diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +50 -53
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.0.dist-info/RECORD +0 -399
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,489 @@
|
|
1
|
+
# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
|
2
|
+
# All rights reserved.
|
3
|
+
#
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5
|
+
# you may not use this file except in compliance with the License.
|
6
|
+
# You may obtain a copy of the License at
|
7
|
+
#
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9
|
+
#
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13
|
+
# See the License for the specific language governing permissions and
|
14
|
+
# limitations under the License.
|
15
|
+
|
16
|
+
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
|
17
|
+
# and https://github.com/hojonathanho/diffusion
|
18
|
+
|
19
|
+
import math
|
20
|
+
from dataclasses import dataclass
|
21
|
+
from typing import List, Optional, Tuple, Union
|
22
|
+
|
23
|
+
import numpy as np
|
24
|
+
import torch
|
25
|
+
|
26
|
+
from ..configuration_utils import ConfigMixin, register_to_config
|
27
|
+
from ..utils import BaseOutput
|
28
|
+
from ..utils.torch_utils import randn_tensor
|
29
|
+
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
|
30
|
+
|
31
|
+
|
32
|
+
@dataclass
|
33
|
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
|
34
|
+
class DDIMSchedulerOutput(BaseOutput):
|
35
|
+
"""
|
36
|
+
Output class for the scheduler's `step` function output.
|
37
|
+
|
38
|
+
Args:
|
39
|
+
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
40
|
+
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
41
|
+
denoising loop.
|
42
|
+
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
43
|
+
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
44
|
+
`pred_original_sample` can be used to preview progress or for guidance.
|
45
|
+
"""
|
46
|
+
|
47
|
+
prev_sample: torch.Tensor
|
48
|
+
pred_original_sample: Optional[torch.Tensor] = None
|
49
|
+
|
50
|
+
|
51
|
+
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
52
|
+
def betas_for_alpha_bar(
|
53
|
+
num_diffusion_timesteps,
|
54
|
+
max_beta=0.999,
|
55
|
+
alpha_transform_type="cosine",
|
56
|
+
):
|
57
|
+
"""
|
58
|
+
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
59
|
+
(1-beta) over time from t = [0,1].
|
60
|
+
|
61
|
+
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
|
62
|
+
to that part of the diffusion process.
|
63
|
+
|
64
|
+
|
65
|
+
Args:
|
66
|
+
num_diffusion_timesteps (`int`): the number of betas to produce.
|
67
|
+
max_beta (`float`): the maximum beta to use; use values lower than 1 to
|
68
|
+
prevent singularities.
|
69
|
+
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
|
70
|
+
Choose from `cosine` or `exp`
|
71
|
+
|
72
|
+
Returns:
|
73
|
+
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
|
74
|
+
"""
|
75
|
+
if alpha_transform_type == "cosine":
|
76
|
+
|
77
|
+
def alpha_bar_fn(t):
|
78
|
+
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
|
79
|
+
|
80
|
+
elif alpha_transform_type == "exp":
|
81
|
+
|
82
|
+
def alpha_bar_fn(t):
|
83
|
+
return math.exp(t * -12.0)
|
84
|
+
|
85
|
+
else:
|
86
|
+
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
|
87
|
+
|
88
|
+
betas = []
|
89
|
+
for i in range(num_diffusion_timesteps):
|
90
|
+
t1 = i / num_diffusion_timesteps
|
91
|
+
t2 = (i + 1) / num_diffusion_timesteps
|
92
|
+
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
|
93
|
+
return torch.tensor(betas, dtype=torch.float32)
|
94
|
+
|
95
|
+
|
96
|
+
def rescale_zero_terminal_snr(alphas_cumprod):
|
97
|
+
"""
|
98
|
+
Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)
|
99
|
+
|
100
|
+
|
101
|
+
Args:
|
102
|
+
betas (`torch.Tensor`):
|
103
|
+
the betas that the scheduler is being initialized with.
|
104
|
+
|
105
|
+
Returns:
|
106
|
+
`torch.Tensor`: rescaled betas with zero terminal SNR
|
107
|
+
"""
|
108
|
+
|
109
|
+
alphas_bar_sqrt = alphas_cumprod.sqrt()
|
110
|
+
|
111
|
+
# Store old values.
|
112
|
+
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
|
113
|
+
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
|
114
|
+
|
115
|
+
# Shift so the last timestep is zero.
|
116
|
+
alphas_bar_sqrt -= alphas_bar_sqrt_T
|
117
|
+
|
118
|
+
# Scale so the first timestep is back to the old value.
|
119
|
+
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
|
120
|
+
|
121
|
+
# Convert alphas_bar_sqrt to betas
|
122
|
+
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
|
123
|
+
|
124
|
+
return alphas_bar
|
125
|
+
|
126
|
+
|
127
|
+
class CogVideoXDPMScheduler(SchedulerMixin, ConfigMixin):
|
128
|
+
"""
|
129
|
+
`DDIMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
|
130
|
+
non-Markovian guidance.
|
131
|
+
|
132
|
+
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
133
|
+
methods the library implements for all schedulers such as loading and saving.
|
134
|
+
|
135
|
+
Args:
|
136
|
+
num_train_timesteps (`int`, defaults to 1000):
|
137
|
+
The number of diffusion steps to train the model.
|
138
|
+
beta_start (`float`, defaults to 0.0001):
|
139
|
+
The starting `beta` value of inference.
|
140
|
+
beta_end (`float`, defaults to 0.02):
|
141
|
+
The final `beta` value.
|
142
|
+
beta_schedule (`str`, defaults to `"linear"`):
|
143
|
+
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
144
|
+
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
|
145
|
+
trained_betas (`np.ndarray`, *optional*):
|
146
|
+
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
|
147
|
+
clip_sample (`bool`, defaults to `True`):
|
148
|
+
Clip the predicted sample for numerical stability.
|
149
|
+
clip_sample_range (`float`, defaults to 1.0):
|
150
|
+
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
|
151
|
+
set_alpha_to_one (`bool`, defaults to `True`):
|
152
|
+
Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
|
153
|
+
there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
|
154
|
+
otherwise it uses the alpha value at step 0.
|
155
|
+
steps_offset (`int`, defaults to 0):
|
156
|
+
An offset added to the inference steps, as required by some model families.
|
157
|
+
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
158
|
+
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
159
|
+
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
160
|
+
Video](https://imagen.research.google/video/paper.pdf) paper).
|
161
|
+
thresholding (`bool`, defaults to `False`):
|
162
|
+
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
|
163
|
+
as Stable Diffusion.
|
164
|
+
dynamic_thresholding_ratio (`float`, defaults to 0.995):
|
165
|
+
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
|
166
|
+
sample_max_value (`float`, defaults to 1.0):
|
167
|
+
The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
|
168
|
+
timestep_spacing (`str`, defaults to `"leading"`):
|
169
|
+
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
170
|
+
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
171
|
+
rescale_betas_zero_snr (`bool`, defaults to `False`):
|
172
|
+
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
|
173
|
+
dark samples instead of limiting it to samples with medium brightness. Loosely related to
|
174
|
+
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
|
175
|
+
"""
|
176
|
+
|
177
|
+
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
178
|
+
order = 1
|
179
|
+
|
180
|
+
@register_to_config
|
181
|
+
def __init__(
|
182
|
+
self,
|
183
|
+
num_train_timesteps: int = 1000,
|
184
|
+
beta_start: float = 0.00085,
|
185
|
+
beta_end: float = 0.0120,
|
186
|
+
beta_schedule: str = "scaled_linear",
|
187
|
+
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
188
|
+
clip_sample: bool = True,
|
189
|
+
set_alpha_to_one: bool = True,
|
190
|
+
steps_offset: int = 0,
|
191
|
+
prediction_type: str = "epsilon",
|
192
|
+
clip_sample_range: float = 1.0,
|
193
|
+
sample_max_value: float = 1.0,
|
194
|
+
timestep_spacing: str = "leading",
|
195
|
+
rescale_betas_zero_snr: bool = False,
|
196
|
+
snr_shift_scale: float = 3.0,
|
197
|
+
):
|
198
|
+
if trained_betas is not None:
|
199
|
+
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
200
|
+
elif beta_schedule == "linear":
|
201
|
+
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
|
202
|
+
elif beta_schedule == "scaled_linear":
|
203
|
+
# this schedule is very specific to the latent diffusion model.
|
204
|
+
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float64) ** 2
|
205
|
+
elif beta_schedule == "squaredcos_cap_v2":
|
206
|
+
# Glide cosine schedule
|
207
|
+
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
208
|
+
else:
|
209
|
+
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
210
|
+
|
211
|
+
self.alphas = 1.0 - self.betas
|
212
|
+
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
213
|
+
|
214
|
+
# Modify: SNR shift following SD3
|
215
|
+
self.alphas_cumprod = self.alphas_cumprod / (snr_shift_scale + (1 - snr_shift_scale) * self.alphas_cumprod)
|
216
|
+
|
217
|
+
# Rescale for zero SNR
|
218
|
+
if rescale_betas_zero_snr:
|
219
|
+
self.alphas_cumprod = rescale_zero_terminal_snr(self.alphas_cumprod)
|
220
|
+
|
221
|
+
# At every step in ddim, we are looking into the previous alphas_cumprod
|
222
|
+
# For the final step, there is no previous alphas_cumprod because we are already at 0
|
223
|
+
# `set_alpha_to_one` decides whether we set this parameter simply to one or
|
224
|
+
# whether we use the final alpha of the "non-previous" one.
|
225
|
+
self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
|
226
|
+
|
227
|
+
# standard deviation of the initial noise distribution
|
228
|
+
self.init_noise_sigma = 1.0
|
229
|
+
|
230
|
+
# setable values
|
231
|
+
self.num_inference_steps = None
|
232
|
+
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
|
233
|
+
|
234
|
+
def _get_variance(self, timestep, prev_timestep):
|
235
|
+
alpha_prod_t = self.alphas_cumprod[timestep]
|
236
|
+
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
|
237
|
+
beta_prod_t = 1 - alpha_prod_t
|
238
|
+
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
239
|
+
|
240
|
+
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
|
241
|
+
|
242
|
+
return variance
|
243
|
+
|
244
|
+
def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
|
245
|
+
"""
|
246
|
+
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
247
|
+
current timestep.
|
248
|
+
|
249
|
+
Args:
|
250
|
+
sample (`torch.Tensor`):
|
251
|
+
The input sample.
|
252
|
+
timestep (`int`, *optional*):
|
253
|
+
The current timestep in the diffusion chain.
|
254
|
+
|
255
|
+
Returns:
|
256
|
+
`torch.Tensor`:
|
257
|
+
A scaled input sample.
|
258
|
+
"""
|
259
|
+
return sample
|
260
|
+
|
261
|
+
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
|
262
|
+
"""
|
263
|
+
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
264
|
+
|
265
|
+
Args:
|
266
|
+
num_inference_steps (`int`):
|
267
|
+
The number of diffusion steps used when generating samples with a pre-trained model.
|
268
|
+
"""
|
269
|
+
|
270
|
+
if num_inference_steps > self.config.num_train_timesteps:
|
271
|
+
raise ValueError(
|
272
|
+
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
|
273
|
+
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
|
274
|
+
f" maximal {self.config.num_train_timesteps} timesteps."
|
275
|
+
)
|
276
|
+
|
277
|
+
self.num_inference_steps = num_inference_steps
|
278
|
+
|
279
|
+
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
|
280
|
+
if self.config.timestep_spacing == "linspace":
|
281
|
+
timesteps = (
|
282
|
+
np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
|
283
|
+
.round()[::-1]
|
284
|
+
.copy()
|
285
|
+
.astype(np.int64)
|
286
|
+
)
|
287
|
+
elif self.config.timestep_spacing == "leading":
|
288
|
+
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
|
289
|
+
# creates integer timesteps by multiplying by ratio
|
290
|
+
# casting to int to avoid issues when num_inference_step is power of 3
|
291
|
+
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
|
292
|
+
timesteps += self.config.steps_offset
|
293
|
+
elif self.config.timestep_spacing == "trailing":
|
294
|
+
step_ratio = self.config.num_train_timesteps / self.num_inference_steps
|
295
|
+
# creates integer timesteps by multiplying by ratio
|
296
|
+
# casting to int to avoid issues when num_inference_step is power of 3
|
297
|
+
timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
|
298
|
+
timesteps -= 1
|
299
|
+
else:
|
300
|
+
raise ValueError(
|
301
|
+
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'."
|
302
|
+
)
|
303
|
+
|
304
|
+
self.timesteps = torch.from_numpy(timesteps).to(device)
|
305
|
+
|
306
|
+
def get_variables(self, alpha_prod_t, alpha_prod_t_prev, alpha_prod_t_back=None):
|
307
|
+
lamb = ((alpha_prod_t / (1 - alpha_prod_t)) ** 0.5).log()
|
308
|
+
lamb_next = ((alpha_prod_t_prev / (1 - alpha_prod_t_prev)) ** 0.5).log()
|
309
|
+
h = lamb_next - lamb
|
310
|
+
|
311
|
+
if alpha_prod_t_back is not None:
|
312
|
+
lamb_previous = ((alpha_prod_t_back / (1 - alpha_prod_t_back)) ** 0.5).log()
|
313
|
+
h_last = lamb - lamb_previous
|
314
|
+
r = h_last / h
|
315
|
+
return h, r, lamb, lamb_next
|
316
|
+
else:
|
317
|
+
return h, None, lamb, lamb_next
|
318
|
+
|
319
|
+
def get_mult(self, h, r, alpha_prod_t, alpha_prod_t_prev, alpha_prod_t_back):
|
320
|
+
mult1 = ((1 - alpha_prod_t_prev) / (1 - alpha_prod_t)) ** 0.5 * (-h).exp()
|
321
|
+
mult2 = (-2 * h).expm1() * alpha_prod_t_prev**0.5
|
322
|
+
|
323
|
+
if alpha_prod_t_back is not None:
|
324
|
+
mult3 = 1 + 1 / (2 * r)
|
325
|
+
mult4 = 1 / (2 * r)
|
326
|
+
return mult1, mult2, mult3, mult4
|
327
|
+
else:
|
328
|
+
return mult1, mult2
|
329
|
+
|
330
|
+
def step(
|
331
|
+
self,
|
332
|
+
model_output: torch.Tensor,
|
333
|
+
old_pred_original_sample: torch.Tensor,
|
334
|
+
timestep: int,
|
335
|
+
timestep_back: int,
|
336
|
+
sample: torch.Tensor,
|
337
|
+
eta: float = 0.0,
|
338
|
+
use_clipped_model_output: bool = False,
|
339
|
+
generator=None,
|
340
|
+
variance_noise: Optional[torch.Tensor] = None,
|
341
|
+
return_dict: bool = False,
|
342
|
+
) -> Union[DDIMSchedulerOutput, Tuple]:
|
343
|
+
"""
|
344
|
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
345
|
+
process from the learned model outputs (most often the predicted noise).
|
346
|
+
|
347
|
+
Args:
|
348
|
+
model_output (`torch.Tensor`):
|
349
|
+
The direct output from learned diffusion model.
|
350
|
+
timestep (`float`):
|
351
|
+
The current discrete timestep in the diffusion chain.
|
352
|
+
sample (`torch.Tensor`):
|
353
|
+
A current instance of a sample created by the diffusion process.
|
354
|
+
eta (`float`):
|
355
|
+
The weight of noise for added noise in diffusion step.
|
356
|
+
use_clipped_model_output (`bool`, defaults to `False`):
|
357
|
+
If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
|
358
|
+
because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
|
359
|
+
clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
|
360
|
+
`use_clipped_model_output` has no effect.
|
361
|
+
generator (`torch.Generator`, *optional*):
|
362
|
+
A random number generator.
|
363
|
+
variance_noise (`torch.Tensor`):
|
364
|
+
Alternative to generating noise with `generator` by directly providing the noise for the variance
|
365
|
+
itself. Useful for methods such as [`CycleDiffusion`].
|
366
|
+
return_dict (`bool`, *optional*, defaults to `True`):
|
367
|
+
Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`.
|
368
|
+
|
369
|
+
Returns:
|
370
|
+
[`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`:
|
371
|
+
If return_dict is `True`, [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] is returned, otherwise a
|
372
|
+
tuple is returned where the first element is the sample tensor.
|
373
|
+
|
374
|
+
"""
|
375
|
+
if self.num_inference_steps is None:
|
376
|
+
raise ValueError(
|
377
|
+
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
378
|
+
)
|
379
|
+
|
380
|
+
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
|
381
|
+
# Ideally, read DDIM paper in-detail understanding
|
382
|
+
|
383
|
+
# Notation (<variable name> -> <name in paper>
|
384
|
+
# - pred_noise_t -> e_theta(x_t, t)
|
385
|
+
# - pred_original_sample -> f_theta(x_t, t) or x_0
|
386
|
+
# - std_dev_t -> sigma_t
|
387
|
+
# - eta -> η
|
388
|
+
# - pred_sample_direction -> "direction pointing to x_t"
|
389
|
+
# - pred_prev_sample -> "x_t-1"
|
390
|
+
|
391
|
+
# 1. get previous step value (=t-1)
|
392
|
+
prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
|
393
|
+
|
394
|
+
# 2. compute alphas, betas
|
395
|
+
alpha_prod_t = self.alphas_cumprod[timestep]
|
396
|
+
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
|
397
|
+
alpha_prod_t_back = self.alphas_cumprod[timestep_back] if timestep_back is not None else None
|
398
|
+
|
399
|
+
beta_prod_t = 1 - alpha_prod_t
|
400
|
+
|
401
|
+
# 3. compute predicted original sample from predicted noise also called
|
402
|
+
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
403
|
+
# To make style tests pass, commented out `pred_epsilon` as it is an unused variable
|
404
|
+
if self.config.prediction_type == "epsilon":
|
405
|
+
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
406
|
+
# pred_epsilon = model_output
|
407
|
+
elif self.config.prediction_type == "sample":
|
408
|
+
pred_original_sample = model_output
|
409
|
+
# pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
|
410
|
+
elif self.config.prediction_type == "v_prediction":
|
411
|
+
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
|
412
|
+
# pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
|
413
|
+
else:
|
414
|
+
raise ValueError(
|
415
|
+
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
|
416
|
+
" `v_prediction`"
|
417
|
+
)
|
418
|
+
|
419
|
+
h, r, lamb, lamb_next = self.get_variables(alpha_prod_t, alpha_prod_t_prev, alpha_prod_t_back)
|
420
|
+
mult = list(self.get_mult(h, r, alpha_prod_t, alpha_prod_t_prev, alpha_prod_t_back))
|
421
|
+
mult_noise = (1 - alpha_prod_t_prev) ** 0.5 * (1 - (-2 * h).exp()) ** 0.5
|
422
|
+
|
423
|
+
noise = randn_tensor(sample.shape, generator=generator, device=sample.device, dtype=sample.dtype)
|
424
|
+
prev_sample = mult[0] * sample - mult[1] * pred_original_sample + mult_noise * noise
|
425
|
+
|
426
|
+
if old_pred_original_sample is None or prev_timestep < 0:
|
427
|
+
# Save a network evaluation if all noise levels are 0 or on the first step
|
428
|
+
return prev_sample, pred_original_sample
|
429
|
+
else:
|
430
|
+
denoised_d = mult[2] * pred_original_sample - mult[3] * old_pred_original_sample
|
431
|
+
noise = randn_tensor(sample.shape, generator=generator, device=sample.device, dtype=sample.dtype)
|
432
|
+
x_advanced = mult[0] * sample - mult[1] * denoised_d + mult_noise * noise
|
433
|
+
|
434
|
+
prev_sample = x_advanced
|
435
|
+
|
436
|
+
if not return_dict:
|
437
|
+
return (prev_sample, pred_original_sample)
|
438
|
+
|
439
|
+
return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
|
440
|
+
|
441
|
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
|
442
|
+
def add_noise(
|
443
|
+
self,
|
444
|
+
original_samples: torch.Tensor,
|
445
|
+
noise: torch.Tensor,
|
446
|
+
timesteps: torch.IntTensor,
|
447
|
+
) -> torch.Tensor:
|
448
|
+
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
|
449
|
+
# Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
|
450
|
+
# for the subsequent add_noise calls
|
451
|
+
self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
|
452
|
+
alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
|
453
|
+
timesteps = timesteps.to(original_samples.device)
|
454
|
+
|
455
|
+
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
456
|
+
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
457
|
+
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
|
458
|
+
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
459
|
+
|
460
|
+
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
461
|
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
462
|
+
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
|
463
|
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
464
|
+
|
465
|
+
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
466
|
+
return noisy_samples
|
467
|
+
|
468
|
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
|
469
|
+
def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
|
470
|
+
# Make sure alphas_cumprod and timestep have same device and dtype as sample
|
471
|
+
self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
|
472
|
+
alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
|
473
|
+
timesteps = timesteps.to(sample.device)
|
474
|
+
|
475
|
+
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
476
|
+
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
477
|
+
while len(sqrt_alpha_prod.shape) < len(sample.shape):
|
478
|
+
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
479
|
+
|
480
|
+
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
481
|
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
482
|
+
while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
|
483
|
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
484
|
+
|
485
|
+
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
|
486
|
+
return velocity
|
487
|
+
|
488
|
+
def __len__(self):
|
489
|
+
return self.config.num_train_timesteps
|