snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -358,12 +357,7 @@ class ExtraTreesRegressor(BaseTransformer):
358
357
  )
359
358
  return selected_cols
360
359
 
361
- @telemetry.send_api_usage_telemetry(
362
- project=_PROJECT,
363
- subproject=_SUBPROJECT,
364
- custom_tags=dict([("autogen", True)]),
365
- )
366
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ExtraTreesRegressor":
360
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ExtraTreesRegressor":
367
361
  """Build a forest of trees from the training set (X, y)
368
362
  For more details on this function, see [sklearn.ensemble.ExtraTreesRegressor.fit]
369
363
  (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesRegressor.html#sklearn.ensemble.ExtraTreesRegressor.fit)
@@ -390,12 +384,14 @@ class ExtraTreesRegressor(BaseTransformer):
390
384
 
391
385
  self._snowpark_cols = dataset.select(self.input_cols).columns
392
386
 
393
- # If we are already in a stored procedure, no need to kick off another one.
387
+ # If we are already in a stored procedure, no need to kick off another one.
394
388
  if SNOWML_SPROC_ENV in os.environ:
395
389
  statement_params = telemetry.get_function_usage_statement_params(
396
390
  project=_PROJECT,
397
391
  subproject=_SUBPROJECT,
398
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ExtraTreesRegressor.__class__.__name__),
392
+ function_name=telemetry.get_statement_params_full_func_name(
393
+ inspect.currentframe(), ExtraTreesRegressor.__class__.__name__
394
+ ),
399
395
  api_calls=[Session.call],
400
396
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
401
397
  )
@@ -416,7 +412,7 @@ class ExtraTreesRegressor(BaseTransformer):
416
412
  )
417
413
  self._sklearn_object = model_trainer.train()
418
414
  self._is_fitted = True
419
- self._get_model_signatures(dataset)
415
+ self._generate_model_signatures(dataset)
420
416
  return self
421
417
 
422
418
  def _batch_inference_validate_snowpark(
@@ -492,7 +488,9 @@ class ExtraTreesRegressor(BaseTransformer):
492
488
  # when it is classifier, infer the datatype from label columns
493
489
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
494
490
  # Batch inference takes a single expected output column type. Use the first columns type for now.
495
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
491
+ label_cols_signatures = [
492
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
493
+ ]
496
494
  if len(label_cols_signatures) == 0:
497
495
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
498
496
  raise exceptions.SnowflakeMLException(
@@ -500,25 +498,22 @@ class ExtraTreesRegressor(BaseTransformer):
500
498
  original_exception=ValueError(error_str),
501
499
  )
502
500
 
503
- expected_type_inferred = convert_sp_to_sf_type(
504
- label_cols_signatures[0].as_snowpark_type()
505
- )
501
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
506
502
 
507
503
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
508
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
504
+ assert isinstance(
505
+ dataset._session, Session
506
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
509
507
 
510
508
  transform_kwargs = dict(
511
- session = dataset._session,
512
- dependencies = self._deps,
513
- drop_input_cols = self._drop_input_cols,
514
- expected_output_cols_type = expected_type_inferred,
509
+ session=dataset._session,
510
+ dependencies=self._deps,
511
+ drop_input_cols=self._drop_input_cols,
512
+ expected_output_cols_type=expected_type_inferred,
515
513
  )
516
514
 
517
515
  elif isinstance(dataset, pd.DataFrame):
518
- transform_kwargs = dict(
519
- snowpark_input_cols = self._snowpark_cols,
520
- drop_input_cols = self._drop_input_cols
521
- )
516
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
522
517
 
523
518
  transform_handlers = ModelTransformerBuilder.build(
524
519
  dataset=dataset,
@@ -558,7 +553,7 @@ class ExtraTreesRegressor(BaseTransformer):
558
553
  Transformed dataset.
559
554
  """
560
555
  super()._check_dataset_type(dataset)
561
- inference_method="transform"
556
+ inference_method = "transform"
562
557
 
563
558
  # This dictionary contains optional kwargs for batch inference. These kwargs
564
559
  # are specific to the type of dataset used.
@@ -595,17 +590,14 @@ class ExtraTreesRegressor(BaseTransformer):
595
590
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
596
591
 
597
592
  transform_kwargs = dict(
598
- session = dataset._session,
599
- dependencies = self._deps,
600
- drop_input_cols = self._drop_input_cols,
601
- expected_output_cols_type = expected_dtype,
593
+ session=dataset._session,
594
+ dependencies=self._deps,
595
+ drop_input_cols=self._drop_input_cols,
596
+ expected_output_cols_type=expected_dtype,
602
597
  )
603
598
 
604
599
  elif isinstance(dataset, pd.DataFrame):
605
- transform_kwargs = dict(
606
- snowpark_input_cols = self._snowpark_cols,
607
- drop_input_cols = self._drop_input_cols
608
- )
600
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
609
601
 
610
602
  transform_handlers = ModelTransformerBuilder.build(
611
603
  dataset=dataset,
@@ -624,7 +616,11 @@ class ExtraTreesRegressor(BaseTransformer):
624
616
  return output_df
625
617
 
626
618
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
627
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
619
+ def fit_predict(
620
+ self,
621
+ dataset: Union[DataFrame, pd.DataFrame],
622
+ output_cols_prefix: str = "fit_predict_",
623
+ ) -> Union[DataFrame, pd.DataFrame]:
628
624
  """ Method not supported for this class.
629
625
 
630
626
 
@@ -649,7 +645,9 @@ class ExtraTreesRegressor(BaseTransformer):
649
645
  )
650
646
  output_result, fitted_estimator = model_trainer.train_fit_predict(
651
647
  drop_input_cols=self._drop_input_cols,
652
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
648
+ expected_output_cols_list=(
649
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
650
+ ),
653
651
  )
654
652
  self._sklearn_object = fitted_estimator
655
653
  self._is_fitted = True
@@ -666,6 +664,62 @@ class ExtraTreesRegressor(BaseTransformer):
666
664
  assert self._sklearn_object is not None
667
665
  return self._sklearn_object.embedding_
668
666
 
667
+
668
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
669
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
670
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
671
+ """
672
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
673
+ # The following condition is introduced for kneighbors methods, and not used in other methods
674
+ if output_cols:
675
+ output_cols = [
676
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
677
+ for c in output_cols
678
+ ]
679
+ elif getattr(self._sklearn_object, "classes_", None) is None:
680
+ output_cols = [output_cols_prefix]
681
+ elif self._sklearn_object is not None:
682
+ classes = self._sklearn_object.classes_
683
+ if isinstance(classes, numpy.ndarray):
684
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
685
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
686
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
687
+ output_cols = []
688
+ for i, cl in enumerate(classes):
689
+ # For binary classification, there is only one output column for each class
690
+ # ndarray as the two classes are complementary.
691
+ if len(cl) == 2:
692
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
693
+ else:
694
+ output_cols.extend([
695
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
696
+ ])
697
+ else:
698
+ output_cols = []
699
+
700
+ # Make sure column names are valid snowflake identifiers.
701
+ assert output_cols is not None # Make MyPy happy
702
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
703
+
704
+ return rv
705
+
706
+ def _align_expected_output_names(
707
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
708
+ ) -> List[str]:
709
+ # in case the inferred output column names dimension is different
710
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
711
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
712
+ output_df_columns = list(output_df_pd.columns)
713
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
714
+ if self.sample_weight_col:
715
+ output_df_columns_set -= set(self.sample_weight_col)
716
+ # if the dimension of inferred output column names is correct; use it
717
+ if len(expected_output_cols_list) == len(output_df_columns_set):
718
+ return expected_output_cols_list
719
+ # otherwise, use the sklearn estimator's output
720
+ else:
721
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
722
+
669
723
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
670
724
  @telemetry.send_api_usage_telemetry(
671
725
  project=_PROJECT,
@@ -696,24 +750,28 @@ class ExtraTreesRegressor(BaseTransformer):
696
750
  # are specific to the type of dataset used.
697
751
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
698
752
 
753
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
754
+
699
755
  if isinstance(dataset, DataFrame):
700
756
  self._deps = self._batch_inference_validate_snowpark(
701
757
  dataset=dataset,
702
758
  inference_method=inference_method,
703
759
  )
704
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
760
+ assert isinstance(
761
+ dataset._session, Session
762
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
705
763
  transform_kwargs = dict(
706
764
  session=dataset._session,
707
765
  dependencies=self._deps,
708
- drop_input_cols = self._drop_input_cols,
766
+ drop_input_cols=self._drop_input_cols,
709
767
  expected_output_cols_type="float",
710
768
  )
769
+ expected_output_cols = self._align_expected_output_names(
770
+ inference_method, dataset, expected_output_cols, output_cols_prefix
771
+ )
711
772
 
712
773
  elif isinstance(dataset, pd.DataFrame):
713
- transform_kwargs = dict(
714
- snowpark_input_cols = self._snowpark_cols,
715
- drop_input_cols = self._drop_input_cols
716
- )
774
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
717
775
 
718
776
  transform_handlers = ModelTransformerBuilder.build(
719
777
  dataset=dataset,
@@ -725,7 +783,7 @@ class ExtraTreesRegressor(BaseTransformer):
725
783
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
726
784
  inference_method=inference_method,
727
785
  input_cols=self.input_cols,
728
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
786
+ expected_output_cols=expected_output_cols,
729
787
  **transform_kwargs
730
788
  )
731
789
  return output_df
@@ -755,7 +813,8 @@ class ExtraTreesRegressor(BaseTransformer):
755
813
  Output dataset with log probability of the sample for each class in the model.
756
814
  """
757
815
  super()._check_dataset_type(dataset)
758
- inference_method="predict_log_proba"
816
+ inference_method = "predict_log_proba"
817
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
759
818
 
760
819
  # This dictionary contains optional kwargs for batch inference. These kwargs
761
820
  # are specific to the type of dataset used.
@@ -766,18 +825,20 @@ class ExtraTreesRegressor(BaseTransformer):
766
825
  dataset=dataset,
767
826
  inference_method=inference_method,
768
827
  )
769
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
828
+ assert isinstance(
829
+ dataset._session, Session
830
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
770
831
  transform_kwargs = dict(
771
832
  session=dataset._session,
772
833
  dependencies=self._deps,
773
- drop_input_cols = self._drop_input_cols,
834
+ drop_input_cols=self._drop_input_cols,
774
835
  expected_output_cols_type="float",
775
836
  )
837
+ expected_output_cols = self._align_expected_output_names(
838
+ inference_method, dataset, expected_output_cols, output_cols_prefix
839
+ )
776
840
  elif isinstance(dataset, pd.DataFrame):
777
- transform_kwargs = dict(
778
- snowpark_input_cols = self._snowpark_cols,
779
- drop_input_cols = self._drop_input_cols
780
- )
841
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
781
842
 
782
843
  transform_handlers = ModelTransformerBuilder.build(
783
844
  dataset=dataset,
@@ -790,7 +851,7 @@ class ExtraTreesRegressor(BaseTransformer):
790
851
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
791
852
  inference_method=inference_method,
792
853
  input_cols=self.input_cols,
793
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
854
+ expected_output_cols=expected_output_cols,
794
855
  **transform_kwargs
795
856
  )
796
857
  return output_df
@@ -816,30 +877,34 @@ class ExtraTreesRegressor(BaseTransformer):
816
877
  Output dataset with results of the decision function for the samples in input dataset.
817
878
  """
818
879
  super()._check_dataset_type(dataset)
819
- inference_method="decision_function"
880
+ inference_method = "decision_function"
820
881
 
821
882
  # This dictionary contains optional kwargs for batch inference. These kwargs
822
883
  # are specific to the type of dataset used.
823
884
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
824
885
 
886
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
887
+
825
888
  if isinstance(dataset, DataFrame):
826
889
  self._deps = self._batch_inference_validate_snowpark(
827
890
  dataset=dataset,
828
891
  inference_method=inference_method,
829
892
  )
830
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
893
+ assert isinstance(
894
+ dataset._session, Session
895
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
831
896
  transform_kwargs = dict(
832
897
  session=dataset._session,
833
898
  dependencies=self._deps,
834
- drop_input_cols = self._drop_input_cols,
899
+ drop_input_cols=self._drop_input_cols,
835
900
  expected_output_cols_type="float",
836
901
  )
902
+ expected_output_cols = self._align_expected_output_names(
903
+ inference_method, dataset, expected_output_cols, output_cols_prefix
904
+ )
837
905
 
838
906
  elif isinstance(dataset, pd.DataFrame):
839
- transform_kwargs = dict(
840
- snowpark_input_cols = self._snowpark_cols,
841
- drop_input_cols = self._drop_input_cols
842
- )
907
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
843
908
 
844
909
  transform_handlers = ModelTransformerBuilder.build(
845
910
  dataset=dataset,
@@ -852,7 +917,7 @@ class ExtraTreesRegressor(BaseTransformer):
852
917
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
853
918
  inference_method=inference_method,
854
919
  input_cols=self.input_cols,
855
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
920
+ expected_output_cols=expected_output_cols,
856
921
  **transform_kwargs
857
922
  )
858
923
  return output_df
@@ -881,12 +946,14 @@ class ExtraTreesRegressor(BaseTransformer):
881
946
  Output dataset with probability of the sample for each class in the model.
882
947
  """
883
948
  super()._check_dataset_type(dataset)
884
- inference_method="score_samples"
949
+ inference_method = "score_samples"
885
950
 
886
951
  # This dictionary contains optional kwargs for batch inference. These kwargs
887
952
  # are specific to the type of dataset used.
888
953
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
889
954
 
955
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
956
+
890
957
  if isinstance(dataset, DataFrame):
891
958
  self._deps = self._batch_inference_validate_snowpark(
892
959
  dataset=dataset,
@@ -899,6 +966,9 @@ class ExtraTreesRegressor(BaseTransformer):
899
966
  drop_input_cols = self._drop_input_cols,
900
967
  expected_output_cols_type="float",
901
968
  )
969
+ expected_output_cols = self._align_expected_output_names(
970
+ inference_method, dataset, expected_output_cols, output_cols_prefix
971
+ )
902
972
 
903
973
  elif isinstance(dataset, pd.DataFrame):
904
974
  transform_kwargs = dict(
@@ -917,7 +987,7 @@ class ExtraTreesRegressor(BaseTransformer):
917
987
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
918
988
  inference_method=inference_method,
919
989
  input_cols=self.input_cols,
920
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
990
+ expected_output_cols=expected_output_cols,
921
991
  **transform_kwargs
922
992
  )
923
993
  return output_df
@@ -1064,50 +1134,84 @@ class ExtraTreesRegressor(BaseTransformer):
1064
1134
  )
1065
1135
  return output_df
1066
1136
 
1137
+
1138
+
1139
+ def to_sklearn(self) -> Any:
1140
+ """Get sklearn.ensemble.ExtraTreesRegressor object.
1141
+ """
1142
+ if self._sklearn_object is None:
1143
+ self._sklearn_object = self._create_sklearn_object()
1144
+ return self._sklearn_object
1145
+
1146
+ def to_xgboost(self) -> Any:
1147
+ raise exceptions.SnowflakeMLException(
1148
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1149
+ original_exception=AttributeError(
1150
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1151
+ "to_xgboost()",
1152
+ "to_sklearn()"
1153
+ )
1154
+ ),
1155
+ )
1156
+
1157
+ def to_lightgbm(self) -> Any:
1158
+ raise exceptions.SnowflakeMLException(
1159
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1160
+ original_exception=AttributeError(
1161
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1162
+ "to_lightgbm()",
1163
+ "to_sklearn()"
1164
+ )
1165
+ ),
1166
+ )
1067
1167
 
1068
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1168
+ def _get_dependencies(self) -> List[str]:
1169
+ return self._deps
1170
+
1171
+
1172
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1069
1173
  self._model_signature_dict = dict()
1070
1174
 
1071
1175
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1072
1176
 
1073
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1177
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1074
1178
  outputs: List[BaseFeatureSpec] = []
1075
1179
  if hasattr(self, "predict"):
1076
1180
  # keep mypy happy
1077
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1181
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1078
1182
  # For classifier, the type of predict is the same as the type of label
1079
- if self._sklearn_object._estimator_type == 'classifier':
1080
- # label columns is the desired type for output
1183
+ if self._sklearn_object._estimator_type == "classifier":
1184
+ # label columns is the desired type for output
1081
1185
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1082
1186
  # rename the output columns
1083
1187
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1084
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1085
- ([] if self._drop_input_cols else inputs)
1086
- + outputs)
1188
+ self._model_signature_dict["predict"] = ModelSignature(
1189
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1190
+ )
1087
1191
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1088
1192
  # For outlier models, returns -1 for outliers and 1 for inliers.
1089
- # Clusterer returns int64 cluster labels.
1193
+ # Clusterer returns int64 cluster labels.
1090
1194
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1091
1195
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1092
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1093
- ([] if self._drop_input_cols else inputs)
1094
- + outputs)
1095
-
1196
+ self._model_signature_dict["predict"] = ModelSignature(
1197
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1198
+ )
1199
+
1096
1200
  # For regressor, the type of predict is float64
1097
- elif self._sklearn_object._estimator_type == 'regressor':
1201
+ elif self._sklearn_object._estimator_type == "regressor":
1098
1202
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1099
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1100
- ([] if self._drop_input_cols else inputs)
1101
- + outputs)
1102
-
1203
+ self._model_signature_dict["predict"] = ModelSignature(
1204
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1205
+ )
1206
+
1103
1207
  for prob_func in PROB_FUNCTIONS:
1104
1208
  if hasattr(self, prob_func):
1105
1209
  output_cols_prefix: str = f"{prob_func}_"
1106
1210
  output_column_names = self._get_output_column_names(output_cols_prefix)
1107
1211
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1108
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1109
- ([] if self._drop_input_cols else inputs)
1110
- + outputs)
1212
+ self._model_signature_dict[prob_func] = ModelSignature(
1213
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1214
+ )
1111
1215
 
1112
1216
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1113
1217
  items = list(self._model_signature_dict.items())
@@ -1120,10 +1224,10 @@ class ExtraTreesRegressor(BaseTransformer):
1120
1224
  """Returns model signature of current class.
1121
1225
 
1122
1226
  Raises:
1123
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1227
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1124
1228
 
1125
1229
  Returns:
1126
- Dict[str, ModelSignature]: each method and its input output signature
1230
+ Dict with each method and its input output signature
1127
1231
  """
1128
1232
  if self._model_signature_dict is None:
1129
1233
  raise exceptions.SnowflakeMLException(
@@ -1131,35 +1235,3 @@ class ExtraTreesRegressor(BaseTransformer):
1131
1235
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1132
1236
  )
1133
1237
  return self._model_signature_dict
1134
-
1135
- def to_sklearn(self) -> Any:
1136
- """Get sklearn.ensemble.ExtraTreesRegressor object.
1137
- """
1138
- if self._sklearn_object is None:
1139
- self._sklearn_object = self._create_sklearn_object()
1140
- return self._sklearn_object
1141
-
1142
- def to_xgboost(self) -> Any:
1143
- raise exceptions.SnowflakeMLException(
1144
- error_code=error_codes.METHOD_NOT_ALLOWED,
1145
- original_exception=AttributeError(
1146
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1147
- "to_xgboost()",
1148
- "to_sklearn()"
1149
- )
1150
- ),
1151
- )
1152
-
1153
- def to_lightgbm(self) -> Any:
1154
- raise exceptions.SnowflakeMLException(
1155
- error_code=error_codes.METHOD_NOT_ALLOWED,
1156
- original_exception=AttributeError(
1157
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1158
- "to_lightgbm()",
1159
- "to_sklearn()"
1160
- )
1161
- ),
1162
- )
1163
-
1164
- def _get_dependencies(self) -> List[str]:
1165
- return self._deps