snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -301,12 +300,7 @@ class PassiveAggressiveClassifier(BaseTransformer):
301
300
  )
302
301
  return selected_cols
303
302
 
304
- @telemetry.send_api_usage_telemetry(
305
- project=_PROJECT,
306
- subproject=_SUBPROJECT,
307
- custom_tags=dict([("autogen", True)]),
308
- )
309
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "PassiveAggressiveClassifier":
303
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "PassiveAggressiveClassifier":
310
304
  """Fit linear model with Passive Aggressive algorithm
311
305
  For more details on this function, see [sklearn.linear_model.PassiveAggressiveClassifier.fit]
312
306
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.PassiveAggressiveClassifier.html#sklearn.linear_model.PassiveAggressiveClassifier.fit)
@@ -333,12 +327,14 @@ class PassiveAggressiveClassifier(BaseTransformer):
333
327
 
334
328
  self._snowpark_cols = dataset.select(self.input_cols).columns
335
329
 
336
- # If we are already in a stored procedure, no need to kick off another one.
330
+ # If we are already in a stored procedure, no need to kick off another one.
337
331
  if SNOWML_SPROC_ENV in os.environ:
338
332
  statement_params = telemetry.get_function_usage_statement_params(
339
333
  project=_PROJECT,
340
334
  subproject=_SUBPROJECT,
341
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), PassiveAggressiveClassifier.__class__.__name__),
335
+ function_name=telemetry.get_statement_params_full_func_name(
336
+ inspect.currentframe(), PassiveAggressiveClassifier.__class__.__name__
337
+ ),
342
338
  api_calls=[Session.call],
343
339
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
344
340
  )
@@ -359,7 +355,7 @@ class PassiveAggressiveClassifier(BaseTransformer):
359
355
  )
360
356
  self._sklearn_object = model_trainer.train()
361
357
  self._is_fitted = True
362
- self._get_model_signatures(dataset)
358
+ self._generate_model_signatures(dataset)
363
359
  return self
364
360
 
365
361
  def _batch_inference_validate_snowpark(
@@ -435,7 +431,9 @@ class PassiveAggressiveClassifier(BaseTransformer):
435
431
  # when it is classifier, infer the datatype from label columns
436
432
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
437
433
  # Batch inference takes a single expected output column type. Use the first columns type for now.
438
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
434
+ label_cols_signatures = [
435
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
436
+ ]
439
437
  if len(label_cols_signatures) == 0:
440
438
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
441
439
  raise exceptions.SnowflakeMLException(
@@ -443,25 +441,22 @@ class PassiveAggressiveClassifier(BaseTransformer):
443
441
  original_exception=ValueError(error_str),
444
442
  )
445
443
 
446
- expected_type_inferred = convert_sp_to_sf_type(
447
- label_cols_signatures[0].as_snowpark_type()
448
- )
444
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
449
445
 
450
446
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
451
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
447
+ assert isinstance(
448
+ dataset._session, Session
449
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
452
450
 
453
451
  transform_kwargs = dict(
454
- session = dataset._session,
455
- dependencies = self._deps,
456
- drop_input_cols = self._drop_input_cols,
457
- expected_output_cols_type = expected_type_inferred,
452
+ session=dataset._session,
453
+ dependencies=self._deps,
454
+ drop_input_cols=self._drop_input_cols,
455
+ expected_output_cols_type=expected_type_inferred,
458
456
  )
459
457
 
460
458
  elif isinstance(dataset, pd.DataFrame):
461
- transform_kwargs = dict(
462
- snowpark_input_cols = self._snowpark_cols,
463
- drop_input_cols = self._drop_input_cols
464
- )
459
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
465
460
 
466
461
  transform_handlers = ModelTransformerBuilder.build(
467
462
  dataset=dataset,
@@ -501,7 +496,7 @@ class PassiveAggressiveClassifier(BaseTransformer):
501
496
  Transformed dataset.
502
497
  """
503
498
  super()._check_dataset_type(dataset)
504
- inference_method="transform"
499
+ inference_method = "transform"
505
500
 
506
501
  # This dictionary contains optional kwargs for batch inference. These kwargs
507
502
  # are specific to the type of dataset used.
@@ -538,17 +533,14 @@ class PassiveAggressiveClassifier(BaseTransformer):
538
533
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
539
534
 
540
535
  transform_kwargs = dict(
541
- session = dataset._session,
542
- dependencies = self._deps,
543
- drop_input_cols = self._drop_input_cols,
544
- expected_output_cols_type = expected_dtype,
536
+ session=dataset._session,
537
+ dependencies=self._deps,
538
+ drop_input_cols=self._drop_input_cols,
539
+ expected_output_cols_type=expected_dtype,
545
540
  )
546
541
 
547
542
  elif isinstance(dataset, pd.DataFrame):
548
- transform_kwargs = dict(
549
- snowpark_input_cols = self._snowpark_cols,
550
- drop_input_cols = self._drop_input_cols
551
- )
543
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
552
544
 
553
545
  transform_handlers = ModelTransformerBuilder.build(
554
546
  dataset=dataset,
@@ -567,7 +559,11 @@ class PassiveAggressiveClassifier(BaseTransformer):
567
559
  return output_df
568
560
 
569
561
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
570
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
562
+ def fit_predict(
563
+ self,
564
+ dataset: Union[DataFrame, pd.DataFrame],
565
+ output_cols_prefix: str = "fit_predict_",
566
+ ) -> Union[DataFrame, pd.DataFrame]:
571
567
  """ Method not supported for this class.
572
568
 
573
569
 
@@ -592,7 +588,9 @@ class PassiveAggressiveClassifier(BaseTransformer):
592
588
  )
593
589
  output_result, fitted_estimator = model_trainer.train_fit_predict(
594
590
  drop_input_cols=self._drop_input_cols,
595
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
591
+ expected_output_cols_list=(
592
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
593
+ ),
596
594
  )
597
595
  self._sklearn_object = fitted_estimator
598
596
  self._is_fitted = True
@@ -609,6 +607,62 @@ class PassiveAggressiveClassifier(BaseTransformer):
609
607
  assert self._sklearn_object is not None
610
608
  return self._sklearn_object.embedding_
611
609
 
610
+
611
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
612
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
613
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
614
+ """
615
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
616
+ # The following condition is introduced for kneighbors methods, and not used in other methods
617
+ if output_cols:
618
+ output_cols = [
619
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
620
+ for c in output_cols
621
+ ]
622
+ elif getattr(self._sklearn_object, "classes_", None) is None:
623
+ output_cols = [output_cols_prefix]
624
+ elif self._sklearn_object is not None:
625
+ classes = self._sklearn_object.classes_
626
+ if isinstance(classes, numpy.ndarray):
627
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
628
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
629
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
630
+ output_cols = []
631
+ for i, cl in enumerate(classes):
632
+ # For binary classification, there is only one output column for each class
633
+ # ndarray as the two classes are complementary.
634
+ if len(cl) == 2:
635
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
636
+ else:
637
+ output_cols.extend([
638
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
639
+ ])
640
+ else:
641
+ output_cols = []
642
+
643
+ # Make sure column names are valid snowflake identifiers.
644
+ assert output_cols is not None # Make MyPy happy
645
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
646
+
647
+ return rv
648
+
649
+ def _align_expected_output_names(
650
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
651
+ ) -> List[str]:
652
+ # in case the inferred output column names dimension is different
653
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
654
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
655
+ output_df_columns = list(output_df_pd.columns)
656
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
657
+ if self.sample_weight_col:
658
+ output_df_columns_set -= set(self.sample_weight_col)
659
+ # if the dimension of inferred output column names is correct; use it
660
+ if len(expected_output_cols_list) == len(output_df_columns_set):
661
+ return expected_output_cols_list
662
+ # otherwise, use the sklearn estimator's output
663
+ else:
664
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
665
+
612
666
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
613
667
  @telemetry.send_api_usage_telemetry(
614
668
  project=_PROJECT,
@@ -639,24 +693,28 @@ class PassiveAggressiveClassifier(BaseTransformer):
639
693
  # are specific to the type of dataset used.
640
694
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
641
695
 
696
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
697
+
642
698
  if isinstance(dataset, DataFrame):
643
699
  self._deps = self._batch_inference_validate_snowpark(
644
700
  dataset=dataset,
645
701
  inference_method=inference_method,
646
702
  )
647
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
703
+ assert isinstance(
704
+ dataset._session, Session
705
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
648
706
  transform_kwargs = dict(
649
707
  session=dataset._session,
650
708
  dependencies=self._deps,
651
- drop_input_cols = self._drop_input_cols,
709
+ drop_input_cols=self._drop_input_cols,
652
710
  expected_output_cols_type="float",
653
711
  )
712
+ expected_output_cols = self._align_expected_output_names(
713
+ inference_method, dataset, expected_output_cols, output_cols_prefix
714
+ )
654
715
 
655
716
  elif isinstance(dataset, pd.DataFrame):
656
- transform_kwargs = dict(
657
- snowpark_input_cols = self._snowpark_cols,
658
- drop_input_cols = self._drop_input_cols
659
- )
717
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
660
718
 
661
719
  transform_handlers = ModelTransformerBuilder.build(
662
720
  dataset=dataset,
@@ -668,7 +726,7 @@ class PassiveAggressiveClassifier(BaseTransformer):
668
726
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
669
727
  inference_method=inference_method,
670
728
  input_cols=self.input_cols,
671
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
729
+ expected_output_cols=expected_output_cols,
672
730
  **transform_kwargs
673
731
  )
674
732
  return output_df
@@ -698,7 +756,8 @@ class PassiveAggressiveClassifier(BaseTransformer):
698
756
  Output dataset with log probability of the sample for each class in the model.
699
757
  """
700
758
  super()._check_dataset_type(dataset)
701
- inference_method="predict_log_proba"
759
+ inference_method = "predict_log_proba"
760
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
702
761
 
703
762
  # This dictionary contains optional kwargs for batch inference. These kwargs
704
763
  # are specific to the type of dataset used.
@@ -709,18 +768,20 @@ class PassiveAggressiveClassifier(BaseTransformer):
709
768
  dataset=dataset,
710
769
  inference_method=inference_method,
711
770
  )
712
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
771
+ assert isinstance(
772
+ dataset._session, Session
773
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
713
774
  transform_kwargs = dict(
714
775
  session=dataset._session,
715
776
  dependencies=self._deps,
716
- drop_input_cols = self._drop_input_cols,
777
+ drop_input_cols=self._drop_input_cols,
717
778
  expected_output_cols_type="float",
718
779
  )
780
+ expected_output_cols = self._align_expected_output_names(
781
+ inference_method, dataset, expected_output_cols, output_cols_prefix
782
+ )
719
783
  elif isinstance(dataset, pd.DataFrame):
720
- transform_kwargs = dict(
721
- snowpark_input_cols = self._snowpark_cols,
722
- drop_input_cols = self._drop_input_cols
723
- )
784
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
724
785
 
725
786
  transform_handlers = ModelTransformerBuilder.build(
726
787
  dataset=dataset,
@@ -733,7 +794,7 @@ class PassiveAggressiveClassifier(BaseTransformer):
733
794
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
734
795
  inference_method=inference_method,
735
796
  input_cols=self.input_cols,
736
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
797
+ expected_output_cols=expected_output_cols,
737
798
  **transform_kwargs
738
799
  )
739
800
  return output_df
@@ -761,30 +822,34 @@ class PassiveAggressiveClassifier(BaseTransformer):
761
822
  Output dataset with results of the decision function for the samples in input dataset.
762
823
  """
763
824
  super()._check_dataset_type(dataset)
764
- inference_method="decision_function"
825
+ inference_method = "decision_function"
765
826
 
766
827
  # This dictionary contains optional kwargs for batch inference. These kwargs
767
828
  # are specific to the type of dataset used.
768
829
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
769
830
 
831
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
832
+
770
833
  if isinstance(dataset, DataFrame):
771
834
  self._deps = self._batch_inference_validate_snowpark(
772
835
  dataset=dataset,
773
836
  inference_method=inference_method,
774
837
  )
775
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
838
+ assert isinstance(
839
+ dataset._session, Session
840
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
776
841
  transform_kwargs = dict(
777
842
  session=dataset._session,
778
843
  dependencies=self._deps,
779
- drop_input_cols = self._drop_input_cols,
844
+ drop_input_cols=self._drop_input_cols,
780
845
  expected_output_cols_type="float",
781
846
  )
847
+ expected_output_cols = self._align_expected_output_names(
848
+ inference_method, dataset, expected_output_cols, output_cols_prefix
849
+ )
782
850
 
783
851
  elif isinstance(dataset, pd.DataFrame):
784
- transform_kwargs = dict(
785
- snowpark_input_cols = self._snowpark_cols,
786
- drop_input_cols = self._drop_input_cols
787
- )
852
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
788
853
 
789
854
  transform_handlers = ModelTransformerBuilder.build(
790
855
  dataset=dataset,
@@ -797,7 +862,7 @@ class PassiveAggressiveClassifier(BaseTransformer):
797
862
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
798
863
  inference_method=inference_method,
799
864
  input_cols=self.input_cols,
800
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
865
+ expected_output_cols=expected_output_cols,
801
866
  **transform_kwargs
802
867
  )
803
868
  return output_df
@@ -826,12 +891,14 @@ class PassiveAggressiveClassifier(BaseTransformer):
826
891
  Output dataset with probability of the sample for each class in the model.
827
892
  """
828
893
  super()._check_dataset_type(dataset)
829
- inference_method="score_samples"
894
+ inference_method = "score_samples"
830
895
 
831
896
  # This dictionary contains optional kwargs for batch inference. These kwargs
832
897
  # are specific to the type of dataset used.
833
898
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
834
899
 
900
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
901
+
835
902
  if isinstance(dataset, DataFrame):
836
903
  self._deps = self._batch_inference_validate_snowpark(
837
904
  dataset=dataset,
@@ -844,6 +911,9 @@ class PassiveAggressiveClassifier(BaseTransformer):
844
911
  drop_input_cols = self._drop_input_cols,
845
912
  expected_output_cols_type="float",
846
913
  )
914
+ expected_output_cols = self._align_expected_output_names(
915
+ inference_method, dataset, expected_output_cols, output_cols_prefix
916
+ )
847
917
 
848
918
  elif isinstance(dataset, pd.DataFrame):
849
919
  transform_kwargs = dict(
@@ -862,7 +932,7 @@ class PassiveAggressiveClassifier(BaseTransformer):
862
932
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
863
933
  inference_method=inference_method,
864
934
  input_cols=self.input_cols,
865
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
935
+ expected_output_cols=expected_output_cols,
866
936
  **transform_kwargs
867
937
  )
868
938
  return output_df
@@ -1009,50 +1079,84 @@ class PassiveAggressiveClassifier(BaseTransformer):
1009
1079
  )
1010
1080
  return output_df
1011
1081
 
1082
+
1083
+
1084
+ def to_sklearn(self) -> Any:
1085
+ """Get sklearn.linear_model.PassiveAggressiveClassifier object.
1086
+ """
1087
+ if self._sklearn_object is None:
1088
+ self._sklearn_object = self._create_sklearn_object()
1089
+ return self._sklearn_object
1090
+
1091
+ def to_xgboost(self) -> Any:
1092
+ raise exceptions.SnowflakeMLException(
1093
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1094
+ original_exception=AttributeError(
1095
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1096
+ "to_xgboost()",
1097
+ "to_sklearn()"
1098
+ )
1099
+ ),
1100
+ )
1101
+
1102
+ def to_lightgbm(self) -> Any:
1103
+ raise exceptions.SnowflakeMLException(
1104
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1105
+ original_exception=AttributeError(
1106
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1107
+ "to_lightgbm()",
1108
+ "to_sklearn()"
1109
+ )
1110
+ ),
1111
+ )
1012
1112
 
1013
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1113
+ def _get_dependencies(self) -> List[str]:
1114
+ return self._deps
1115
+
1116
+
1117
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1014
1118
  self._model_signature_dict = dict()
1015
1119
 
1016
1120
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1017
1121
 
1018
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1122
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1019
1123
  outputs: List[BaseFeatureSpec] = []
1020
1124
  if hasattr(self, "predict"):
1021
1125
  # keep mypy happy
1022
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1126
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1023
1127
  # For classifier, the type of predict is the same as the type of label
1024
- if self._sklearn_object._estimator_type == 'classifier':
1025
- # label columns is the desired type for output
1128
+ if self._sklearn_object._estimator_type == "classifier":
1129
+ # label columns is the desired type for output
1026
1130
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1027
1131
  # rename the output columns
1028
1132
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1029
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1030
- ([] if self._drop_input_cols else inputs)
1031
- + outputs)
1133
+ self._model_signature_dict["predict"] = ModelSignature(
1134
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1135
+ )
1032
1136
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1033
1137
  # For outlier models, returns -1 for outliers and 1 for inliers.
1034
- # Clusterer returns int64 cluster labels.
1138
+ # Clusterer returns int64 cluster labels.
1035
1139
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1036
1140
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1037
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1038
- ([] if self._drop_input_cols else inputs)
1039
- + outputs)
1040
-
1141
+ self._model_signature_dict["predict"] = ModelSignature(
1142
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1143
+ )
1144
+
1041
1145
  # For regressor, the type of predict is float64
1042
- elif self._sklearn_object._estimator_type == 'regressor':
1146
+ elif self._sklearn_object._estimator_type == "regressor":
1043
1147
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1044
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1045
- ([] if self._drop_input_cols else inputs)
1046
- + outputs)
1047
-
1148
+ self._model_signature_dict["predict"] = ModelSignature(
1149
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1150
+ )
1151
+
1048
1152
  for prob_func in PROB_FUNCTIONS:
1049
1153
  if hasattr(self, prob_func):
1050
1154
  output_cols_prefix: str = f"{prob_func}_"
1051
1155
  output_column_names = self._get_output_column_names(output_cols_prefix)
1052
1156
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1053
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1054
- ([] if self._drop_input_cols else inputs)
1055
- + outputs)
1157
+ self._model_signature_dict[prob_func] = ModelSignature(
1158
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1159
+ )
1056
1160
 
1057
1161
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1058
1162
  items = list(self._model_signature_dict.items())
@@ -1065,10 +1169,10 @@ class PassiveAggressiveClassifier(BaseTransformer):
1065
1169
  """Returns model signature of current class.
1066
1170
 
1067
1171
  Raises:
1068
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1172
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1069
1173
 
1070
1174
  Returns:
1071
- Dict[str, ModelSignature]: each method and its input output signature
1175
+ Dict with each method and its input output signature
1072
1176
  """
1073
1177
  if self._model_signature_dict is None:
1074
1178
  raise exceptions.SnowflakeMLException(
@@ -1076,35 +1180,3 @@ class PassiveAggressiveClassifier(BaseTransformer):
1076
1180
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1077
1181
  )
1078
1182
  return self._model_signature_dict
1079
-
1080
- def to_sklearn(self) -> Any:
1081
- """Get sklearn.linear_model.PassiveAggressiveClassifier object.
1082
- """
1083
- if self._sklearn_object is None:
1084
- self._sklearn_object = self._create_sklearn_object()
1085
- return self._sklearn_object
1086
-
1087
- def to_xgboost(self) -> Any:
1088
- raise exceptions.SnowflakeMLException(
1089
- error_code=error_codes.METHOD_NOT_ALLOWED,
1090
- original_exception=AttributeError(
1091
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1092
- "to_xgboost()",
1093
- "to_sklearn()"
1094
- )
1095
- ),
1096
- )
1097
-
1098
- def to_lightgbm(self) -> Any:
1099
- raise exceptions.SnowflakeMLException(
1100
- error_code=error_codes.METHOD_NOT_ALLOWED,
1101
- original_exception=AttributeError(
1102
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1103
- "to_lightgbm()",
1104
- "to_sklearn()"
1105
- )
1106
- ),
1107
- )
1108
-
1109
- def _get_dependencies(self) -> List[str]:
1110
- return self._deps