 1e-5,
48
+ chunk_dim: int = 0,
49
+ ):
38
50
  super().__init__()
39
- self.emb = nn.Embedding(num_embeddings, embedding_dim)
51
+
52
+ self.chunk_dim = chunk_dim
53
+ output_dim = output_dim or embedding_dim * 2
54
+
55
+ if num_embeddings is not None:
56
+ self.emb = nn.Embedding(num_embeddings, embedding_dim)
57
+ else:
58
+ self.emb = None
59
+
40
60
  self.silu = nn.SiLU()
41
- self.linear = nn.Linear(embedding_dim, embedding_dim * 2)
42
- self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False)
61
+ self.linear = nn.Linear(embedding_dim, output_dim)
62
+ self.norm = nn.LayerNorm(output_dim // 2, norm_eps, norm_elementwise_affine)
63
+
64
+ def forward(
65
+ self, x: torch.Tensor, timestep: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None
66
+ ) -> torch.Tensor:
67
+ if self.emb is not None:
68
+ temb = self.emb(timestep)
69
+
70
+ temb = self.linear(self.silu(temb))
71
+
72
+ if self.chunk_dim == 1:
73
+ # This is a bit weird why we have the order of "shift, scale" here and "scale, shift" in the
74
+ # other if-branch. This branch is specific to CogVideoX for now.
75
+ shift, scale = temb.chunk(2, dim=1)
76
+ shift = shift[:, None, :]
77
+ scale = scale[:, None, :]
78
+ else:
79
+ scale, shift = temb.chunk(2, dim=0)
43
80
 
44
- def forward(self, x: torch.Tensor, timestep: torch.Tensor) -> torch.Tensor:
45
- emb = self.linear(self.silu(self.emb(timestep)))
46
- scale, shift = torch.chunk(emb, 2)
47
81
  x = self.norm(x) * (1 + scale) + shift
48
82
  return x
49
83
 
50
84
 
85
+ class FP32LayerNorm(nn.LayerNorm):
86
+ def forward(self, inputs: torch.Tensor) -> torch.Tensor:
87
+ origin_dtype = inputs.dtype
88
+ return F.layer_norm(
89
+ inputs.float(),
90
+ self.normalized_shape,
91
+ self.weight.float() if self.weight is not None else None,
92
+ self.bias.float() if self.bias is not None else None,
93
+ self.eps,
94
+ ).to(origin_dtype)
95
+
96
+
97
+ class SD35AdaLayerNormZeroX(nn.Module):
98
+ r"""
99
+ Norm layer adaptive layer norm zero (AdaLN-Zero).
100
+
101
+ Parameters:
102
+ embedding_dim (`int`): The size of each embedding vector.
103
+ num_embeddings (`int`): The size of the embeddings dictionary.
104
+ """
105
+
106
+ def __init__(self, embedding_dim: int, norm_type: str = "layer_norm", bias: bool = True) -> None:
107
+ super().__init__()
108
+
109
+ self.silu = nn.SiLU()
110
+ self.linear = nn.Linear(embedding_dim, 9 * embedding_dim, bias=bias)
111
+ if norm_type == "layer_norm":
112
+ self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
113
+ else:
114
+ raise ValueError(f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm'.")
115
+
116
+ def forward(
117
+ self,
118
+ hidden_states: torch.Tensor,
119
+ emb: Optional[torch.Tensor] = None,
120
+ ) -> Tuple[torch.Tensor, ...]:
121
+ emb = self.linear(self.silu(emb))
122
+ shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp, shift_msa2, scale_msa2, gate_msa2 = emb.chunk(
123
+ 9, dim=1
124
+ )
125
+ norm_hidden_states = self.norm(hidden_states)
126
+ hidden_states = norm_hidden_states * (1 + scale_msa[:, None]) + shift_msa[:, None]
127
+ norm_hidden_states2 = norm_hidden_states * (1 + scale_msa2[:, None]) + shift_msa2[:, None]
128
+ return hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp, norm_hidden_states2, gate_msa2
129
+
130
+
51
131
  class AdaLayerNormZero(nn.Module):
52
132
  r"""
53
133
  Norm layer adaptive layer norm zero (adaLN-Zero).
@@ -57,28 +137,103 @@ class AdaLayerNormZero(nn.Module):
57
137
  num_embeddings (`int`): The size of the embeddings dictionary.
58
138
  """
59
139
 
60
- def __init__(self, embedding_dim: int, num_embeddings: int):
140
+ def __init__(self, embedding_dim: int, num_embeddings: Optional[int] = None, norm_type="layer_norm", bias=True):
61
141
  super().__init__()
62
-
63
- self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim)
142
+ if num_embeddings is not None:
143
+ self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim)
144
+ else:
145
+ self.emb = None
64
146
 
65
147
  self.silu = nn.SiLU()
66
- self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
67
- self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
148
+ self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=bias)
149
+ if norm_type == "layer_norm":
150
+ self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
151
+ elif norm_type == "fp32_layer_norm":
152
+ self.norm = FP32LayerNorm(embedding_dim, elementwise_affine=False, bias=False)
153
+ else:
154
+ raise ValueError(
155
+ f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'."
156
+ )
68
157
 
69
158
  def forward(
70
159
  self,
71
160
  x: torch.Tensor,
72
- timestep: torch.Tensor,
73
- class_labels: torch.LongTensor,
161
+ timestep: Optional[torch.Tensor] = None,
162
+ class_labels: Optional[torch.LongTensor] = None,
74
163
  hidden_dtype: Optional[torch.dtype] = None,
164
+ emb: Optional[torch.Tensor] = None,
75
165
  ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
76
- emb = self.linear(self.silu(self.emb(timestep, class_labels, hidden_dtype=hidden_dtype)))
166
+ if self.emb is not None:
167
+ emb = self.emb(timestep, class_labels, hidden_dtype=hidden_dtype)
168
+ emb = self.linear(self.silu(emb))
77
169
  shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1)
78
170
  x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
79
171
  return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
80
172
 
81
173
 
174
+ class AdaLayerNormZeroSingle(nn.Module):
175
+ r"""
176
+ Norm layer adaptive layer norm zero (adaLN-Zero).
177
+
178
+ Parameters:
179
+ embedding_dim (`int`): The size of each embedding vector.
180
+ num_embeddings (`int`): The size of the embeddings dictionary.
181
+ """
182
+
183
+ def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
184
+ super().__init__()
185
+
186
+ self.silu = nn.SiLU()
187
+ self.linear = nn.Linear(embedding_dim, 3 * embedding_dim, bias=bias)
188
+ if norm_type == "layer_norm":
189
+ self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
190
+ else:
191
+ raise ValueError(
192
+ f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'."
193
+ )
194
+
195
+ def forward(
196
+ self,
197
+ x: torch.Tensor,
198
+ emb: Optional[torch.Tensor] = None,
199
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
200
+ emb = self.linear(self.silu(emb))
201
+ shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=1)
202
+ x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
203
+ return x, gate_msa
204
+
205
+
206
+ class LuminaRMSNormZero(nn.Module):
207
+ """
208
+ Norm layer adaptive RMS normalization zero.
209
+
210
+ Parameters:
211
+ embedding_dim (`int`): The size of each embedding vector.
212
+ """
213
+
214
+ def __init__(self, embedding_dim: int, norm_eps: float, norm_elementwise_affine: bool):
215
+ super().__init__()
216
+ self.silu = nn.SiLU()
217
+ self.linear = nn.Linear(
218
+ min(embedding_dim, 1024),
219
+ 4 * embedding_dim,
220
+ bias=True,
221
+ )
222
+ self.norm = RMSNorm(embedding_dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)
223
+
224
+ def forward(
225
+ self,
226
+ x: torch.Tensor,
227
+ emb: Optional[torch.Tensor] = None,
228
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
229
+ # emb = self.emb(timestep, encoder_hidden_states, encoder_mask)
230
+ emb = self.linear(self.silu(emb))
231
+ scale_msa, gate_msa, scale_mlp, gate_mlp = emb.chunk(4, dim=1)
232
+ x = self.norm(x) * (1 + scale_msa[:, None])
233
+
234
+ return x, gate_msa, scale_mlp, gate_mlp
235
+
236
+
82
237
  class AdaLayerNormSingle(nn.Module):
83
238
  r"""
84
239
  Norm layer adaptive layer norm single (adaLN-single).
@@ -108,6 +263,7 @@ class AdaLayerNormSingle(nn.Module):
108
263
  hidden_dtype: Optional[torch.dtype] = None,
109
264
  ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
110
265
  # No modulation happening here.
266
+ added_cond_kwargs = added_cond_kwargs or {"resolution": None, "aspect_ratio": None}
111
267
  embedded_timestep = self.emb(timestep, **added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_dtype)
112
268
  return self.linear(self.silu(embedded_timestep)), embedded_timestep
113
269
 
@@ -176,12 +332,131 @@ class AdaLayerNormContinuous(nn.Module):
176
332
  raise ValueError(f"unknown norm_type {norm_type}")
177
333
 
178
334
  def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor:
179
- emb = self.linear(self.silu(conditioning_embedding))
335
+ # convert back to the original dtype in case `conditioning_embedding`` is upcasted to float32 (needed for hunyuanDiT)
336
+ emb = self.linear(self.silu(conditioning_embedding).to(x.dtype))
180
337
  scale, shift = torch.chunk(emb, 2, dim=1)
181
338
  x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
182
339
  return x
183
340
 
184
341
 
342
+ class LuminaLayerNormContinuous(nn.Module):
343
+ def __init__(
344
+ self,
345
+ embedding_dim: int,
346
+ conditioning_embedding_dim: int,
347
+ # NOTE: It is a bit weird that the norm layer can be configured to have scale and shift parameters
348
+ # because the output is immediately scaled and shifted by the projected conditioning embeddings.
349
+ # Note that AdaLayerNorm does not let the norm layer have scale and shift parameters.
350
+ # However, this is how it was implemented in the original code, and it's rather likely you should
351
+ # set `elementwise_affine` to False.
352
+ elementwise_affine=True,
353
+ eps=1e-5,
354
+ bias=True,
355
+ norm_type="layer_norm",
356
+ out_dim: Optional[int] = None,
357
+ ):
358
+ super().__init__()
359
+
360
+ # AdaLN
361
+ self.silu = nn.SiLU()
362
+ self.linear_1 = nn.Linear(conditioning_embedding_dim, embedding_dim, bias=bias)
363
+
364
+ if norm_type == "layer_norm":
365
+ self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias)
366
+ elif norm_type == "rms_norm":
367
+ self.norm = RMSNorm(embedding_dim, eps=eps, elementwise_affine=elementwise_affine)
368
+ else:
369
+ raise ValueError(f"unknown norm_type {norm_type}")
370
+
371
+ self.linear_2 = None
372
+ if out_dim is not None:
373
+ self.linear_2 = nn.Linear(embedding_dim, out_dim, bias=bias)
374
+
375
+ def forward(
376
+ self,
377
+ x: torch.Tensor,
378
+ conditioning_embedding: torch.Tensor,
379
+ ) -> torch.Tensor:
380
+ # convert back to the original dtype in case `conditioning_embedding`` is upcasted to float32 (needed for hunyuanDiT)
381
+ emb = self.linear_1(self.silu(conditioning_embedding).to(x.dtype))
382
+ scale = emb
383
+ x = self.norm(x) * (1 + scale)[:, None, :]
384
+
385
+ if self.linear_2 is not None:
386
+ x = self.linear_2(x)
387
+
388
+ return x
389
+
390
+
391
+ class CogView3PlusAdaLayerNormZeroTextImage(nn.Module):
392
+ r"""
393
+ Norm layer adaptive layer norm zero (adaLN-Zero).
394
+
395
+ Parameters:
396
+ embedding_dim (`int`): The size of each embedding vector.
397
+ num_embeddings (`int`): The size of the embeddings dictionary.
398
+ """
399
+
400
+ def __init__(self, embedding_dim: int, dim: int):
401
+ super().__init__()
402
+
403
+ self.silu = nn.SiLU()
404
+ self.linear = nn.Linear(embedding_dim, 12 * dim, bias=True)
405
+ self.norm_x = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5)
406
+ self.norm_c = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5)
407
+
408
+ def forward(
409
+ self,
410
+ x: torch.Tensor,
411
+ context: torch.Tensor,
412
+ emb: Optional[torch.Tensor] = None,
413
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
414
+ emb = self.linear(self.silu(emb))
415
+ (
416
+ shift_msa,
417
+ scale_msa,
418
+ gate_msa,
419
+ shift_mlp,
420
+ scale_mlp,
421
+ gate_mlp,
422
+ c_shift_msa,
423
+ c_scale_msa,
424
+ c_gate_msa,
425
+ c_shift_mlp,
426
+ c_scale_mlp,
427
+ c_gate_mlp,
428
+ ) = emb.chunk(12, dim=1)
429
+ normed_x = self.norm_x(x)
430
+ normed_context = self.norm_c(context)
431
+ x = normed_x * (1 + scale_msa[:, None]) + shift_msa[:, None]
432
+ context = normed_context * (1 + c_scale_msa[:, None]) + c_shift_msa[:, None]
433
+ return x, gate_msa, shift_mlp, scale_mlp, gate_mlp, context, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp
434
+
435
+
436
+ class CogVideoXLayerNormZero(nn.Module):
437
+ def __init__(
438
+ self,
439
+ conditioning_dim: int,
440
+ embedding_dim: int,
441
+ elementwise_affine: bool = True,
442
+ eps: float = 1e-5,
443
+ bias: bool = True,
444
+ ) -> None:
445
+ super().__init__()
446
+
447
+ self.silu = nn.SiLU()
448
+ self.linear = nn.Linear(conditioning_dim, 6 * embedding_dim, bias=bias)
449
+ self.norm = nn.LayerNorm(embedding_dim, eps=eps, elementwise_affine=elementwise_affine)
450
+
451
+ def forward(
452
+ self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor
453
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
454
+ shift, scale, gate, enc_shift, enc_scale, enc_gate = self.linear(self.silu(temb)).chunk(6, dim=1)
455
+ hidden_states = self.norm(hidden_states) * (1 + scale)[:, None, :] + shift[:, None, :]
456
+ encoder_hidden_states = self.norm(encoder_hidden_states) * (1 + enc_scale)[:, None, :] + enc_shift[:, None, :]
457
+ return hidden_states, encoder_hidden_states, gate[:, None, :], enc_gate[:, None, :]
458
+
459
+
185
460
  if is_torch_version(">=", "2.1.0"):
186
461
  LayerNorm = nn.LayerNorm
187
462
  else:
@@ -210,20 +485,24 @@ else:
210
485
 
211
486
 
212
487
  class RMSNorm(nn.Module):
213
- def __init__(self, dim, eps: float, elementwise_affine: bool = True):
488
+ def __init__(self, dim, eps: float, elementwise_affine: bool = True, bias: bool = False):
214
489
  super().__init__()
215
490
 
216
491
  self.eps = eps
492
+ self.elementwise_affine = elementwise_affine
217
493
 
218
494
  if isinstance(dim, numbers.Integral):
219
495
  dim = (dim,)
220
496
 
221
497
  self.dim = torch.Size(dim)
222
498
 
499
+ self.weight = None
500
+ self.bias = None
501
+
223
502
  if elementwise_affine:
224
503
  self.weight = nn.Parameter(torch.ones(dim))
225
- else:
226
- self.weight = None
504
+ if bias:
505
+ self.bias = nn.Parameter(torch.zeros(dim))
227
506
 
228
507
  def forward(self, hidden_states):
229
508
  input_dtype = hidden_states.dtype
@@ -235,12 +514,44 @@ class RMSNorm(nn.Module):
235
514
  if self.weight.dtype in [torch.float16, torch.bfloat16]:
236
515
  hidden_states = hidden_states.to(self.weight.dtype)
237
516
  hidden_states = hidden_states * self.weight
517
+ if self.bias is not None:
518
+ hidden_states = hidden_states + self.bias
238
519
  else:
239
520
  hidden_states = hidden_states.to(input_dtype)
240
521
 
241
522
  return hidden_states
242
523
 
243
524
 
525
+ # TODO: (Dhruv) This can be replaced with regular RMSNorm in Mochi once `_keep_in_fp32_modules` is supported
526
+ # for sharded checkpoints, see: https://github.com/huggingface/diffusers/issues/10013
527
+ class MochiRMSNorm(nn.Module):
528
+ def __init__(self, dim, eps: float, elementwise_affine: bool = True):
529
+ super().__init__()
530
+
531
+ self.eps = eps
532
+
533
+ if isinstance(dim, numbers.Integral):
534
+ dim = (dim,)
535
+
536
+ self.dim = torch.Size(dim)
537
+
538
+ if elementwise_affine:
539
+ self.weight = nn.Parameter(torch.ones(dim))
540
+ else:
541
+ self.weight = None
542
+
543
+ def forward(self, hidden_states):
544
+ input_dtype = hidden_states.dtype
545
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
546
+ hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
547
+
548
+ if self.weight is not None:
549
+ hidden_states = hidden_states * self.weight
550
+ hidden_states = hidden_states.to(input_dtype)
551
+
552
+ return hidden_states
553
+
554
+
244
555
  class GlobalResponseNorm(nn.Module):
245
556
  # Taken from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105
246
557
  def __init__(self, dim):
@@ -252,3 +563,33 @@ class GlobalResponseNorm(nn.Module):
252
563
  gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
253
564
  nx = gx / (gx.mean(dim=-1, keepdim=True) + 1e-6)
254
565
  return self.gamma * (x * nx) + self.beta + x
566
+
567
+
568
+ class LpNorm(nn.Module):
569
+ def __init__(self, p: int = 2, dim: int = -1, eps: float = 1e-12):
570
+ super().__init__()
571
+
572
+ self.p = p
573
+ self.dim = dim
574
+ self.eps = eps
575
+
576
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
577
+ return F.normalize(hidden_states, p=self.p, dim=self.dim, eps=self.eps)
578
+
579
+
580
+ def get_normalization(
581
+ norm_type: str = "batch_norm",
582
+ num_features: Optional[int] = None,
583
+ eps: float = 1e-5,
584
+ elementwise_affine: bool = True,
585
+ bias: bool = True,
586
+ ) -> nn.Module:
587
+ if norm_type == "rms_norm":
588
+ norm = RMSNorm(num_features, eps=eps, elementwise_affine=elementwise_affine, bias=bias)
589
+ elif norm_type == "layer_norm":
590
+ norm = nn.LayerNorm(num_features, eps=eps, elementwise_affine=elementwise_affine, bias=bias)
591
+ elif norm_type == "batch_norm":
592
+ norm = nn.BatchNorm2d(num_features, eps=eps, affine=elementwise_affine)
593
+ else:
594
+ raise ValueError(f"{norm_type=} is not supported.")
595
+ return norm
@@ -58,7 +58,7 @@ class ResnetBlockCondNorm2D(nn.Module):
58
58
  non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use.
59
59
  time_embedding_norm (`str`, *optional*, default to `"ada_group"` ):
60
60
  The normalization layer for time embedding `temb`. Currently only support "ada_group" or "spatial".
61
- kernel (`torch.FloatTensor`, optional, default to None): FIR filter, see
61
+ kernel (`torch.Tensor`, optional, default to None): FIR filter, see
62
62
  [`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`].
63
63
  output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output.
64
64
  use_in_shortcut (`bool`, *optional*, default to `True`):
@@ -101,8 +101,6 @@ class ResnetBlockCondNorm2D(nn.Module):
101
101
  self.output_scale_factor = output_scale_factor
102
102
  self.time_embedding_norm = time_embedding_norm
103
103
 
104
- conv_cls = nn.Conv2d
105
-
106
104
  if groups_out is None:
107
105
  groups_out = groups
108
106
 
@@ -113,7 +111,7 @@ class ResnetBlockCondNorm2D(nn.Module):
113
111
  else:
114
112
  raise ValueError(f" unsupported time_embedding_norm: {self.time_embedding_norm}")
115
113
 
116
- self.conv1 = conv_cls(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
114
+ self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
117
115
 
118
116
  if self.time_embedding_norm == "ada_group": # ada_group
119
117
  self.norm2 = AdaGroupNorm(temb_channels, out_channels, groups_out, eps=eps)
@@ -125,7 +123,7 @@ class ResnetBlockCondNorm2D(nn.Module):
125
123
  self.dropout = torch.nn.Dropout(dropout)
126
124
 
127
125
  conv_2d_out_channels = conv_2d_out_channels or out_channels
128
- self.conv2 = conv_cls(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1)
126
+ self.conv2 = nn.Conv2d(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1)
129
127
 
130
128
  self.nonlinearity = get_activation(non_linearity)
131
129
 
@@ -139,7 +137,7 @@ class ResnetBlockCondNorm2D(nn.Module):
139
137
 
140
138
  self.conv_shortcut = None
141
139
  if self.use_in_shortcut:
142
- self.conv_shortcut = conv_cls(
140
+ self.conv_shortcut = nn.Conv2d(
143
141
  in_channels,
144
142
  conv_2d_out_channels,
145
143
  kernel_size=1,
@@ -148,7 +146,7 @@ class ResnetBlockCondNorm2D(nn.Module):
148
146
  bias=conv_shortcut_bias,
149
147
  )
150
148
 
151
- def forward(self, input_tensor: torch.FloatTensor, temb: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
149
+ def forward(self, input_tensor: torch.Tensor, temb: torch.Tensor, *args, **kwargs) -> torch.Tensor:
152
150
  if len(args) > 0 or kwargs.get("scale", None) is not None:
153
151
  deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
154
152
  deprecate("scale", "1.0.0", deprecation_message)
@@ -204,9 +202,9 @@ class ResnetBlock2D(nn.Module):
204
202
  eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
205
203
  non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use.
206
204
  time_embedding_norm (`str`, *optional*, default to `"default"` ): Time scale shift config.
207
- By default, apply timestep embedding conditioning with a simple shift mechanism. Choose "scale_shift"
208
- for a stronger conditioning with scale and shift.
209
- kernel (`torch.FloatTensor`, optional, default to None): FIR filter, see
205
+ By default, apply timestep embedding conditioning with a simple shift mechanism. Choose "scale_shift" for a
206
+ stronger conditioning with scale and shift.
207
+ kernel (`torch.Tensor`, optional, default to None): FIR filter, see
210
208
  [`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`].
211
209
  output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output.
212
210
  use_in_shortcut (`bool`, *optional*, default to `True`):
@@ -234,7 +232,7 @@ class ResnetBlock2D(nn.Module):
234
232
  non_linearity: str = "swish",
235
233
  skip_time_act: bool = False,
236
234
  time_embedding_norm: str = "default", # default, scale_shift,
237
- kernel: Optional[torch.FloatTensor] = None,
235
+ kernel: Optional[torch.Tensor] = None,
238
236
  output_scale_factor: float = 1.0,
239
237
  use_in_shortcut: Optional[bool] = None,
240
238
  up: bool = False,
@@ -263,21 +261,18 @@ class ResnetBlock2D(nn.Module):
263
261
  self.time_embedding_norm = time_embedding_norm
264
262
  self.skip_time_act = skip_time_act
265
263
 
266
- linear_cls = nn.Linear
267
- conv_cls = nn.Conv2d
268
-
269
264
  if groups_out is None:
270
265
  groups_out = groups
271
266
 
272
267
  self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
273
268
 
274
- self.conv1 = conv_cls(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
269
+ self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
275
270
 
276
271
  if temb_channels is not None:
277
272
  if self.time_embedding_norm == "default":
278
- self.time_emb_proj = linear_cls(temb_channels, out_channels)
273
+ self.time_emb_proj = nn.Linear(temb_channels, out_channels)
279
274
  elif self.time_embedding_norm == "scale_shift":
280
- self.time_emb_proj = linear_cls(temb_channels, 2 * out_channels)
275
+ self.time_emb_proj = nn.Linear(temb_channels, 2 * out_channels)
281
276
  else:
282
277
  raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
283
278
  else:
@@ -287,7 +282,7 @@ class ResnetBlock2D(nn.Module):
287
282
 
288
283
  self.dropout = torch.nn.Dropout(dropout)
289
284
  conv_2d_out_channels = conv_2d_out_channels or out_channels
290
- self.conv2 = conv_cls(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1)
285
+ self.conv2 = nn.Conv2d(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1)
291
286
 
292
287
  self.nonlinearity = get_activation(non_linearity)
293
288
 
@@ -313,7 +308,7 @@ class ResnetBlock2D(nn.Module):
313
308
 
314
309
  self.conv_shortcut = None
315
310
  if self.use_in_shortcut:
316
- self.conv_shortcut = conv_cls(
311
+ self.conv_shortcut = nn.Conv2d(
317
312
  in_channels,
318
313
  conv_2d_out_channels,
319
314
  kernel_size=1,
@@ -322,7 +317,7 @@ class ResnetBlock2D(nn.Module):
322
317
  bias=conv_shortcut_bias,
323
318
  )
324
319
 
325
- def forward(self, input_tensor: torch.FloatTensor, temb: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
320
+ def forward(self, input_tensor: torch.Tensor, temb: torch.Tensor, *args, **kwargs) -> torch.Tensor:
326
321
  if len(args) > 0 or kwargs.get("scale", None) is not None:
327
322
  deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
328
323
  deprecate("scale", "1.0.0", deprecation_message)
@@ -610,7 +605,7 @@ class TemporalResnetBlock(nn.Module):
610
605
  padding=0,
611
606
  )
612
607
 
613
- def forward(self, input_tensor: torch.FloatTensor, temb: torch.FloatTensor) -> torch.FloatTensor:
608
+ def forward(self, input_tensor: torch.Tensor, temb: torch.Tensor) -> torch.Tensor:
614
609
  hidden_states = input_tensor
615
610
 
616
611
  hidden_states = self.norm1(hidden_states)
@@ -690,8 +685,8 @@ class SpatioTemporalResBlock(nn.Module):
690
685
 
691
686
  def forward(
692
687
  self,
693
- hidden_states: torch.FloatTensor,
694
- temb: Optional[torch.FloatTensor] = None,
688
+ hidden_states: torch.Tensor,
689
+ temb: Optional[torch.Tensor] = None,
695
690
  image_only_indicator: Optional[torch.Tensor] = None,
696
691
  ):
697
692
  num_frames = image_only_indicator.shape[-1]
@@ -2,8 +2,24 @@ from ...utils import is_torch_available
2
2
 
3
3
 
4
4
  if is_torch_available():
5
+ from .auraflow_transformer_2d import AuraFlowTransformer2DModel
6
+ from .cogvideox_transformer_3d import CogVideoXTransformer3DModel
7
+ from .dit_transformer_2d import DiTTransformer2DModel
5
8
  from .dual_transformer_2d import DualTransformer2DModel
9
+ from .hunyuan_transformer_2d import HunyuanDiT2DModel
10
+ from .latte_transformer_3d import LatteTransformer3DModel
11
+ from .lumina_nextdit2d import LuminaNextDiT2DModel
12
+ from .pixart_transformer_2d import PixArtTransformer2DModel
6
13
  from .prior_transformer import PriorTransformer
14
+ from .sana_transformer import SanaTransformer2DModel
15
+ from .stable_audio_transformer import StableAudioDiTModel
7
16
  from .t5_film_transformer import T5FilmDecoder
8
17
  from .transformer_2d import Transformer2DModel
18
+ from .transformer_allegro import AllegroTransformer3DModel
19
+ from .transformer_cogview3plus import CogView3PlusTransformer2DModel
20
+ from .transformer_flux import FluxTransformer2DModel
21
+ from .transformer_hunyuan_video import HunyuanVideoTransformer3DModel
22
+ from .transformer_ltx import LTXVideoTransformer3DModel
23
+ from .transformer_mochi import MochiTransformer3DModel
24
+ from .transformer_sd3 import SD3Transformer2DModel
9
25
  from .transformer_temporal import TransformerTemporalModel