diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -14,6 +14,7 @@
14
14
 
15
15
  # DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver and https://github.com/NVlabs/edm
16
16
 
17
+ import math
17
18
  from typing import List, Optional, Tuple, Union
18
19
 
19
20
  import numpy as np
@@ -44,6 +45,10 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
44
45
  range is [0.2, 80.0].
45
46
  sigma_data (`float`, *optional*, defaults to 0.5):
46
47
  The standard deviation of the data distribution. This is set to 0.5 in the EDM paper [1].
48
+ sigma_schedule (`str`, *optional*, defaults to `karras`):
49
+ Sigma schedule to compute the `sigmas`. By default, we the schedule introduced in the EDM paper
50
+ (https://arxiv.org/abs/2206.00364). Other acceptable value is "exponential". The exponential schedule was
51
+ incorporated in this model: https://huggingface.co/stabilityai/cosxl.
47
52
  num_train_timesteps (`int`, defaults to 1000):
48
53
  The number of diffusion steps to train the model.
49
54
  solver_order (`int`, defaults to 2):
@@ -62,10 +67,9 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
62
67
  The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
63
68
  `algorithm_type="dpmsolver++"`.
64
69
  algorithm_type (`str`, defaults to `dpmsolver++`):
65
- Algorithm type for the solver; can be `dpmsolver++` or `sde-dpmsolver++`. The
66
- `dpmsolver++` type implements the algorithms in the
67
- [DPMSolver++](https://huggingface.co/papers/2211.01095) paper. It is recommended to use `dpmsolver++` or
68
- `sde-dpmsolver++` with `solver_order=2` for guided sampling like in Stable Diffusion.
70
+ Algorithm type for the solver; can be `dpmsolver++` or `sde-dpmsolver++`. The `dpmsolver++` type implements
71
+ the algorithms in the [DPMSolver++](https://huggingface.co/papers/2211.01095) paper. It is recommended to
72
+ use `dpmsolver++` or `sde-dpmsolver++` with `solver_order=2` for guided sampling like in Stable Diffusion.
69
73
  solver_type (`str`, defaults to `midpoint`):
70
74
  Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
71
75
  sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
@@ -77,8 +81,8 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
77
81
  richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference
78
82
  steps, but sometimes may result in blurring.
79
83
  final_sigmas_type (`str`, defaults to `"zero"`):
80
- The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final sigma
81
- is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
84
+ The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
85
+ sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
82
86
  """
83
87
 
84
88
  _compatibles = []
@@ -90,6 +94,7 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
90
94
  sigma_min: float = 0.002,
91
95
  sigma_max: float = 80.0,
92
96
  sigma_data: float = 0.5,
97
+ sigma_schedule: str = "karras",
93
98
  num_train_timesteps: int = 1000,
94
99
  prediction_type: str = "epsilon",
95
100
  rho: float = 7.0,
@@ -114,7 +119,7 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
114
119
  if solver_type in ["logrho", "bh1", "bh2"]:
115
120
  self.register_to_config(solver_type="midpoint")
116
121
  else:
117
- raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}")
122
+ raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
118
123
 
119
124
  if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++"] and final_sigmas_type == "zero":
120
125
  raise ValueError(
@@ -122,10 +127,14 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
122
127
  )
123
128
 
124
129
  ramp = torch.linspace(0, 1, num_train_timesteps)
125
- sigmas = self._compute_sigmas(ramp)
130
+ if sigma_schedule == "karras":
131
+ sigmas = self._compute_karras_sigmas(ramp)
132
+ elif sigma_schedule == "exponential":
133
+ sigmas = self._compute_exponential_sigmas(ramp)
134
+
126
135
  self.timesteps = self.precondition_noise(sigmas)
127
136
 
128
- self.sigmas = self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
137
+ self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
129
138
 
130
139
  # setable values
131
140
  self.num_inference_steps = None
@@ -143,7 +152,7 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
143
152
  @property
144
153
  def step_index(self):
145
154
  """
146
- The index counter for current timestep. It will increae 1 after each scheduler step.
155
+ The index counter for current timestep. It will increase 1 after each scheduler step.
147
156
  """
148
157
  return self._step_index
149
158
 
@@ -197,21 +206,19 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
197
206
  return denoised
198
207
 
199
208
  # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.scale_model_input
200
- def scale_model_input(
201
- self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
202
- ) -> torch.FloatTensor:
209
+ def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor:
203
210
  """
204
211
  Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
205
212
  current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
206
213
 
207
214
  Args:
208
- sample (`torch.FloatTensor`):
215
+ sample (`torch.Tensor`):
209
216
  The input sample.
210
217
  timestep (`int`, *optional*):
211
218
  The current timestep in the diffusion chain.
212
219
 
213
220
  Returns:
214
- `torch.FloatTensor`:
221
+ `torch.Tensor`:
215
222
  A scaled input sample.
216
223
  """
217
224
  if self.step_index is None:
@@ -236,10 +243,13 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
236
243
 
237
244
  self.num_inference_steps = num_inference_steps
238
245
 
239
- ramp = np.linspace(0, 1, self.num_inference_steps)
240
- sigmas = self._compute_sigmas(ramp)
246
+ ramp = torch.linspace(0, 1, self.num_inference_steps)
247
+ if self.config.sigma_schedule == "karras":
248
+ sigmas = self._compute_karras_sigmas(ramp)
249
+ elif self.config.sigma_schedule == "exponential":
250
+ sigmas = self._compute_exponential_sigmas(ramp)
241
251
 
242
- sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
252
+ sigmas = sigmas.to(dtype=torch.float32, device=device)
243
253
  self.timesteps = self.precondition_noise(sigmas)
244
254
 
245
255
  if self.config.final_sigmas_type == "sigma_min":
@@ -263,10 +273,9 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
263
273
  self._begin_index = None
264
274
  self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
265
275
 
266
- # Taken from https://github.com/crowsonkb/k-diffusion/blob/686dbad0f39640ea25c8a8c6a6e56bb40eacefa2/k_diffusion/sampling.py#L17
267
- def _compute_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.FloatTensor:
276
+ # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_karras_sigmas
277
+ def _compute_karras_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor:
268
278
  """Constructs the noise schedule of Karras et al. (2022)."""
269
-
270
279
  sigma_min = sigma_min or self.config.sigma_min
271
280
  sigma_max = sigma_max or self.config.sigma_max
272
281
 
@@ -276,8 +285,19 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
276
285
  sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
277
286
  return sigmas
278
287
 
288
+ # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_exponential_sigmas
289
+ def _compute_exponential_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor:
290
+ """Implementation closely follows k-diffusion.
291
+
292
+ https://github.com/crowsonkb/k-diffusion/blob/6ab5146d4a5ef63901326489f31f1d8e7dd36b48/k_diffusion/sampling.py#L26
293
+ """
294
+ sigma_min = sigma_min or self.config.sigma_min
295
+ sigma_max = sigma_max or self.config.sigma_max
296
+ sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), len(ramp)).exp().flip(0)
297
+ return sigmas
298
+
279
299
  # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
280
- def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
300
+ def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
281
301
  """
282
302
  "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
283
303
  prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
@@ -342,9 +362,9 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
342
362
 
343
363
  def convert_model_output(
344
364
  self,
345
- model_output: torch.FloatTensor,
346
- sample: torch.FloatTensor = None,
347
- ) -> torch.FloatTensor:
365
+ model_output: torch.Tensor,
366
+ sample: torch.Tensor = None,
367
+ ) -> torch.Tensor:
348
368
  """
349
369
  Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
350
370
  designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
@@ -358,13 +378,13 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
358
378
  </Tip>
359
379
 
360
380
  Args:
361
- model_output (`torch.FloatTensor`):
381
+ model_output (`torch.Tensor`):
362
382
  The direct output from the learned diffusion model.
363
- sample (`torch.FloatTensor`):
383
+ sample (`torch.Tensor`):
364
384
  A current instance of a sample created by the diffusion process.
365
385
 
366
386
  Returns:
367
- `torch.FloatTensor`:
387
+ `torch.Tensor`:
368
388
  The converted model output.
369
389
  """
370
390
  sigma = self.sigmas[self.step_index]
@@ -377,21 +397,21 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
377
397
 
378
398
  def dpm_solver_first_order_update(
379
399
  self,
380
- model_output: torch.FloatTensor,
381
- sample: torch.FloatTensor = None,
382
- noise: Optional[torch.FloatTensor] = None,
383
- ) -> torch.FloatTensor:
400
+ model_output: torch.Tensor,
401
+ sample: torch.Tensor = None,
402
+ noise: Optional[torch.Tensor] = None,
403
+ ) -> torch.Tensor:
384
404
  """
385
405
  One step for the first-order DPMSolver (equivalent to DDIM).
386
406
 
387
407
  Args:
388
- model_output (`torch.FloatTensor`):
408
+ model_output (`torch.Tensor`):
389
409
  The direct output from the learned diffusion model.
390
- sample (`torch.FloatTensor`):
410
+ sample (`torch.Tensor`):
391
411
  A current instance of a sample created by the diffusion process.
392
412
 
393
413
  Returns:
394
- `torch.FloatTensor`:
414
+ `torch.Tensor`:
395
415
  The sample tensor at the previous timestep.
396
416
  """
397
417
  sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
@@ -415,21 +435,21 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
415
435
 
416
436
  def multistep_dpm_solver_second_order_update(
417
437
  self,
418
- model_output_list: List[torch.FloatTensor],
419
- sample: torch.FloatTensor = None,
420
- noise: Optional[torch.FloatTensor] = None,
421
- ) -> torch.FloatTensor:
438
+ model_output_list: List[torch.Tensor],
439
+ sample: torch.Tensor = None,
440
+ noise: Optional[torch.Tensor] = None,
441
+ ) -> torch.Tensor:
422
442
  """
423
443
  One step for the second-order multistep DPMSolver.
424
444
 
425
445
  Args:
426
- model_output_list (`List[torch.FloatTensor]`):
446
+ model_output_list (`List[torch.Tensor]`):
427
447
  The direct outputs from learned diffusion model at current and latter timesteps.
428
- sample (`torch.FloatTensor`):
448
+ sample (`torch.Tensor`):
429
449
  A current instance of a sample created by the diffusion process.
430
450
 
431
451
  Returns:
432
- `torch.FloatTensor`:
452
+ `torch.Tensor`:
433
453
  The sample tensor at the previous timestep.
434
454
  """
435
455
  sigma_t, sigma_s0, sigma_s1 = (
@@ -486,20 +506,20 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
486
506
 
487
507
  def multistep_dpm_solver_third_order_update(
488
508
  self,
489
- model_output_list: List[torch.FloatTensor],
490
- sample: torch.FloatTensor = None,
491
- ) -> torch.FloatTensor:
509
+ model_output_list: List[torch.Tensor],
510
+ sample: torch.Tensor = None,
511
+ ) -> torch.Tensor:
492
512
  """
493
513
  One step for the third-order multistep DPMSolver.
494
514
 
495
515
  Args:
496
- model_output_list (`List[torch.FloatTensor]`):
516
+ model_output_list (`List[torch.Tensor]`):
497
517
  The direct outputs from learned diffusion model at current and latter timesteps.
498
- sample (`torch.FloatTensor`):
518
+ sample (`torch.Tensor`):
499
519
  A current instance of a sample created by diffusion process.
500
520
 
501
521
  Returns:
502
- `torch.FloatTensor`:
522
+ `torch.Tensor`:
503
523
  The sample tensor at the previous timestep.
504
524
  """
505
525
  sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
@@ -573,9 +593,9 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
573
593
 
574
594
  def step(
575
595
  self,
576
- model_output: torch.FloatTensor,
577
- timestep: int,
578
- sample: torch.FloatTensor,
596
+ model_output: torch.Tensor,
597
+ timestep: Union[int, torch.Tensor],
598
+ sample: torch.Tensor,
579
599
  generator=None,
580
600
  return_dict: bool = True,
581
601
  ) -> Union[SchedulerOutput, Tuple]:
@@ -584,11 +604,11 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
584
604
  the multistep DPMSolver.
585
605
 
586
606
  Args:
587
- model_output (`torch.FloatTensor`):
607
+ model_output (`torch.Tensor`):
588
608
  The direct output from learned diffusion model.
589
609
  timestep (`int`):
590
610
  The current discrete timestep in the diffusion chain.
591
- sample (`torch.FloatTensor`):
611
+ sample (`torch.Tensor`):
592
612
  A current instance of a sample created by the diffusion process.
593
613
  generator (`torch.Generator`, *optional*):
594
614
  A random number generator.
@@ -652,10 +672,10 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
652
672
  # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
653
673
  def add_noise(
654
674
  self,
655
- original_samples: torch.FloatTensor,
656
- noise: torch.FloatTensor,
657
- timesteps: torch.FloatTensor,
658
- ) -> torch.FloatTensor:
675
+ original_samples: torch.Tensor,
676
+ noise: torch.Tensor,
677
+ timesteps: torch.Tensor,
678
+ ) -> torch.Tensor:
659
679
  # Make sure sigmas and timesteps have the same device and dtype as original_samples
660
680
  sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
661
681
  if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
@@ -669,7 +689,11 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
669
689
  # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
670
690
  if self.begin_index is None:
671
691
  step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
692
+ elif self.step_index is not None:
693
+ # add_noise is called after first denoising step (for inpainting)
694
+ step_indices = [self.step_index] * timesteps.shape[0]
672
695
  else:
696
+ # add noise is called before first denoising step to create initial latent(img2img)
673
697
  step_indices = [self.begin_index] * timesteps.shape[0]
674
698
 
675
699
  sigma = sigmas[step_indices].flatten()
@@ -12,10 +12,10 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
+ import math
15
16
  from dataclasses import dataclass
16
17
  from typing import Optional, Tuple, Union
17
18
 
18
- import numpy as np
19
19
  import torch
20
20
 
21
21
  from ..configuration_utils import ConfigMixin, register_to_config
@@ -34,16 +34,16 @@ class EDMEulerSchedulerOutput(BaseOutput):
34
34
  Output class for the scheduler's `step` function output.
35
35
 
36
36
  Args:
37
- prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
37
+ prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
38
38
  Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
39
39
  denoising loop.
40
- pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
40
+ pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
41
41
  The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
42
42
  `pred_original_sample` can be used to preview progress or for guidance.
43
43
  """
44
44
 
45
- prev_sample: torch.FloatTensor
46
- pred_original_sample: Optional[torch.FloatTensor] = None
45
+ prev_sample: torch.Tensor
46
+ pred_original_sample: Optional[torch.Tensor] = None
47
47
 
48
48
 
49
49
  class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
@@ -65,6 +65,10 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
65
65
  range is [0.2, 80.0].
66
66
  sigma_data (`float`, *optional*, defaults to 0.5):
67
67
  The standard deviation of the data distribution. This is set to 0.5 in the EDM paper [1].
68
+ sigma_schedule (`str`, *optional*, defaults to `karras`):
69
+ Sigma schedule to compute the `sigmas`. By default, we the schedule introduced in the EDM paper
70
+ (https://arxiv.org/abs/2206.00364). Other acceptable value is "exponential". The exponential schedule was
71
+ incorporated in this model: https://huggingface.co/stabilityai/cosxl.
68
72
  num_train_timesteps (`int`, defaults to 1000):
69
73
  The number of diffusion steps to train the model.
70
74
  prediction_type (`str`, defaults to `epsilon`, *optional*):
@@ -84,15 +88,23 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
84
88
  sigma_min: float = 0.002,
85
89
  sigma_max: float = 80.0,
86
90
  sigma_data: float = 0.5,
91
+ sigma_schedule: str = "karras",
87
92
  num_train_timesteps: int = 1000,
88
93
  prediction_type: str = "epsilon",
89
94
  rho: float = 7.0,
90
95
  ):
96
+ if sigma_schedule not in ["karras", "exponential"]:
97
+ raise ValueError(f"Wrong value for provided for `{sigma_schedule=}`.`")
98
+
91
99
  # setable values
92
100
  self.num_inference_steps = None
93
101
 
94
102
  ramp = torch.linspace(0, 1, num_train_timesteps)
95
- sigmas = self._compute_sigmas(ramp)
103
+ if sigma_schedule == "karras":
104
+ sigmas = self._compute_karras_sigmas(ramp)
105
+ elif sigma_schedule == "exponential":
106
+ sigmas = self._compute_exponential_sigmas(ramp)
107
+
96
108
  self.timesteps = self.precondition_noise(sigmas)
97
109
 
98
110
  self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
@@ -111,7 +123,7 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
111
123
  @property
112
124
  def step_index(self):
113
125
  """
114
- The index counter for current timestep. It will increae 1 after each scheduler step.
126
+ The index counter for current timestep. It will increase 1 after each scheduler step.
115
127
  """
116
128
  return self._step_index
117
129
 
@@ -161,21 +173,19 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
161
173
 
162
174
  return denoised
163
175
 
164
- def scale_model_input(
165
- self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
166
- ) -> torch.FloatTensor:
176
+ def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor:
167
177
  """
168
178
  Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
169
179
  current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
170
180
 
171
181
  Args:
172
- sample (`torch.FloatTensor`):
182
+ sample (`torch.Tensor`):
173
183
  The input sample.
174
184
  timestep (`int`, *optional*):
175
185
  The current timestep in the diffusion chain.
176
186
 
177
187
  Returns:
178
- `torch.FloatTensor`:
188
+ `torch.Tensor`:
179
189
  A scaled input sample.
180
190
  """
181
191
  if self.step_index is None:
@@ -199,10 +209,13 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
199
209
  """
200
210
  self.num_inference_steps = num_inference_steps
201
211
 
202
- ramp = np.linspace(0, 1, self.num_inference_steps)
203
- sigmas = self._compute_sigmas(ramp)
212
+ ramp = torch.linspace(0, 1, self.num_inference_steps)
213
+ if self.config.sigma_schedule == "karras":
214
+ sigmas = self._compute_karras_sigmas(ramp)
215
+ elif self.config.sigma_schedule == "exponential":
216
+ sigmas = self._compute_exponential_sigmas(ramp)
204
217
 
205
- sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
218
+ sigmas = sigmas.to(dtype=torch.float32, device=device)
206
219
  self.timesteps = self.precondition_noise(sigmas)
207
220
 
208
221
  self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
@@ -211,9 +224,8 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
211
224
  self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
212
225
 
213
226
  # Taken from https://github.com/crowsonkb/k-diffusion/blob/686dbad0f39640ea25c8a8c6a6e56bb40eacefa2/k_diffusion/sampling.py#L17
214
- def _compute_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.FloatTensor:
227
+ def _compute_karras_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor:
215
228
  """Constructs the noise schedule of Karras et al. (2022)."""
216
-
217
229
  sigma_min = sigma_min or self.config.sigma_min
218
230
  sigma_max = sigma_max or self.config.sigma_max
219
231
 
@@ -223,6 +235,16 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
223
235
  sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
224
236
  return sigmas
225
237
 
238
+ def _compute_exponential_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor:
239
+ """Implementation closely follows k-diffusion.
240
+
241
+ https://github.com/crowsonkb/k-diffusion/blob/6ab5146d4a5ef63901326489f31f1d8e7dd36b48/k_diffusion/sampling.py#L26
242
+ """
243
+ sigma_min = sigma_min or self.config.sigma_min
244
+ sigma_max = sigma_max or self.config.sigma_max
245
+ sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), len(ramp)).exp().flip(0)
246
+ return sigmas
247
+
226
248
  # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
227
249
  def index_for_timestep(self, timestep, schedule_timesteps=None):
228
250
  if schedule_timesteps is None:
@@ -249,9 +271,9 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
249
271
 
250
272
  def step(
251
273
  self,
252
- model_output: torch.FloatTensor,
253
- timestep: Union[float, torch.FloatTensor],
254
- sample: torch.FloatTensor,
274
+ model_output: torch.Tensor,
275
+ timestep: Union[float, torch.Tensor],
276
+ sample: torch.Tensor,
255
277
  s_churn: float = 0.0,
256
278
  s_tmin: float = 0.0,
257
279
  s_tmax: float = float("inf"),
@@ -264,11 +286,11 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
264
286
  process from the learned model outputs (most often the predicted noise).
265
287
 
266
288
  Args:
267
- model_output (`torch.FloatTensor`):
289
+ model_output (`torch.Tensor`):
268
290
  The direct output from learned diffusion model.
269
291
  timestep (`float`):
270
292
  The current discrete timestep in the diffusion chain.
271
- sample (`torch.FloatTensor`):
293
+ sample (`torch.Tensor`):
272
294
  A current instance of a sample created by the diffusion process.
273
295
  s_churn (`float`):
274
296
  s_tmin (`float`):
@@ -278,8 +300,7 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
278
300
  generator (`torch.Generator`, *optional*):
279
301
  A random number generator.
280
302
  return_dict (`bool`):
281
- Whether or not to return a [`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] or
282
- tuple.
303
+ Whether or not to return a [`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] or tuple.
283
304
 
284
305
  Returns:
285
306
  [`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] or `tuple`:
@@ -287,11 +308,7 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
287
308
  returned, otherwise a tuple is returned where the first element is the sample tensor.
288
309
  """
289
310
 
290
- if (
291
- isinstance(timestep, int)
292
- or isinstance(timestep, torch.IntTensor)
293
- or isinstance(timestep, torch.LongTensor)
294
- ):
311
+ if isinstance(timestep, (int, torch.IntTensor, torch.LongTensor)):
295
312
  raise ValueError(
296
313
  (
297
314
  "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
@@ -316,14 +333,13 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
316
333
 
317
334
  gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0
318
335
 
319
- noise = randn_tensor(
320
- model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator
321
- )
322
-
323
- eps = noise * s_noise
324
336
  sigma_hat = sigma * (gamma + 1)
325
337
 
326
338
  if gamma > 0:
339
+ noise = randn_tensor(
340
+ model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator
341
+ )
342
+ eps = noise * s_noise
327
343
  sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5
328
344
 
329
345
  # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
@@ -343,17 +359,20 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
343
359
  self._step_index += 1
344
360
 
345
361
  if not return_dict:
346
- return (prev_sample,)
362
+ return (
363
+ prev_sample,
364
+ pred_original_sample,
365
+ )
347
366
 
348
367
  return EDMEulerSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
349
368
 
350
369
  # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
351
370
  def add_noise(
352
371
  self,
353
- original_samples: torch.FloatTensor,
354
- noise: torch.FloatTensor,
355
- timesteps: torch.FloatTensor,
356
- ) -> torch.FloatTensor:
372
+ original_samples: torch.Tensor,
373
+ noise: torch.Tensor,
374
+ timesteps: torch.Tensor,
375
+ ) -> torch.Tensor:
357
376
  # Make sure sigmas and timesteps have the same device and dtype as original_samples
358
377
  sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
359
378
  if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
@@ -367,7 +386,11 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
367
386
  # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
368
387
  if self.begin_index is None:
369
388
  step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
389
+ elif self.step_index is not None:
390
+ # add_noise is called after first denoising step (for inpainting)
391
+ step_indices = [self.step_index] * timesteps.shape[0]
370
392
  else:
393
+ # add noise is called before first denoising step to create initial latent(img2img)
371
394
  step_indices = [self.begin_index] * timesteps.shape[0]
372
395
 
373
396
  sigma = sigmas[step_indices].flatten()