snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -282,12 +281,7 @@ class BisectingKMeans(BaseTransformer):
282
281
  )
283
282
  return selected_cols
284
283
 
285
- @telemetry.send_api_usage_telemetry(
286
- project=_PROJECT,
287
- subproject=_SUBPROJECT,
288
- custom_tags=dict([("autogen", True)]),
289
- )
290
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "BisectingKMeans":
284
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "BisectingKMeans":
291
285
  """Compute bisecting k-means clustering
292
286
  For more details on this function, see [sklearn.cluster.BisectingKMeans.fit]
293
287
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.BisectingKMeans.html#sklearn.cluster.BisectingKMeans.fit)
@@ -314,12 +308,14 @@ class BisectingKMeans(BaseTransformer):
314
308
 
315
309
  self._snowpark_cols = dataset.select(self.input_cols).columns
316
310
 
317
- # If we are already in a stored procedure, no need to kick off another one.
311
+ # If we are already in a stored procedure, no need to kick off another one.
318
312
  if SNOWML_SPROC_ENV in os.environ:
319
313
  statement_params = telemetry.get_function_usage_statement_params(
320
314
  project=_PROJECT,
321
315
  subproject=_SUBPROJECT,
322
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), BisectingKMeans.__class__.__name__),
316
+ function_name=telemetry.get_statement_params_full_func_name(
317
+ inspect.currentframe(), BisectingKMeans.__class__.__name__
318
+ ),
323
319
  api_calls=[Session.call],
324
320
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
325
321
  )
@@ -340,7 +336,7 @@ class BisectingKMeans(BaseTransformer):
340
336
  )
341
337
  self._sklearn_object = model_trainer.train()
342
338
  self._is_fitted = True
343
- self._get_model_signatures(dataset)
339
+ self._generate_model_signatures(dataset)
344
340
  return self
345
341
 
346
342
  def _batch_inference_validate_snowpark(
@@ -416,7 +412,9 @@ class BisectingKMeans(BaseTransformer):
416
412
  # when it is classifier, infer the datatype from label columns
417
413
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
418
414
  # Batch inference takes a single expected output column type. Use the first columns type for now.
419
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
415
+ label_cols_signatures = [
416
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
417
+ ]
420
418
  if len(label_cols_signatures) == 0:
421
419
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
422
420
  raise exceptions.SnowflakeMLException(
@@ -424,25 +422,22 @@ class BisectingKMeans(BaseTransformer):
424
422
  original_exception=ValueError(error_str),
425
423
  )
426
424
 
427
- expected_type_inferred = convert_sp_to_sf_type(
428
- label_cols_signatures[0].as_snowpark_type()
429
- )
425
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
430
426
 
431
427
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
432
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
428
+ assert isinstance(
429
+ dataset._session, Session
430
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
433
431
 
434
432
  transform_kwargs = dict(
435
- session = dataset._session,
436
- dependencies = self._deps,
437
- drop_input_cols = self._drop_input_cols,
438
- expected_output_cols_type = expected_type_inferred,
433
+ session=dataset._session,
434
+ dependencies=self._deps,
435
+ drop_input_cols=self._drop_input_cols,
436
+ expected_output_cols_type=expected_type_inferred,
439
437
  )
440
438
 
441
439
  elif isinstance(dataset, pd.DataFrame):
442
- transform_kwargs = dict(
443
- snowpark_input_cols = self._snowpark_cols,
444
- drop_input_cols = self._drop_input_cols
445
- )
440
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
446
441
 
447
442
  transform_handlers = ModelTransformerBuilder.build(
448
443
  dataset=dataset,
@@ -484,7 +479,7 @@ class BisectingKMeans(BaseTransformer):
484
479
  Transformed dataset.
485
480
  """
486
481
  super()._check_dataset_type(dataset)
487
- inference_method="transform"
482
+ inference_method = "transform"
488
483
 
489
484
  # This dictionary contains optional kwargs for batch inference. These kwargs
490
485
  # are specific to the type of dataset used.
@@ -521,17 +516,14 @@ class BisectingKMeans(BaseTransformer):
521
516
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
522
517
 
523
518
  transform_kwargs = dict(
524
- session = dataset._session,
525
- dependencies = self._deps,
526
- drop_input_cols = self._drop_input_cols,
527
- expected_output_cols_type = expected_dtype,
519
+ session=dataset._session,
520
+ dependencies=self._deps,
521
+ drop_input_cols=self._drop_input_cols,
522
+ expected_output_cols_type=expected_dtype,
528
523
  )
529
524
 
530
525
  elif isinstance(dataset, pd.DataFrame):
531
- transform_kwargs = dict(
532
- snowpark_input_cols = self._snowpark_cols,
533
- drop_input_cols = self._drop_input_cols
534
- )
526
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
535
527
 
536
528
  transform_handlers = ModelTransformerBuilder.build(
537
529
  dataset=dataset,
@@ -550,7 +542,11 @@ class BisectingKMeans(BaseTransformer):
550
542
  return output_df
551
543
 
552
544
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
553
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
545
+ def fit_predict(
546
+ self,
547
+ dataset: Union[DataFrame, pd.DataFrame],
548
+ output_cols_prefix: str = "fit_predict_",
549
+ ) -> Union[DataFrame, pd.DataFrame]:
554
550
  """ Compute cluster centers and predict cluster index for each sample
555
551
  For more details on this function, see [sklearn.cluster.BisectingKMeans.fit_predict]
556
552
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.BisectingKMeans.html#sklearn.cluster.BisectingKMeans.fit_predict)
@@ -577,7 +573,9 @@ class BisectingKMeans(BaseTransformer):
577
573
  )
578
574
  output_result, fitted_estimator = model_trainer.train_fit_predict(
579
575
  drop_input_cols=self._drop_input_cols,
580
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
576
+ expected_output_cols_list=(
577
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
578
+ ),
581
579
  )
582
580
  self._sklearn_object = fitted_estimator
583
581
  self._is_fitted = True
@@ -594,6 +592,62 @@ class BisectingKMeans(BaseTransformer):
594
592
  assert self._sklearn_object is not None
595
593
  return self._sklearn_object.embedding_
596
594
 
595
+
596
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
597
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
598
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
599
+ """
600
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
601
+ # The following condition is introduced for kneighbors methods, and not used in other methods
602
+ if output_cols:
603
+ output_cols = [
604
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
605
+ for c in output_cols
606
+ ]
607
+ elif getattr(self._sklearn_object, "classes_", None) is None:
608
+ output_cols = [output_cols_prefix]
609
+ elif self._sklearn_object is not None:
610
+ classes = self._sklearn_object.classes_
611
+ if isinstance(classes, numpy.ndarray):
612
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
613
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
614
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
615
+ output_cols = []
616
+ for i, cl in enumerate(classes):
617
+ # For binary classification, there is only one output column for each class
618
+ # ndarray as the two classes are complementary.
619
+ if len(cl) == 2:
620
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
621
+ else:
622
+ output_cols.extend([
623
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
624
+ ])
625
+ else:
626
+ output_cols = []
627
+
628
+ # Make sure column names are valid snowflake identifiers.
629
+ assert output_cols is not None # Make MyPy happy
630
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
631
+
632
+ return rv
633
+
634
+ def _align_expected_output_names(
635
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
636
+ ) -> List[str]:
637
+ # in case the inferred output column names dimension is different
638
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
639
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
640
+ output_df_columns = list(output_df_pd.columns)
641
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
642
+ if self.sample_weight_col:
643
+ output_df_columns_set -= set(self.sample_weight_col)
644
+ # if the dimension of inferred output column names is correct; use it
645
+ if len(expected_output_cols_list) == len(output_df_columns_set):
646
+ return expected_output_cols_list
647
+ # otherwise, use the sklearn estimator's output
648
+ else:
649
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
650
+
597
651
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
598
652
  @telemetry.send_api_usage_telemetry(
599
653
  project=_PROJECT,
@@ -624,24 +678,28 @@ class BisectingKMeans(BaseTransformer):
624
678
  # are specific to the type of dataset used.
625
679
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
626
680
 
681
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
682
+
627
683
  if isinstance(dataset, DataFrame):
628
684
  self._deps = self._batch_inference_validate_snowpark(
629
685
  dataset=dataset,
630
686
  inference_method=inference_method,
631
687
  )
632
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
688
+ assert isinstance(
689
+ dataset._session, Session
690
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
633
691
  transform_kwargs = dict(
634
692
  session=dataset._session,
635
693
  dependencies=self._deps,
636
- drop_input_cols = self._drop_input_cols,
694
+ drop_input_cols=self._drop_input_cols,
637
695
  expected_output_cols_type="float",
638
696
  )
697
+ expected_output_cols = self._align_expected_output_names(
698
+ inference_method, dataset, expected_output_cols, output_cols_prefix
699
+ )
639
700
 
640
701
  elif isinstance(dataset, pd.DataFrame):
641
- transform_kwargs = dict(
642
- snowpark_input_cols = self._snowpark_cols,
643
- drop_input_cols = self._drop_input_cols
644
- )
702
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
645
703
 
646
704
  transform_handlers = ModelTransformerBuilder.build(
647
705
  dataset=dataset,
@@ -653,7 +711,7 @@ class BisectingKMeans(BaseTransformer):
653
711
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
654
712
  inference_method=inference_method,
655
713
  input_cols=self.input_cols,
656
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
714
+ expected_output_cols=expected_output_cols,
657
715
  **transform_kwargs
658
716
  )
659
717
  return output_df
@@ -683,7 +741,8 @@ class BisectingKMeans(BaseTransformer):
683
741
  Output dataset with log probability of the sample for each class in the model.
684
742
  """
685
743
  super()._check_dataset_type(dataset)
686
- inference_method="predict_log_proba"
744
+ inference_method = "predict_log_proba"
745
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
687
746
 
688
747
  # This dictionary contains optional kwargs for batch inference. These kwargs
689
748
  # are specific to the type of dataset used.
@@ -694,18 +753,20 @@ class BisectingKMeans(BaseTransformer):
694
753
  dataset=dataset,
695
754
  inference_method=inference_method,
696
755
  )
697
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
756
+ assert isinstance(
757
+ dataset._session, Session
758
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
698
759
  transform_kwargs = dict(
699
760
  session=dataset._session,
700
761
  dependencies=self._deps,
701
- drop_input_cols = self._drop_input_cols,
762
+ drop_input_cols=self._drop_input_cols,
702
763
  expected_output_cols_type="float",
703
764
  )
765
+ expected_output_cols = self._align_expected_output_names(
766
+ inference_method, dataset, expected_output_cols, output_cols_prefix
767
+ )
704
768
  elif isinstance(dataset, pd.DataFrame):
705
- transform_kwargs = dict(
706
- snowpark_input_cols = self._snowpark_cols,
707
- drop_input_cols = self._drop_input_cols
708
- )
769
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
709
770
 
710
771
  transform_handlers = ModelTransformerBuilder.build(
711
772
  dataset=dataset,
@@ -718,7 +779,7 @@ class BisectingKMeans(BaseTransformer):
718
779
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
719
780
  inference_method=inference_method,
720
781
  input_cols=self.input_cols,
721
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
782
+ expected_output_cols=expected_output_cols,
722
783
  **transform_kwargs
723
784
  )
724
785
  return output_df
@@ -744,30 +805,34 @@ class BisectingKMeans(BaseTransformer):
744
805
  Output dataset with results of the decision function for the samples in input dataset.
745
806
  """
746
807
  super()._check_dataset_type(dataset)
747
- inference_method="decision_function"
808
+ inference_method = "decision_function"
748
809
 
749
810
  # This dictionary contains optional kwargs for batch inference. These kwargs
750
811
  # are specific to the type of dataset used.
751
812
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
752
813
 
814
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
815
+
753
816
  if isinstance(dataset, DataFrame):
754
817
  self._deps = self._batch_inference_validate_snowpark(
755
818
  dataset=dataset,
756
819
  inference_method=inference_method,
757
820
  )
758
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
821
+ assert isinstance(
822
+ dataset._session, Session
823
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
759
824
  transform_kwargs = dict(
760
825
  session=dataset._session,
761
826
  dependencies=self._deps,
762
- drop_input_cols = self._drop_input_cols,
827
+ drop_input_cols=self._drop_input_cols,
763
828
  expected_output_cols_type="float",
764
829
  )
830
+ expected_output_cols = self._align_expected_output_names(
831
+ inference_method, dataset, expected_output_cols, output_cols_prefix
832
+ )
765
833
 
766
834
  elif isinstance(dataset, pd.DataFrame):
767
- transform_kwargs = dict(
768
- snowpark_input_cols = self._snowpark_cols,
769
- drop_input_cols = self._drop_input_cols
770
- )
835
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
771
836
 
772
837
  transform_handlers = ModelTransformerBuilder.build(
773
838
  dataset=dataset,
@@ -780,7 +845,7 @@ class BisectingKMeans(BaseTransformer):
780
845
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
781
846
  inference_method=inference_method,
782
847
  input_cols=self.input_cols,
783
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
848
+ expected_output_cols=expected_output_cols,
784
849
  **transform_kwargs
785
850
  )
786
851
  return output_df
@@ -809,12 +874,14 @@ class BisectingKMeans(BaseTransformer):
809
874
  Output dataset with probability of the sample for each class in the model.
810
875
  """
811
876
  super()._check_dataset_type(dataset)
812
- inference_method="score_samples"
877
+ inference_method = "score_samples"
813
878
 
814
879
  # This dictionary contains optional kwargs for batch inference. These kwargs
815
880
  # are specific to the type of dataset used.
816
881
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
817
882
 
883
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
884
+
818
885
  if isinstance(dataset, DataFrame):
819
886
  self._deps = self._batch_inference_validate_snowpark(
820
887
  dataset=dataset,
@@ -827,6 +894,9 @@ class BisectingKMeans(BaseTransformer):
827
894
  drop_input_cols = self._drop_input_cols,
828
895
  expected_output_cols_type="float",
829
896
  )
897
+ expected_output_cols = self._align_expected_output_names(
898
+ inference_method, dataset, expected_output_cols, output_cols_prefix
899
+ )
830
900
 
831
901
  elif isinstance(dataset, pd.DataFrame):
832
902
  transform_kwargs = dict(
@@ -845,7 +915,7 @@ class BisectingKMeans(BaseTransformer):
845
915
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
846
916
  inference_method=inference_method,
847
917
  input_cols=self.input_cols,
848
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
918
+ expected_output_cols=expected_output_cols,
849
919
  **transform_kwargs
850
920
  )
851
921
  return output_df
@@ -992,50 +1062,84 @@ class BisectingKMeans(BaseTransformer):
992
1062
  )
993
1063
  return output_df
994
1064
 
1065
+
1066
+
1067
+ def to_sklearn(self) -> Any:
1068
+ """Get sklearn.cluster.BisectingKMeans object.
1069
+ """
1070
+ if self._sklearn_object is None:
1071
+ self._sklearn_object = self._create_sklearn_object()
1072
+ return self._sklearn_object
1073
+
1074
+ def to_xgboost(self) -> Any:
1075
+ raise exceptions.SnowflakeMLException(
1076
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1077
+ original_exception=AttributeError(
1078
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1079
+ "to_xgboost()",
1080
+ "to_sklearn()"
1081
+ )
1082
+ ),
1083
+ )
1084
+
1085
+ def to_lightgbm(self) -> Any:
1086
+ raise exceptions.SnowflakeMLException(
1087
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1088
+ original_exception=AttributeError(
1089
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1090
+ "to_lightgbm()",
1091
+ "to_sklearn()"
1092
+ )
1093
+ ),
1094
+ )
995
1095
 
996
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1096
+ def _get_dependencies(self) -> List[str]:
1097
+ return self._deps
1098
+
1099
+
1100
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
997
1101
  self._model_signature_dict = dict()
998
1102
 
999
1103
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1000
1104
 
1001
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1105
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1002
1106
  outputs: List[BaseFeatureSpec] = []
1003
1107
  if hasattr(self, "predict"):
1004
1108
  # keep mypy happy
1005
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1109
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1006
1110
  # For classifier, the type of predict is the same as the type of label
1007
- if self._sklearn_object._estimator_type == 'classifier':
1008
- # label columns is the desired type for output
1111
+ if self._sklearn_object._estimator_type == "classifier":
1112
+ # label columns is the desired type for output
1009
1113
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1010
1114
  # rename the output columns
1011
1115
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1012
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1013
- ([] if self._drop_input_cols else inputs)
1014
- + outputs)
1116
+ self._model_signature_dict["predict"] = ModelSignature(
1117
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1118
+ )
1015
1119
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1016
1120
  # For outlier models, returns -1 for outliers and 1 for inliers.
1017
- # Clusterer returns int64 cluster labels.
1121
+ # Clusterer returns int64 cluster labels.
1018
1122
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1019
1123
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1020
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1021
- ([] if self._drop_input_cols else inputs)
1022
- + outputs)
1023
-
1124
+ self._model_signature_dict["predict"] = ModelSignature(
1125
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1126
+ )
1127
+
1024
1128
  # For regressor, the type of predict is float64
1025
- elif self._sklearn_object._estimator_type == 'regressor':
1129
+ elif self._sklearn_object._estimator_type == "regressor":
1026
1130
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1027
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1028
- ([] if self._drop_input_cols else inputs)
1029
- + outputs)
1030
-
1131
+ self._model_signature_dict["predict"] = ModelSignature(
1132
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1133
+ )
1134
+
1031
1135
  for prob_func in PROB_FUNCTIONS:
1032
1136
  if hasattr(self, prob_func):
1033
1137
  output_cols_prefix: str = f"{prob_func}_"
1034
1138
  output_column_names = self._get_output_column_names(output_cols_prefix)
1035
1139
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1036
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1037
- ([] if self._drop_input_cols else inputs)
1038
- + outputs)
1140
+ self._model_signature_dict[prob_func] = ModelSignature(
1141
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1142
+ )
1039
1143
 
1040
1144
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1041
1145
  items = list(self._model_signature_dict.items())
@@ -1048,10 +1152,10 @@ class BisectingKMeans(BaseTransformer):
1048
1152
  """Returns model signature of current class.
1049
1153
 
1050
1154
  Raises:
1051
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1155
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1052
1156
 
1053
1157
  Returns:
1054
- Dict[str, ModelSignature]: each method and its input output signature
1158
+ Dict with each method and its input output signature
1055
1159
  """
1056
1160
  if self._model_signature_dict is None:
1057
1161
  raise exceptions.SnowflakeMLException(
@@ -1059,35 +1163,3 @@ class BisectingKMeans(BaseTransformer):
1059
1163
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1060
1164
  )
1061
1165
  return self._model_signature_dict
1062
-
1063
- def to_sklearn(self) -> Any:
1064
- """Get sklearn.cluster.BisectingKMeans object.
1065
- """
1066
- if self._sklearn_object is None:
1067
- self._sklearn_object = self._create_sklearn_object()
1068
- return self._sklearn_object
1069
-
1070
- def to_xgboost(self) -> Any:
1071
- raise exceptions.SnowflakeMLException(
1072
- error_code=error_codes.METHOD_NOT_ALLOWED,
1073
- original_exception=AttributeError(
1074
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1075
- "to_xgboost()",
1076
- "to_sklearn()"
1077
- )
1078
- ),
1079
- )
1080
-
1081
- def to_lightgbm(self) -> Any:
1082
- raise exceptions.SnowflakeMLException(
1083
- error_code=error_codes.METHOD_NOT_ALLOWED,
1084
- original_exception=AttributeError(
1085
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1086
- "to_lightgbm()",
1087
- "to_sklearn()"
1088
- )
1089
- ),
1090
- )
1091
-
1092
- def _get_dependencies(self) -> List[str]:
1093
- return self._deps