snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -263,12 +262,7 @@ class SequentialFeatureSelector(BaseTransformer):
263
262
  )
264
263
  return selected_cols
265
264
 
266
- @telemetry.send_api_usage_telemetry(
267
- project=_PROJECT,
268
- subproject=_SUBPROJECT,
269
- custom_tags=dict([("autogen", True)]),
270
- )
271
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SequentialFeatureSelector":
265
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SequentialFeatureSelector":
272
266
  """Learn the features to select from X
273
267
  For more details on this function, see [sklearn.feature_selection.SequentialFeatureSelector.fit]
274
268
  (https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html#sklearn.feature_selection.SequentialFeatureSelector.fit)
@@ -295,12 +289,14 @@ class SequentialFeatureSelector(BaseTransformer):
295
289
 
296
290
  self._snowpark_cols = dataset.select(self.input_cols).columns
297
291
 
298
- # If we are already in a stored procedure, no need to kick off another one.
292
+ # If we are already in a stored procedure, no need to kick off another one.
299
293
  if SNOWML_SPROC_ENV in os.environ:
300
294
  statement_params = telemetry.get_function_usage_statement_params(
301
295
  project=_PROJECT,
302
296
  subproject=_SUBPROJECT,
303
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SequentialFeatureSelector.__class__.__name__),
297
+ function_name=telemetry.get_statement_params_full_func_name(
298
+ inspect.currentframe(), SequentialFeatureSelector.__class__.__name__
299
+ ),
304
300
  api_calls=[Session.call],
305
301
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
306
302
  )
@@ -321,7 +317,7 @@ class SequentialFeatureSelector(BaseTransformer):
321
317
  )
322
318
  self._sklearn_object = model_trainer.train()
323
319
  self._is_fitted = True
324
- self._get_model_signatures(dataset)
320
+ self._generate_model_signatures(dataset)
325
321
  return self
326
322
 
327
323
  def _batch_inference_validate_snowpark(
@@ -395,7 +391,9 @@ class SequentialFeatureSelector(BaseTransformer):
395
391
  # when it is classifier, infer the datatype from label columns
396
392
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
397
393
  # Batch inference takes a single expected output column type. Use the first columns type for now.
398
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
394
+ label_cols_signatures = [
395
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
396
+ ]
399
397
  if len(label_cols_signatures) == 0:
400
398
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
401
399
  raise exceptions.SnowflakeMLException(
@@ -403,25 +401,22 @@ class SequentialFeatureSelector(BaseTransformer):
403
401
  original_exception=ValueError(error_str),
404
402
  )
405
403
 
406
- expected_type_inferred = convert_sp_to_sf_type(
407
- label_cols_signatures[0].as_snowpark_type()
408
- )
404
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
409
405
 
410
406
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
411
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
407
+ assert isinstance(
408
+ dataset._session, Session
409
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
412
410
 
413
411
  transform_kwargs = dict(
414
- session = dataset._session,
415
- dependencies = self._deps,
416
- drop_input_cols = self._drop_input_cols,
417
- expected_output_cols_type = expected_type_inferred,
412
+ session=dataset._session,
413
+ dependencies=self._deps,
414
+ drop_input_cols=self._drop_input_cols,
415
+ expected_output_cols_type=expected_type_inferred,
418
416
  )
419
417
 
420
418
  elif isinstance(dataset, pd.DataFrame):
421
- transform_kwargs = dict(
422
- snowpark_input_cols = self._snowpark_cols,
423
- drop_input_cols = self._drop_input_cols
424
- )
419
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
425
420
 
426
421
  transform_handlers = ModelTransformerBuilder.build(
427
422
  dataset=dataset,
@@ -463,7 +458,7 @@ class SequentialFeatureSelector(BaseTransformer):
463
458
  Transformed dataset.
464
459
  """
465
460
  super()._check_dataset_type(dataset)
466
- inference_method="transform"
461
+ inference_method = "transform"
467
462
 
468
463
  # This dictionary contains optional kwargs for batch inference. These kwargs
469
464
  # are specific to the type of dataset used.
@@ -500,17 +495,14 @@ class SequentialFeatureSelector(BaseTransformer):
500
495
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
501
496
 
502
497
  transform_kwargs = dict(
503
- session = dataset._session,
504
- dependencies = self._deps,
505
- drop_input_cols = self._drop_input_cols,
506
- expected_output_cols_type = expected_dtype,
498
+ session=dataset._session,
499
+ dependencies=self._deps,
500
+ drop_input_cols=self._drop_input_cols,
501
+ expected_output_cols_type=expected_dtype,
507
502
  )
508
503
 
509
504
  elif isinstance(dataset, pd.DataFrame):
510
- transform_kwargs = dict(
511
- snowpark_input_cols = self._snowpark_cols,
512
- drop_input_cols = self._drop_input_cols
513
- )
505
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
514
506
 
515
507
  transform_handlers = ModelTransformerBuilder.build(
516
508
  dataset=dataset,
@@ -529,7 +521,11 @@ class SequentialFeatureSelector(BaseTransformer):
529
521
  return output_df
530
522
 
531
523
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
532
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
524
+ def fit_predict(
525
+ self,
526
+ dataset: Union[DataFrame, pd.DataFrame],
527
+ output_cols_prefix: str = "fit_predict_",
528
+ ) -> Union[DataFrame, pd.DataFrame]:
533
529
  """ Method not supported for this class.
534
530
 
535
531
 
@@ -554,7 +550,9 @@ class SequentialFeatureSelector(BaseTransformer):
554
550
  )
555
551
  output_result, fitted_estimator = model_trainer.train_fit_predict(
556
552
  drop_input_cols=self._drop_input_cols,
557
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
553
+ expected_output_cols_list=(
554
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
555
+ ),
558
556
  )
559
557
  self._sklearn_object = fitted_estimator
560
558
  self._is_fitted = True
@@ -571,6 +569,62 @@ class SequentialFeatureSelector(BaseTransformer):
571
569
  assert self._sklearn_object is not None
572
570
  return self._sklearn_object.embedding_
573
571
 
572
+
573
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
574
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
575
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
576
+ """
577
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
578
+ # The following condition is introduced for kneighbors methods, and not used in other methods
579
+ if output_cols:
580
+ output_cols = [
581
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
582
+ for c in output_cols
583
+ ]
584
+ elif getattr(self._sklearn_object, "classes_", None) is None:
585
+ output_cols = [output_cols_prefix]
586
+ elif self._sklearn_object is not None:
587
+ classes = self._sklearn_object.classes_
588
+ if isinstance(classes, numpy.ndarray):
589
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
590
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
591
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
592
+ output_cols = []
593
+ for i, cl in enumerate(classes):
594
+ # For binary classification, there is only one output column for each class
595
+ # ndarray as the two classes are complementary.
596
+ if len(cl) == 2:
597
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
598
+ else:
599
+ output_cols.extend([
600
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
601
+ ])
602
+ else:
603
+ output_cols = []
604
+
605
+ # Make sure column names are valid snowflake identifiers.
606
+ assert output_cols is not None # Make MyPy happy
607
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
608
+
609
+ return rv
610
+
611
+ def _align_expected_output_names(
612
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
613
+ ) -> List[str]:
614
+ # in case the inferred output column names dimension is different
615
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
616
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
617
+ output_df_columns = list(output_df_pd.columns)
618
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
619
+ if self.sample_weight_col:
620
+ output_df_columns_set -= set(self.sample_weight_col)
621
+ # if the dimension of inferred output column names is correct; use it
622
+ if len(expected_output_cols_list) == len(output_df_columns_set):
623
+ return expected_output_cols_list
624
+ # otherwise, use the sklearn estimator's output
625
+ else:
626
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
627
+
574
628
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
575
629
  @telemetry.send_api_usage_telemetry(
576
630
  project=_PROJECT,
@@ -601,24 +655,28 @@ class SequentialFeatureSelector(BaseTransformer):
601
655
  # are specific to the type of dataset used.
602
656
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
603
657
 
658
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
659
+
604
660
  if isinstance(dataset, DataFrame):
605
661
  self._deps = self._batch_inference_validate_snowpark(
606
662
  dataset=dataset,
607
663
  inference_method=inference_method,
608
664
  )
609
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
665
+ assert isinstance(
666
+ dataset._session, Session
667
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
610
668
  transform_kwargs = dict(
611
669
  session=dataset._session,
612
670
  dependencies=self._deps,
613
- drop_input_cols = self._drop_input_cols,
671
+ drop_input_cols=self._drop_input_cols,
614
672
  expected_output_cols_type="float",
615
673
  )
674
+ expected_output_cols = self._align_expected_output_names(
675
+ inference_method, dataset, expected_output_cols, output_cols_prefix
676
+ )
616
677
 
617
678
  elif isinstance(dataset, pd.DataFrame):
618
- transform_kwargs = dict(
619
- snowpark_input_cols = self._snowpark_cols,
620
- drop_input_cols = self._drop_input_cols
621
- )
679
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
622
680
 
623
681
  transform_handlers = ModelTransformerBuilder.build(
624
682
  dataset=dataset,
@@ -630,7 +688,7 @@ class SequentialFeatureSelector(BaseTransformer):
630
688
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
631
689
  inference_method=inference_method,
632
690
  input_cols=self.input_cols,
633
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
691
+ expected_output_cols=expected_output_cols,
634
692
  **transform_kwargs
635
693
  )
636
694
  return output_df
@@ -660,7 +718,8 @@ class SequentialFeatureSelector(BaseTransformer):
660
718
  Output dataset with log probability of the sample for each class in the model.
661
719
  """
662
720
  super()._check_dataset_type(dataset)
663
- inference_method="predict_log_proba"
721
+ inference_method = "predict_log_proba"
722
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
664
723
 
665
724
  # This dictionary contains optional kwargs for batch inference. These kwargs
666
725
  # are specific to the type of dataset used.
@@ -671,18 +730,20 @@ class SequentialFeatureSelector(BaseTransformer):
671
730
  dataset=dataset,
672
731
  inference_method=inference_method,
673
732
  )
674
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
733
+ assert isinstance(
734
+ dataset._session, Session
735
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
675
736
  transform_kwargs = dict(
676
737
  session=dataset._session,
677
738
  dependencies=self._deps,
678
- drop_input_cols = self._drop_input_cols,
739
+ drop_input_cols=self._drop_input_cols,
679
740
  expected_output_cols_type="float",
680
741
  )
742
+ expected_output_cols = self._align_expected_output_names(
743
+ inference_method, dataset, expected_output_cols, output_cols_prefix
744
+ )
681
745
  elif isinstance(dataset, pd.DataFrame):
682
- transform_kwargs = dict(
683
- snowpark_input_cols = self._snowpark_cols,
684
- drop_input_cols = self._drop_input_cols
685
- )
746
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
686
747
 
687
748
  transform_handlers = ModelTransformerBuilder.build(
688
749
  dataset=dataset,
@@ -695,7 +756,7 @@ class SequentialFeatureSelector(BaseTransformer):
695
756
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
696
757
  inference_method=inference_method,
697
758
  input_cols=self.input_cols,
698
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
759
+ expected_output_cols=expected_output_cols,
699
760
  **transform_kwargs
700
761
  )
701
762
  return output_df
@@ -721,30 +782,34 @@ class SequentialFeatureSelector(BaseTransformer):
721
782
  Output dataset with results of the decision function for the samples in input dataset.
722
783
  """
723
784
  super()._check_dataset_type(dataset)
724
- inference_method="decision_function"
785
+ inference_method = "decision_function"
725
786
 
726
787
  # This dictionary contains optional kwargs for batch inference. These kwargs
727
788
  # are specific to the type of dataset used.
728
789
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
729
790
 
791
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
792
+
730
793
  if isinstance(dataset, DataFrame):
731
794
  self._deps = self._batch_inference_validate_snowpark(
732
795
  dataset=dataset,
733
796
  inference_method=inference_method,
734
797
  )
735
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
798
+ assert isinstance(
799
+ dataset._session, Session
800
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
736
801
  transform_kwargs = dict(
737
802
  session=dataset._session,
738
803
  dependencies=self._deps,
739
- drop_input_cols = self._drop_input_cols,
804
+ drop_input_cols=self._drop_input_cols,
740
805
  expected_output_cols_type="float",
741
806
  )
807
+ expected_output_cols = self._align_expected_output_names(
808
+ inference_method, dataset, expected_output_cols, output_cols_prefix
809
+ )
742
810
 
743
811
  elif isinstance(dataset, pd.DataFrame):
744
- transform_kwargs = dict(
745
- snowpark_input_cols = self._snowpark_cols,
746
- drop_input_cols = self._drop_input_cols
747
- )
812
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
748
813
 
749
814
  transform_handlers = ModelTransformerBuilder.build(
750
815
  dataset=dataset,
@@ -757,7 +822,7 @@ class SequentialFeatureSelector(BaseTransformer):
757
822
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
758
823
  inference_method=inference_method,
759
824
  input_cols=self.input_cols,
760
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
825
+ expected_output_cols=expected_output_cols,
761
826
  **transform_kwargs
762
827
  )
763
828
  return output_df
@@ -786,12 +851,14 @@ class SequentialFeatureSelector(BaseTransformer):
786
851
  Output dataset with probability of the sample for each class in the model.
787
852
  """
788
853
  super()._check_dataset_type(dataset)
789
- inference_method="score_samples"
854
+ inference_method = "score_samples"
790
855
 
791
856
  # This dictionary contains optional kwargs for batch inference. These kwargs
792
857
  # are specific to the type of dataset used.
793
858
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
794
859
 
860
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
861
+
795
862
  if isinstance(dataset, DataFrame):
796
863
  self._deps = self._batch_inference_validate_snowpark(
797
864
  dataset=dataset,
@@ -804,6 +871,9 @@ class SequentialFeatureSelector(BaseTransformer):
804
871
  drop_input_cols = self._drop_input_cols,
805
872
  expected_output_cols_type="float",
806
873
  )
874
+ expected_output_cols = self._align_expected_output_names(
875
+ inference_method, dataset, expected_output_cols, output_cols_prefix
876
+ )
807
877
 
808
878
  elif isinstance(dataset, pd.DataFrame):
809
879
  transform_kwargs = dict(
@@ -822,7 +892,7 @@ class SequentialFeatureSelector(BaseTransformer):
822
892
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
823
893
  inference_method=inference_method,
824
894
  input_cols=self.input_cols,
825
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
895
+ expected_output_cols=expected_output_cols,
826
896
  **transform_kwargs
827
897
  )
828
898
  return output_df
@@ -967,50 +1037,84 @@ class SequentialFeatureSelector(BaseTransformer):
967
1037
  )
968
1038
  return output_df
969
1039
 
1040
+
1041
+
1042
+ def to_sklearn(self) -> Any:
1043
+ """Get sklearn.feature_selection.SequentialFeatureSelector object.
1044
+ """
1045
+ if self._sklearn_object is None:
1046
+ self._sklearn_object = self._create_sklearn_object()
1047
+ return self._sklearn_object
1048
+
1049
+ def to_xgboost(self) -> Any:
1050
+ raise exceptions.SnowflakeMLException(
1051
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1052
+ original_exception=AttributeError(
1053
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1054
+ "to_xgboost()",
1055
+ "to_sklearn()"
1056
+ )
1057
+ ),
1058
+ )
1059
+
1060
+ def to_lightgbm(self) -> Any:
1061
+ raise exceptions.SnowflakeMLException(
1062
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1063
+ original_exception=AttributeError(
1064
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1065
+ "to_lightgbm()",
1066
+ "to_sklearn()"
1067
+ )
1068
+ ),
1069
+ )
970
1070
 
971
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1071
+ def _get_dependencies(self) -> List[str]:
1072
+ return self._deps
1073
+
1074
+
1075
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
972
1076
  self._model_signature_dict = dict()
973
1077
 
974
1078
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
975
1079
 
976
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1080
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
977
1081
  outputs: List[BaseFeatureSpec] = []
978
1082
  if hasattr(self, "predict"):
979
1083
  # keep mypy happy
980
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1084
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
981
1085
  # For classifier, the type of predict is the same as the type of label
982
- if self._sklearn_object._estimator_type == 'classifier':
983
- # label columns is the desired type for output
1086
+ if self._sklearn_object._estimator_type == "classifier":
1087
+ # label columns is the desired type for output
984
1088
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
985
1089
  # rename the output columns
986
1090
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
987
- self._model_signature_dict["predict"] = ModelSignature(inputs,
988
- ([] if self._drop_input_cols else inputs)
989
- + outputs)
1091
+ self._model_signature_dict["predict"] = ModelSignature(
1092
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1093
+ )
990
1094
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
991
1095
  # For outlier models, returns -1 for outliers and 1 for inliers.
992
- # Clusterer returns int64 cluster labels.
1096
+ # Clusterer returns int64 cluster labels.
993
1097
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
994
1098
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
995
- self._model_signature_dict["predict"] = ModelSignature(inputs,
996
- ([] if self._drop_input_cols else inputs)
997
- + outputs)
998
-
1099
+ self._model_signature_dict["predict"] = ModelSignature(
1100
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1101
+ )
1102
+
999
1103
  # For regressor, the type of predict is float64
1000
- elif self._sklearn_object._estimator_type == 'regressor':
1104
+ elif self._sklearn_object._estimator_type == "regressor":
1001
1105
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1002
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1003
- ([] if self._drop_input_cols else inputs)
1004
- + outputs)
1005
-
1106
+ self._model_signature_dict["predict"] = ModelSignature(
1107
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1108
+ )
1109
+
1006
1110
  for prob_func in PROB_FUNCTIONS:
1007
1111
  if hasattr(self, prob_func):
1008
1112
  output_cols_prefix: str = f"{prob_func}_"
1009
1113
  output_column_names = self._get_output_column_names(output_cols_prefix)
1010
1114
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1011
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1012
- ([] if self._drop_input_cols else inputs)
1013
- + outputs)
1115
+ self._model_signature_dict[prob_func] = ModelSignature(
1116
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1117
+ )
1014
1118
 
1015
1119
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1016
1120
  items = list(self._model_signature_dict.items())
@@ -1023,10 +1127,10 @@ class SequentialFeatureSelector(BaseTransformer):
1023
1127
  """Returns model signature of current class.
1024
1128
 
1025
1129
  Raises:
1026
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1130
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1027
1131
 
1028
1132
  Returns:
1029
- Dict[str, ModelSignature]: each method and its input output signature
1133
+ Dict with each method and its input output signature
1030
1134
  """
1031
1135
  if self._model_signature_dict is None:
1032
1136
  raise exceptions.SnowflakeMLException(
@@ -1034,35 +1138,3 @@ class SequentialFeatureSelector(BaseTransformer):
1034
1138
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1035
1139
  )
1036
1140
  return self._model_signature_dict
1037
-
1038
- def to_sklearn(self) -> Any:
1039
- """Get sklearn.feature_selection.SequentialFeatureSelector object.
1040
- """
1041
- if self._sklearn_object is None:
1042
- self._sklearn_object = self._create_sklearn_object()
1043
- return self._sklearn_object
1044
-
1045
- def to_xgboost(self) -> Any:
1046
- raise exceptions.SnowflakeMLException(
1047
- error_code=error_codes.METHOD_NOT_ALLOWED,
1048
- original_exception=AttributeError(
1049
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1050
- "to_xgboost()",
1051
- "to_sklearn()"
1052
- )
1053
- ),
1054
- )
1055
-
1056
- def to_lightgbm(self) -> Any:
1057
- raise exceptions.SnowflakeMLException(
1058
- error_code=error_codes.METHOD_NOT_ALLOWED,
1059
- original_exception=AttributeError(
1060
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1061
- "to_lightgbm()",
1062
- "to_sklearn()"
1063
- )
1064
- ),
1065
- )
1066
-
1067
- def _get_dependencies(self) -> List[str]:
1068
- return self._deps