diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,969 @@
1
+ # Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
21
+
22
+ from ...image_processor import VaeImageProcessor
23
+ from ...loaders import FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin
24
+ from ...models.autoencoders import AutoencoderKL
25
+ from ...models.transformers import FluxTransformer2DModel
26
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
27
+ from ...utils import (
28
+ USE_PEFT_BACKEND,
29
+ is_torch_xla_available,
30
+ logging,
31
+ replace_example_docstring,
32
+ scale_lora_layers,
33
+ unscale_lora_layers,
34
+ )
35
+ from ...utils.torch_utils import randn_tensor
36
+ from ..pipeline_utils import DiffusionPipeline
37
+ from .pipeline_output import FluxPipelineOutput
38
+
39
+
40
+ if is_torch_xla_available():
41
+ import torch_xla.core.xla_model as xm
42
+
43
+ XLA_AVAILABLE = True
44
+ else:
45
+ XLA_AVAILABLE = False
46
+
47
+
48
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
49
+
50
+ EXAMPLE_DOC_STRING = """
51
+ Examples:
52
+ ```py
53
+ >>> import torch
54
+ >>> from diffusers import FluxFillPipeline
55
+ >>> from diffusers.utils import load_image
56
+
57
+ >>> image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/cup.png")
58
+ >>> mask = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/cup_mask.png")
59
+
60
+ >>> pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16)
61
+ >>> pipe.enable_model_cpu_offload() # save some VRAM by offloading the model to CPU
62
+
63
+ >>> image = pipe(
64
+ ... prompt="a white paper cup",
65
+ ... image=image,
66
+ ... mask_image=mask,
67
+ ... height=1632,
68
+ ... width=1232,
69
+ ... guidance_scale=30,
70
+ ... num_inference_steps=50,
71
+ ... max_sequence_length=512,
72
+ ... generator=torch.Generator("cpu").manual_seed(0),
73
+ ... ).images[0]
74
+ >>> image.save("flux_fill.png")
75
+ ```
76
+ """
77
+
78
+
79
+ # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
80
+ def calculate_shift(
81
+ image_seq_len,
82
+ base_seq_len: int = 256,
83
+ max_seq_len: int = 4096,
84
+ base_shift: float = 0.5,
85
+ max_shift: float = 1.16,
86
+ ):
87
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
88
+ b = base_shift - m * base_seq_len
89
+ mu = image_seq_len * m + b
90
+ return mu
91
+
92
+
93
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
94
+ def retrieve_timesteps(
95
+ scheduler,
96
+ num_inference_steps: Optional[int] = None,
97
+ device: Optional[Union[str, torch.device]] = None,
98
+ timesteps: Optional[List[int]] = None,
99
+ sigmas: Optional[List[float]] = None,
100
+ **kwargs,
101
+ ):
102
+ r"""
103
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
104
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
105
+
106
+ Args:
107
+ scheduler (`SchedulerMixin`):
108
+ The scheduler to get timesteps from.
109
+ num_inference_steps (`int`):
110
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
111
+ must be `None`.
112
+ device (`str` or `torch.device`, *optional*):
113
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
114
+ timesteps (`List[int]`, *optional*):
115
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
116
+ `num_inference_steps` and `sigmas` must be `None`.
117
+ sigmas (`List[float]`, *optional*):
118
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
119
+ `num_inference_steps` and `timesteps` must be `None`.
120
+
121
+ Returns:
122
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
123
+ second element is the number of inference steps.
124
+ """
125
+ if timesteps is not None and sigmas is not None:
126
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
127
+ if timesteps is not None:
128
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
129
+ if not accepts_timesteps:
130
+ raise ValueError(
131
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
132
+ f" timestep schedules. Please check whether you are using the correct scheduler."
133
+ )
134
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
135
+ timesteps = scheduler.timesteps
136
+ num_inference_steps = len(timesteps)
137
+ elif sigmas is not None:
138
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
139
+ if not accept_sigmas:
140
+ raise ValueError(
141
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
142
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
143
+ )
144
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
145
+ timesteps = scheduler.timesteps
146
+ num_inference_steps = len(timesteps)
147
+ else:
148
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
149
+ timesteps = scheduler.timesteps
150
+ return timesteps, num_inference_steps
151
+
152
+
153
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
154
+ def retrieve_latents(
155
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
156
+ ):
157
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
158
+ return encoder_output.latent_dist.sample(generator)
159
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
160
+ return encoder_output.latent_dist.mode()
161
+ elif hasattr(encoder_output, "latents"):
162
+ return encoder_output.latents
163
+ else:
164
+ raise AttributeError("Could not access latents of provided encoder_output")
165
+
166
+
167
+ class FluxFillPipeline(
168
+ DiffusionPipeline,
169
+ FluxLoraLoaderMixin,
170
+ FromSingleFileMixin,
171
+ TextualInversionLoaderMixin,
172
+ ):
173
+ r"""
174
+ The Flux Fill pipeline for image inpainting/outpainting.
175
+
176
+ Reference: https://blackforestlabs.ai/flux-1-tools/
177
+
178
+ Args:
179
+ transformer ([`FluxTransformer2DModel`]):
180
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
181
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
182
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
183
+ vae ([`AutoencoderKL`]):
184
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
185
+ text_encoder ([`CLIPTextModel`]):
186
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
187
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
188
+ text_encoder_2 ([`T5EncoderModel`]):
189
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
190
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
191
+ tokenizer (`CLIPTokenizer`):
192
+ Tokenizer of class
193
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
194
+ tokenizer_2 (`T5TokenizerFast`):
195
+ Second Tokenizer of class
196
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
197
+ """
198
+
199
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
200
+ _optional_components = []
201
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
202
+
203
+ def __init__(
204
+ self,
205
+ scheduler: FlowMatchEulerDiscreteScheduler,
206
+ vae: AutoencoderKL,
207
+ text_encoder: CLIPTextModel,
208
+ tokenizer: CLIPTokenizer,
209
+ text_encoder_2: T5EncoderModel,
210
+ tokenizer_2: T5TokenizerFast,
211
+ transformer: FluxTransformer2DModel,
212
+ ):
213
+ super().__init__()
214
+
215
+ self.register_modules(
216
+ vae=vae,
217
+ text_encoder=text_encoder,
218
+ text_encoder_2=text_encoder_2,
219
+ tokenizer=tokenizer,
220
+ tokenizer_2=tokenizer_2,
221
+ transformer=transformer,
222
+ scheduler=scheduler,
223
+ )
224
+ self.vae_scale_factor = (
225
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
226
+ )
227
+ # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
228
+ # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
229
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
230
+ self.mask_processor = VaeImageProcessor(
231
+ vae_scale_factor=self.vae_scale_factor * 2,
232
+ vae_latent_channels=self.vae.config.latent_channels,
233
+ do_normalize=False,
234
+ do_binarize=True,
235
+ do_convert_grayscale=True,
236
+ )
237
+ self.tokenizer_max_length = (
238
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
239
+ )
240
+ self.default_sample_size = 128
241
+
242
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds
243
+ def _get_t5_prompt_embeds(
244
+ self,
245
+ prompt: Union[str, List[str]] = None,
246
+ num_images_per_prompt: int = 1,
247
+ max_sequence_length: int = 512,
248
+ device: Optional[torch.device] = None,
249
+ dtype: Optional[torch.dtype] = None,
250
+ ):
251
+ device = device or self._execution_device
252
+ dtype = dtype or self.text_encoder.dtype
253
+
254
+ prompt = [prompt] if isinstance(prompt, str) else prompt
255
+ batch_size = len(prompt)
256
+
257
+ if isinstance(self, TextualInversionLoaderMixin):
258
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)
259
+
260
+ text_inputs = self.tokenizer_2(
261
+ prompt,
262
+ padding="max_length",
263
+ max_length=max_sequence_length,
264
+ truncation=True,
265
+ return_length=False,
266
+ return_overflowing_tokens=False,
267
+ return_tensors="pt",
268
+ )
269
+ text_input_ids = text_inputs.input_ids
270
+ untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
271
+
272
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
273
+ removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
274
+ logger.warning(
275
+ "The following part of your input was truncated because `max_sequence_length` is set to "
276
+ f" {max_sequence_length} tokens: {removed_text}"
277
+ )
278
+
279
+ prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
280
+
281
+ dtype = self.text_encoder_2.dtype
282
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
283
+
284
+ _, seq_len, _ = prompt_embeds.shape
285
+
286
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
287
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
288
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
289
+
290
+ return prompt_embeds
291
+
292
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds
293
+ def _get_clip_prompt_embeds(
294
+ self,
295
+ prompt: Union[str, List[str]],
296
+ num_images_per_prompt: int = 1,
297
+ device: Optional[torch.device] = None,
298
+ ):
299
+ device = device or self._execution_device
300
+
301
+ prompt = [prompt] if isinstance(prompt, str) else prompt
302
+ batch_size = len(prompt)
303
+
304
+ if isinstance(self, TextualInversionLoaderMixin):
305
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
306
+
307
+ text_inputs = self.tokenizer(
308
+ prompt,
309
+ padding="max_length",
310
+ max_length=self.tokenizer_max_length,
311
+ truncation=True,
312
+ return_overflowing_tokens=False,
313
+ return_length=False,
314
+ return_tensors="pt",
315
+ )
316
+
317
+ text_input_ids = text_inputs.input_ids
318
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
319
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
320
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
321
+ logger.warning(
322
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
323
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
324
+ )
325
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
326
+
327
+ # Use pooled output of CLIPTextModel
328
+ prompt_embeds = prompt_embeds.pooler_output
329
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
330
+
331
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
332
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
333
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
334
+
335
+ return prompt_embeds
336
+
337
+ def prepare_mask_latents(
338
+ self,
339
+ mask,
340
+ masked_image,
341
+ batch_size,
342
+ num_channels_latents,
343
+ num_images_per_prompt,
344
+ height,
345
+ width,
346
+ dtype,
347
+ device,
348
+ generator,
349
+ ):
350
+ # 1. calculate the height and width of the latents
351
+ # VAE applies 8x compression on images but we must also account for packing which requires
352
+ # latent height and width to be divisible by 2.
353
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
354
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
355
+
356
+ # 2. encode the masked image
357
+ if masked_image.shape[1] == num_channels_latents:
358
+ masked_image_latents = masked_image
359
+ else:
360
+ masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator)
361
+
362
+ masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
363
+ masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
364
+
365
+ # 3. duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
366
+ batch_size = batch_size * num_images_per_prompt
367
+ if mask.shape[0] < batch_size:
368
+ if not batch_size % mask.shape[0] == 0:
369
+ raise ValueError(
370
+ "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
371
+ f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
372
+ " of masks that you pass is divisible by the total requested batch size."
373
+ )
374
+ mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
375
+ if masked_image_latents.shape[0] < batch_size:
376
+ if not batch_size % masked_image_latents.shape[0] == 0:
377
+ raise ValueError(
378
+ "The passed images and the required batch size don't match. Images are supposed to be duplicated"
379
+ f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
380
+ " Make sure the number of images that you pass is divisible by the total requested batch size."
381
+ )
382
+ masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
383
+
384
+ # 4. pack the masked_image_latents
385
+ # batch_size, num_channels_latents, height, width -> batch_size, height//2 * width//2 , num_channels_latents*4
386
+ masked_image_latents = self._pack_latents(
387
+ masked_image_latents,
388
+ batch_size,
389
+ num_channels_latents,
390
+ height,
391
+ width,
392
+ )
393
+
394
+ # 5.resize mask to latents shape we we concatenate the mask to the latents
395
+ mask = mask[:, 0, :, :] # batch_size, 8 * height, 8 * width (mask has not been 8x compressed)
396
+ mask = mask.view(
397
+ batch_size, height, self.vae_scale_factor, width, self.vae_scale_factor
398
+ ) # batch_size, height, 8, width, 8
399
+ mask = mask.permute(0, 2, 4, 1, 3) # batch_size, 8, 8, height, width
400
+ mask = mask.reshape(
401
+ batch_size, self.vae_scale_factor * self.vae_scale_factor, height, width
402
+ ) # batch_size, 8*8, height, width
403
+
404
+ # 6. pack the mask:
405
+ # batch_size, 64, height, width -> batch_size, height//2 * width//2 , 64*2*2
406
+ mask = self._pack_latents(
407
+ mask,
408
+ batch_size,
409
+ self.vae_scale_factor * self.vae_scale_factor,
410
+ height,
411
+ width,
412
+ )
413
+ mask = mask.to(device=device, dtype=dtype)
414
+
415
+ return mask, masked_image_latents
416
+
417
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt
418
+ def encode_prompt(
419
+ self,
420
+ prompt: Union[str, List[str]],
421
+ prompt_2: Union[str, List[str]],
422
+ device: Optional[torch.device] = None,
423
+ num_images_per_prompt: int = 1,
424
+ prompt_embeds: Optional[torch.FloatTensor] = None,
425
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
426
+ max_sequence_length: int = 512,
427
+ lora_scale: Optional[float] = None,
428
+ ):
429
+ r"""
430
+
431
+ Args:
432
+ prompt (`str` or `List[str]`, *optional*):
433
+ prompt to be encoded
434
+ prompt_2 (`str` or `List[str]`, *optional*):
435
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
436
+ used in all text-encoders
437
+ device: (`torch.device`):
438
+ torch device
439
+ num_images_per_prompt (`int`):
440
+ number of images that should be generated per prompt
441
+ prompt_embeds (`torch.FloatTensor`, *optional*):
442
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
443
+ provided, text embeddings will be generated from `prompt` input argument.
444
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
445
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
446
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
447
+ lora_scale (`float`, *optional*):
448
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
449
+ """
450
+ device = device or self._execution_device
451
+
452
+ # set lora scale so that monkey patched LoRA
453
+ # function of text encoder can correctly access it
454
+ if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
455
+ self._lora_scale = lora_scale
456
+
457
+ # dynamically adjust the LoRA scale
458
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
459
+ scale_lora_layers(self.text_encoder, lora_scale)
460
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
461
+ scale_lora_layers(self.text_encoder_2, lora_scale)
462
+
463
+ prompt = [prompt] if isinstance(prompt, str) else prompt
464
+
465
+ if prompt_embeds is None:
466
+ prompt_2 = prompt_2 or prompt
467
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
468
+
469
+ # We only use the pooled prompt output from the CLIPTextModel
470
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
471
+ prompt=prompt,
472
+ device=device,
473
+ num_images_per_prompt=num_images_per_prompt,
474
+ )
475
+ prompt_embeds = self._get_t5_prompt_embeds(
476
+ prompt=prompt_2,
477
+ num_images_per_prompt=num_images_per_prompt,
478
+ max_sequence_length=max_sequence_length,
479
+ device=device,
480
+ )
481
+
482
+ if self.text_encoder is not None:
483
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
484
+ # Retrieve the original scale by scaling back the LoRA layers
485
+ unscale_lora_layers(self.text_encoder, lora_scale)
486
+
487
+ if self.text_encoder_2 is not None:
488
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
489
+ # Retrieve the original scale by scaling back the LoRA layers
490
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
491
+
492
+ dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
493
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
494
+
495
+ return prompt_embeds, pooled_prompt_embeds, text_ids
496
+
497
+ def check_inputs(
498
+ self,
499
+ prompt,
500
+ prompt_2,
501
+ height,
502
+ width,
503
+ prompt_embeds=None,
504
+ pooled_prompt_embeds=None,
505
+ callback_on_step_end_tensor_inputs=None,
506
+ max_sequence_length=None,
507
+ image=None,
508
+ mask_image=None,
509
+ masked_image_latents=None,
510
+ ):
511
+ if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
512
+ logger.warning(
513
+ f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
514
+ )
515
+
516
+ if callback_on_step_end_tensor_inputs is not None and not all(
517
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
518
+ ):
519
+ raise ValueError(
520
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
521
+ )
522
+
523
+ if prompt is not None and prompt_embeds is not None:
524
+ raise ValueError(
525
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
526
+ " only forward one of the two."
527
+ )
528
+ elif prompt_2 is not None and prompt_embeds is not None:
529
+ raise ValueError(
530
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
531
+ " only forward one of the two."
532
+ )
533
+ elif prompt is None and prompt_embeds is None:
534
+ raise ValueError(
535
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
536
+ )
537
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
538
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
539
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
540
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
541
+
542
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
543
+ raise ValueError(
544
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
545
+ )
546
+
547
+ if max_sequence_length is not None and max_sequence_length > 512:
548
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
549
+
550
+ if image is not None and masked_image_latents is not None:
551
+ raise ValueError(
552
+ "Please provide either `image` or `masked_image_latents`, `masked_image_latents` should not be passed."
553
+ )
554
+
555
+ if image is not None and mask_image is None:
556
+ raise ValueError("Please provide `mask_image` when passing `image`.")
557
+
558
+ @staticmethod
559
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids
560
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
561
+ latent_image_ids = torch.zeros(height, width, 3)
562
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
563
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
564
+
565
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
566
+
567
+ latent_image_ids = latent_image_ids.reshape(
568
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
569
+ )
570
+
571
+ return latent_image_ids.to(device=device, dtype=dtype)
572
+
573
+ @staticmethod
574
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents
575
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
576
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
577
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
578
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
579
+
580
+ return latents
581
+
582
+ @staticmethod
583
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents
584
+ def _unpack_latents(latents, height, width, vae_scale_factor):
585
+ batch_size, num_patches, channels = latents.shape
586
+
587
+ # VAE applies 8x compression on images but we must also account for packing which requires
588
+ # latent height and width to be divisible by 2.
589
+ height = 2 * (int(height) // (vae_scale_factor * 2))
590
+ width = 2 * (int(width) // (vae_scale_factor * 2))
591
+
592
+ latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
593
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
594
+
595
+ latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
596
+
597
+ return latents
598
+
599
+ def enable_vae_slicing(self):
600
+ r"""
601
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
602
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
603
+ """
604
+ self.vae.enable_slicing()
605
+
606
+ def disable_vae_slicing(self):
607
+ r"""
608
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
609
+ computing decoding in one step.
610
+ """
611
+ self.vae.disable_slicing()
612
+
613
+ def enable_vae_tiling(self):
614
+ r"""
615
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
616
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
617
+ processing larger images.
618
+ """
619
+ self.vae.enable_tiling()
620
+
621
+ def disable_vae_tiling(self):
622
+ r"""
623
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
624
+ computing decoding in one step.
625
+ """
626
+ self.vae.disable_tiling()
627
+
628
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.prepare_latents
629
+ def prepare_latents(
630
+ self,
631
+ batch_size,
632
+ num_channels_latents,
633
+ height,
634
+ width,
635
+ dtype,
636
+ device,
637
+ generator,
638
+ latents=None,
639
+ ):
640
+ # VAE applies 8x compression on images but we must also account for packing which requires
641
+ # latent height and width to be divisible by 2.
642
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
643
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
644
+
645
+ shape = (batch_size, num_channels_latents, height, width)
646
+
647
+ if latents is not None:
648
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
649
+ return latents.to(device=device, dtype=dtype), latent_image_ids
650
+
651
+ if isinstance(generator, list) and len(generator) != batch_size:
652
+ raise ValueError(
653
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
654
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
655
+ )
656
+
657
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
658
+ latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
659
+
660
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
661
+
662
+ return latents, latent_image_ids
663
+
664
+ @property
665
+ def guidance_scale(self):
666
+ return self._guidance_scale
667
+
668
+ @property
669
+ def joint_attention_kwargs(self):
670
+ return self._joint_attention_kwargs
671
+
672
+ @property
673
+ def num_timesteps(self):
674
+ return self._num_timesteps
675
+
676
+ @property
677
+ def interrupt(self):
678
+ return self._interrupt
679
+
680
+ @torch.no_grad()
681
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
682
+ def __call__(
683
+ self,
684
+ prompt: Union[str, List[str]] = None,
685
+ prompt_2: Optional[Union[str, List[str]]] = None,
686
+ image: Optional[torch.FloatTensor] = None,
687
+ mask_image: Optional[torch.FloatTensor] = None,
688
+ masked_image_latents: Optional[torch.FloatTensor] = None,
689
+ height: Optional[int] = None,
690
+ width: Optional[int] = None,
691
+ num_inference_steps: int = 50,
692
+ sigmas: Optional[List[float]] = None,
693
+ guidance_scale: float = 30.0,
694
+ num_images_per_prompt: Optional[int] = 1,
695
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
696
+ latents: Optional[torch.FloatTensor] = None,
697
+ prompt_embeds: Optional[torch.FloatTensor] = None,
698
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
699
+ output_type: Optional[str] = "pil",
700
+ return_dict: bool = True,
701
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
702
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
703
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
704
+ max_sequence_length: int = 512,
705
+ ):
706
+ r"""
707
+ Function invoked when calling the pipeline for generation.
708
+
709
+ Args:
710
+ prompt (`str` or `List[str]`, *optional*):
711
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
712
+ instead.
713
+ prompt_2 (`str` or `List[str]`, *optional*):
714
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
715
+ will be used instead
716
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
717
+ `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
718
+ numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
719
+ or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
720
+ list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)`.
721
+ mask_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
722
+ `Image`, numpy array or tensor representing an image batch to mask `image`. White pixels in the mask
723
+ are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
724
+ single channel (luminance) before use. If it's a numpy array or pytorch tensor, it should contain one
725
+ color channel (L) instead of 3, so the expected shape for pytorch tensor would be `(B, 1, H, W)`, `(B,
726
+ H, W)`, `(1, H, W)`, `(H, W)`. And for numpy array would be for `(B, H, W, 1)`, `(B, H, W)`, `(H, W,
727
+ 1)`, or `(H, W)`.
728
+ mask_image_latent (`torch.Tensor`, `List[torch.Tensor]`):
729
+ `Tensor` representing an image batch to mask `image` generated by VAE. If not provided, the mask
730
+ latents tensor will ge generated by `mask_image`.
731
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
732
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
733
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
734
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
735
+ num_inference_steps (`int`, *optional*, defaults to 50):
736
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
737
+ expense of slower inference.
738
+ sigmas (`List[float]`, *optional*):
739
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
740
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
741
+ will be used.
742
+ guidance_scale (`float`, *optional*, defaults to 7.0):
743
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
744
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
745
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
746
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
747
+ usually at the expense of lower image quality.
748
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
749
+ The number of images to generate per prompt.
750
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
751
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
752
+ to make generation deterministic.
753
+ latents (`torch.FloatTensor`, *optional*):
754
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
755
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
756
+ tensor will ge generated by sampling using the supplied random `generator`.
757
+ prompt_embeds (`torch.FloatTensor`, *optional*):
758
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
759
+ provided, text embeddings will be generated from `prompt` input argument.
760
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
761
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
762
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
763
+ output_type (`str`, *optional*, defaults to `"pil"`):
764
+ The output format of the generate image. Choose between
765
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
766
+ return_dict (`bool`, *optional*, defaults to `True`):
767
+ Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
768
+ joint_attention_kwargs (`dict`, *optional*):
769
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
770
+ `self.processor` in
771
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
772
+ callback_on_step_end (`Callable`, *optional*):
773
+ A function that calls at the end of each denoising steps during the inference. The function is called
774
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
775
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
776
+ `callback_on_step_end_tensor_inputs`.
777
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
778
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
779
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
780
+ `._callback_tensor_inputs` attribute of your pipeline class.
781
+ max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
782
+
783
+ Examples:
784
+
785
+ Returns:
786
+ [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
787
+ is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
788
+ images.
789
+ """
790
+
791
+ height = height or self.default_sample_size * self.vae_scale_factor
792
+ width = width or self.default_sample_size * self.vae_scale_factor
793
+
794
+ # 1. Check inputs. Raise error if not correct
795
+ self.check_inputs(
796
+ prompt,
797
+ prompt_2,
798
+ height,
799
+ width,
800
+ prompt_embeds=prompt_embeds,
801
+ pooled_prompt_embeds=pooled_prompt_embeds,
802
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
803
+ max_sequence_length=max_sequence_length,
804
+ image=image,
805
+ mask_image=mask_image,
806
+ masked_image_latents=masked_image_latents,
807
+ )
808
+
809
+ self._guidance_scale = guidance_scale
810
+ self._joint_attention_kwargs = joint_attention_kwargs
811
+ self._interrupt = False
812
+
813
+ # 2. Define call parameters
814
+ if prompt is not None and isinstance(prompt, str):
815
+ batch_size = 1
816
+ elif prompt is not None and isinstance(prompt, list):
817
+ batch_size = len(prompt)
818
+ else:
819
+ batch_size = prompt_embeds.shape[0]
820
+
821
+ device = self._execution_device
822
+
823
+ # 3. Prepare prompt embeddings
824
+ lora_scale = (
825
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
826
+ )
827
+ (
828
+ prompt_embeds,
829
+ pooled_prompt_embeds,
830
+ text_ids,
831
+ ) = self.encode_prompt(
832
+ prompt=prompt,
833
+ prompt_2=prompt_2,
834
+ prompt_embeds=prompt_embeds,
835
+ pooled_prompt_embeds=pooled_prompt_embeds,
836
+ device=device,
837
+ num_images_per_prompt=num_images_per_prompt,
838
+ max_sequence_length=max_sequence_length,
839
+ lora_scale=lora_scale,
840
+ )
841
+
842
+ # 4. Prepare latent variables
843
+ num_channels_latents = self.vae.config.latent_channels
844
+ latents, latent_image_ids = self.prepare_latents(
845
+ batch_size * num_images_per_prompt,
846
+ num_channels_latents,
847
+ height,
848
+ width,
849
+ prompt_embeds.dtype,
850
+ device,
851
+ generator,
852
+ latents,
853
+ )
854
+
855
+ # 5. Prepare mask and masked image latents
856
+ if masked_image_latents is not None:
857
+ masked_image_latents = masked_image_latents.to(latents.device)
858
+ else:
859
+ image = self.image_processor.preprocess(image, height=height, width=width)
860
+ mask_image = self.mask_processor.preprocess(mask_image, height=height, width=width)
861
+
862
+ masked_image = image * (1 - mask_image)
863
+ masked_image = masked_image.to(device=device, dtype=prompt_embeds.dtype)
864
+
865
+ height, width = image.shape[-2:]
866
+ mask, masked_image_latents = self.prepare_mask_latents(
867
+ mask_image,
868
+ masked_image,
869
+ batch_size,
870
+ num_channels_latents,
871
+ num_images_per_prompt,
872
+ height,
873
+ width,
874
+ prompt_embeds.dtype,
875
+ device,
876
+ generator,
877
+ )
878
+ masked_image_latents = torch.cat((masked_image_latents, mask), dim=-1)
879
+
880
+ # 6. Prepare timesteps
881
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
882
+ image_seq_len = latents.shape[1]
883
+ mu = calculate_shift(
884
+ image_seq_len,
885
+ self.scheduler.config.base_image_seq_len,
886
+ self.scheduler.config.max_image_seq_len,
887
+ self.scheduler.config.base_shift,
888
+ self.scheduler.config.max_shift,
889
+ )
890
+ timesteps, num_inference_steps = retrieve_timesteps(
891
+ self.scheduler,
892
+ num_inference_steps,
893
+ device,
894
+ sigmas=sigmas,
895
+ mu=mu,
896
+ )
897
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
898
+ self._num_timesteps = len(timesteps)
899
+
900
+ # handle guidance
901
+ if self.transformer.config.guidance_embeds:
902
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
903
+ guidance = guidance.expand(latents.shape[0])
904
+ else:
905
+ guidance = None
906
+
907
+ # 7. Denoising loop
908
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
909
+ for i, t in enumerate(timesteps):
910
+ if self.interrupt:
911
+ continue
912
+
913
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
914
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
915
+
916
+ noise_pred = self.transformer(
917
+ hidden_states=torch.cat((latents, masked_image_latents), dim=2),
918
+ timestep=timestep / 1000,
919
+ guidance=guidance,
920
+ pooled_projections=pooled_prompt_embeds,
921
+ encoder_hidden_states=prompt_embeds,
922
+ txt_ids=text_ids,
923
+ img_ids=latent_image_ids,
924
+ joint_attention_kwargs=self.joint_attention_kwargs,
925
+ return_dict=False,
926
+ )[0]
927
+
928
+ # compute the previous noisy sample x_t -> x_t-1
929
+ latents_dtype = latents.dtype
930
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
931
+
932
+ if latents.dtype != latents_dtype:
933
+ if torch.backends.mps.is_available():
934
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
935
+ latents = latents.to(latents_dtype)
936
+
937
+ if callback_on_step_end is not None:
938
+ callback_kwargs = {}
939
+ for k in callback_on_step_end_tensor_inputs:
940
+ callback_kwargs[k] = locals()[k]
941
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
942
+
943
+ latents = callback_outputs.pop("latents", latents)
944
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
945
+
946
+ # call the callback, if provided
947
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
948
+ progress_bar.update()
949
+
950
+ if XLA_AVAILABLE:
951
+ xm.mark_step()
952
+
953
+ # 8. Post-process the image
954
+ if output_type == "latent":
955
+ image = latents
956
+
957
+ else:
958
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
959
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
960
+ image = self.vae.decode(latents, return_dict=False)[0]
961
+ image = self.image_processor.postprocess(image, output_type=output_type)
962
+
963
+ # Offload all models
964
+ self.maybe_free_model_hooks()
965
+
966
+ if not return_dict:
967
+ return (image,)
968
+
969
+ return FluxPipelineOutput(images=image)