snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +151 -78
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +2 -50
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +9 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -263,12 +262,7 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
263
262
|
)
|
264
263
|
return selected_cols
|
265
264
|
|
266
|
-
|
267
|
-
project=_PROJECT,
|
268
|
-
subproject=_SUBPROJECT,
|
269
|
-
custom_tags=dict([("autogen", True)]),
|
270
|
-
)
|
271
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SequentialFeatureSelector":
|
265
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SequentialFeatureSelector":
|
272
266
|
"""Learn the features to select from X
|
273
267
|
For more details on this function, see [sklearn.feature_selection.SequentialFeatureSelector.fit]
|
274
268
|
(https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html#sklearn.feature_selection.SequentialFeatureSelector.fit)
|
@@ -295,12 +289,14 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
295
289
|
|
296
290
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
297
291
|
|
298
|
-
|
292
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
299
293
|
if SNOWML_SPROC_ENV in os.environ:
|
300
294
|
statement_params = telemetry.get_function_usage_statement_params(
|
301
295
|
project=_PROJECT,
|
302
296
|
subproject=_SUBPROJECT,
|
303
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
297
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
298
|
+
inspect.currentframe(), SequentialFeatureSelector.__class__.__name__
|
299
|
+
),
|
304
300
|
api_calls=[Session.call],
|
305
301
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
306
302
|
)
|
@@ -321,7 +317,7 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
321
317
|
)
|
322
318
|
self._sklearn_object = model_trainer.train()
|
323
319
|
self._is_fitted = True
|
324
|
-
self.
|
320
|
+
self._generate_model_signatures(dataset)
|
325
321
|
return self
|
326
322
|
|
327
323
|
def _batch_inference_validate_snowpark(
|
@@ -395,7 +391,9 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
395
391
|
# when it is classifier, infer the datatype from label columns
|
396
392
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
397
393
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
398
|
-
label_cols_signatures = [
|
394
|
+
label_cols_signatures = [
|
395
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
396
|
+
]
|
399
397
|
if len(label_cols_signatures) == 0:
|
400
398
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
401
399
|
raise exceptions.SnowflakeMLException(
|
@@ -403,25 +401,22 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
403
401
|
original_exception=ValueError(error_str),
|
404
402
|
)
|
405
403
|
|
406
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
407
|
-
label_cols_signatures[0].as_snowpark_type()
|
408
|
-
)
|
404
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
409
405
|
|
410
406
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
411
|
-
assert isinstance(
|
407
|
+
assert isinstance(
|
408
|
+
dataset._session, Session
|
409
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
412
410
|
|
413
411
|
transform_kwargs = dict(
|
414
|
-
session
|
415
|
-
dependencies
|
416
|
-
drop_input_cols
|
417
|
-
expected_output_cols_type
|
412
|
+
session=dataset._session,
|
413
|
+
dependencies=self._deps,
|
414
|
+
drop_input_cols=self._drop_input_cols,
|
415
|
+
expected_output_cols_type=expected_type_inferred,
|
418
416
|
)
|
419
417
|
|
420
418
|
elif isinstance(dataset, pd.DataFrame):
|
421
|
-
transform_kwargs = dict(
|
422
|
-
snowpark_input_cols = self._snowpark_cols,
|
423
|
-
drop_input_cols = self._drop_input_cols
|
424
|
-
)
|
419
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
425
420
|
|
426
421
|
transform_handlers = ModelTransformerBuilder.build(
|
427
422
|
dataset=dataset,
|
@@ -463,7 +458,7 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
463
458
|
Transformed dataset.
|
464
459
|
"""
|
465
460
|
super()._check_dataset_type(dataset)
|
466
|
-
inference_method="transform"
|
461
|
+
inference_method = "transform"
|
467
462
|
|
468
463
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
469
464
|
# are specific to the type of dataset used.
|
@@ -500,17 +495,14 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
500
495
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
501
496
|
|
502
497
|
transform_kwargs = dict(
|
503
|
-
session
|
504
|
-
dependencies
|
505
|
-
drop_input_cols
|
506
|
-
expected_output_cols_type
|
498
|
+
session=dataset._session,
|
499
|
+
dependencies=self._deps,
|
500
|
+
drop_input_cols=self._drop_input_cols,
|
501
|
+
expected_output_cols_type=expected_dtype,
|
507
502
|
)
|
508
503
|
|
509
504
|
elif isinstance(dataset, pd.DataFrame):
|
510
|
-
transform_kwargs = dict(
|
511
|
-
snowpark_input_cols = self._snowpark_cols,
|
512
|
-
drop_input_cols = self._drop_input_cols
|
513
|
-
)
|
505
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
514
506
|
|
515
507
|
transform_handlers = ModelTransformerBuilder.build(
|
516
508
|
dataset=dataset,
|
@@ -529,7 +521,11 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
529
521
|
return output_df
|
530
522
|
|
531
523
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
532
|
-
def fit_predict(
|
524
|
+
def fit_predict(
|
525
|
+
self,
|
526
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
527
|
+
output_cols_prefix: str = "fit_predict_",
|
528
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
533
529
|
""" Method not supported for this class.
|
534
530
|
|
535
531
|
|
@@ -554,7 +550,9 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
554
550
|
)
|
555
551
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
556
552
|
drop_input_cols=self._drop_input_cols,
|
557
|
-
expected_output_cols_list=
|
553
|
+
expected_output_cols_list=(
|
554
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
555
|
+
),
|
558
556
|
)
|
559
557
|
self._sklearn_object = fitted_estimator
|
560
558
|
self._is_fitted = True
|
@@ -571,6 +569,62 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
571
569
|
assert self._sklearn_object is not None
|
572
570
|
return self._sklearn_object.embedding_
|
573
571
|
|
572
|
+
|
573
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
574
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
575
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
576
|
+
"""
|
577
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
578
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
579
|
+
if output_cols:
|
580
|
+
output_cols = [
|
581
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
582
|
+
for c in output_cols
|
583
|
+
]
|
584
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
585
|
+
output_cols = [output_cols_prefix]
|
586
|
+
elif self._sklearn_object is not None:
|
587
|
+
classes = self._sklearn_object.classes_
|
588
|
+
if isinstance(classes, numpy.ndarray):
|
589
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
590
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
591
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
592
|
+
output_cols = []
|
593
|
+
for i, cl in enumerate(classes):
|
594
|
+
# For binary classification, there is only one output column for each class
|
595
|
+
# ndarray as the two classes are complementary.
|
596
|
+
if len(cl) == 2:
|
597
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
598
|
+
else:
|
599
|
+
output_cols.extend([
|
600
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
601
|
+
])
|
602
|
+
else:
|
603
|
+
output_cols = []
|
604
|
+
|
605
|
+
# Make sure column names are valid snowflake identifiers.
|
606
|
+
assert output_cols is not None # Make MyPy happy
|
607
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
608
|
+
|
609
|
+
return rv
|
610
|
+
|
611
|
+
def _align_expected_output_names(
|
612
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
613
|
+
) -> List[str]:
|
614
|
+
# in case the inferred output column names dimension is different
|
615
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
616
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
617
|
+
output_df_columns = list(output_df_pd.columns)
|
618
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
619
|
+
if self.sample_weight_col:
|
620
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
621
|
+
# if the dimension of inferred output column names is correct; use it
|
622
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
623
|
+
return expected_output_cols_list
|
624
|
+
# otherwise, use the sklearn estimator's output
|
625
|
+
else:
|
626
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
627
|
+
|
574
628
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
575
629
|
@telemetry.send_api_usage_telemetry(
|
576
630
|
project=_PROJECT,
|
@@ -601,24 +655,28 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
601
655
|
# are specific to the type of dataset used.
|
602
656
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
603
657
|
|
658
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
659
|
+
|
604
660
|
if isinstance(dataset, DataFrame):
|
605
661
|
self._deps = self._batch_inference_validate_snowpark(
|
606
662
|
dataset=dataset,
|
607
663
|
inference_method=inference_method,
|
608
664
|
)
|
609
|
-
assert isinstance(
|
665
|
+
assert isinstance(
|
666
|
+
dataset._session, Session
|
667
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
610
668
|
transform_kwargs = dict(
|
611
669
|
session=dataset._session,
|
612
670
|
dependencies=self._deps,
|
613
|
-
drop_input_cols
|
671
|
+
drop_input_cols=self._drop_input_cols,
|
614
672
|
expected_output_cols_type="float",
|
615
673
|
)
|
674
|
+
expected_output_cols = self._align_expected_output_names(
|
675
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
676
|
+
)
|
616
677
|
|
617
678
|
elif isinstance(dataset, pd.DataFrame):
|
618
|
-
transform_kwargs = dict(
|
619
|
-
snowpark_input_cols = self._snowpark_cols,
|
620
|
-
drop_input_cols = self._drop_input_cols
|
621
|
-
)
|
679
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
622
680
|
|
623
681
|
transform_handlers = ModelTransformerBuilder.build(
|
624
682
|
dataset=dataset,
|
@@ -630,7 +688,7 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
630
688
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
631
689
|
inference_method=inference_method,
|
632
690
|
input_cols=self.input_cols,
|
633
|
-
expected_output_cols=
|
691
|
+
expected_output_cols=expected_output_cols,
|
634
692
|
**transform_kwargs
|
635
693
|
)
|
636
694
|
return output_df
|
@@ -660,7 +718,8 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
660
718
|
Output dataset with log probability of the sample for each class in the model.
|
661
719
|
"""
|
662
720
|
super()._check_dataset_type(dataset)
|
663
|
-
inference_method="predict_log_proba"
|
721
|
+
inference_method = "predict_log_proba"
|
722
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
664
723
|
|
665
724
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
666
725
|
# are specific to the type of dataset used.
|
@@ -671,18 +730,20 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
671
730
|
dataset=dataset,
|
672
731
|
inference_method=inference_method,
|
673
732
|
)
|
674
|
-
assert isinstance(
|
733
|
+
assert isinstance(
|
734
|
+
dataset._session, Session
|
735
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
675
736
|
transform_kwargs = dict(
|
676
737
|
session=dataset._session,
|
677
738
|
dependencies=self._deps,
|
678
|
-
drop_input_cols
|
739
|
+
drop_input_cols=self._drop_input_cols,
|
679
740
|
expected_output_cols_type="float",
|
680
741
|
)
|
742
|
+
expected_output_cols = self._align_expected_output_names(
|
743
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
744
|
+
)
|
681
745
|
elif isinstance(dataset, pd.DataFrame):
|
682
|
-
transform_kwargs = dict(
|
683
|
-
snowpark_input_cols = self._snowpark_cols,
|
684
|
-
drop_input_cols = self._drop_input_cols
|
685
|
-
)
|
746
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
686
747
|
|
687
748
|
transform_handlers = ModelTransformerBuilder.build(
|
688
749
|
dataset=dataset,
|
@@ -695,7 +756,7 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
695
756
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
696
757
|
inference_method=inference_method,
|
697
758
|
input_cols=self.input_cols,
|
698
|
-
expected_output_cols=
|
759
|
+
expected_output_cols=expected_output_cols,
|
699
760
|
**transform_kwargs
|
700
761
|
)
|
701
762
|
return output_df
|
@@ -721,30 +782,34 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
721
782
|
Output dataset with results of the decision function for the samples in input dataset.
|
722
783
|
"""
|
723
784
|
super()._check_dataset_type(dataset)
|
724
|
-
inference_method="decision_function"
|
785
|
+
inference_method = "decision_function"
|
725
786
|
|
726
787
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
727
788
|
# are specific to the type of dataset used.
|
728
789
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
729
790
|
|
791
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
792
|
+
|
730
793
|
if isinstance(dataset, DataFrame):
|
731
794
|
self._deps = self._batch_inference_validate_snowpark(
|
732
795
|
dataset=dataset,
|
733
796
|
inference_method=inference_method,
|
734
797
|
)
|
735
|
-
assert isinstance(
|
798
|
+
assert isinstance(
|
799
|
+
dataset._session, Session
|
800
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
736
801
|
transform_kwargs = dict(
|
737
802
|
session=dataset._session,
|
738
803
|
dependencies=self._deps,
|
739
|
-
drop_input_cols
|
804
|
+
drop_input_cols=self._drop_input_cols,
|
740
805
|
expected_output_cols_type="float",
|
741
806
|
)
|
807
|
+
expected_output_cols = self._align_expected_output_names(
|
808
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
809
|
+
)
|
742
810
|
|
743
811
|
elif isinstance(dataset, pd.DataFrame):
|
744
|
-
transform_kwargs = dict(
|
745
|
-
snowpark_input_cols = self._snowpark_cols,
|
746
|
-
drop_input_cols = self._drop_input_cols
|
747
|
-
)
|
812
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
748
813
|
|
749
814
|
transform_handlers = ModelTransformerBuilder.build(
|
750
815
|
dataset=dataset,
|
@@ -757,7 +822,7 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
757
822
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
758
823
|
inference_method=inference_method,
|
759
824
|
input_cols=self.input_cols,
|
760
|
-
expected_output_cols=
|
825
|
+
expected_output_cols=expected_output_cols,
|
761
826
|
**transform_kwargs
|
762
827
|
)
|
763
828
|
return output_df
|
@@ -786,12 +851,14 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
786
851
|
Output dataset with probability of the sample for each class in the model.
|
787
852
|
"""
|
788
853
|
super()._check_dataset_type(dataset)
|
789
|
-
inference_method="score_samples"
|
854
|
+
inference_method = "score_samples"
|
790
855
|
|
791
856
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
792
857
|
# are specific to the type of dataset used.
|
793
858
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
794
859
|
|
860
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
861
|
+
|
795
862
|
if isinstance(dataset, DataFrame):
|
796
863
|
self._deps = self._batch_inference_validate_snowpark(
|
797
864
|
dataset=dataset,
|
@@ -804,6 +871,9 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
804
871
|
drop_input_cols = self._drop_input_cols,
|
805
872
|
expected_output_cols_type="float",
|
806
873
|
)
|
874
|
+
expected_output_cols = self._align_expected_output_names(
|
875
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
876
|
+
)
|
807
877
|
|
808
878
|
elif isinstance(dataset, pd.DataFrame):
|
809
879
|
transform_kwargs = dict(
|
@@ -822,7 +892,7 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
822
892
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
823
893
|
inference_method=inference_method,
|
824
894
|
input_cols=self.input_cols,
|
825
|
-
expected_output_cols=
|
895
|
+
expected_output_cols=expected_output_cols,
|
826
896
|
**transform_kwargs
|
827
897
|
)
|
828
898
|
return output_df
|
@@ -967,50 +1037,84 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
967
1037
|
)
|
968
1038
|
return output_df
|
969
1039
|
|
1040
|
+
|
1041
|
+
|
1042
|
+
def to_sklearn(self) -> Any:
|
1043
|
+
"""Get sklearn.feature_selection.SequentialFeatureSelector object.
|
1044
|
+
"""
|
1045
|
+
if self._sklearn_object is None:
|
1046
|
+
self._sklearn_object = self._create_sklearn_object()
|
1047
|
+
return self._sklearn_object
|
1048
|
+
|
1049
|
+
def to_xgboost(self) -> Any:
|
1050
|
+
raise exceptions.SnowflakeMLException(
|
1051
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1052
|
+
original_exception=AttributeError(
|
1053
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1054
|
+
"to_xgboost()",
|
1055
|
+
"to_sklearn()"
|
1056
|
+
)
|
1057
|
+
),
|
1058
|
+
)
|
1059
|
+
|
1060
|
+
def to_lightgbm(self) -> Any:
|
1061
|
+
raise exceptions.SnowflakeMLException(
|
1062
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1063
|
+
original_exception=AttributeError(
|
1064
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1065
|
+
"to_lightgbm()",
|
1066
|
+
"to_sklearn()"
|
1067
|
+
)
|
1068
|
+
),
|
1069
|
+
)
|
970
1070
|
|
971
|
-
def
|
1071
|
+
def _get_dependencies(self) -> List[str]:
|
1072
|
+
return self._deps
|
1073
|
+
|
1074
|
+
|
1075
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
972
1076
|
self._model_signature_dict = dict()
|
973
1077
|
|
974
1078
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
975
1079
|
|
976
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1080
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
977
1081
|
outputs: List[BaseFeatureSpec] = []
|
978
1082
|
if hasattr(self, "predict"):
|
979
1083
|
# keep mypy happy
|
980
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1084
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
981
1085
|
# For classifier, the type of predict is the same as the type of label
|
982
|
-
if self._sklearn_object._estimator_type ==
|
983
|
-
|
1086
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1087
|
+
# label columns is the desired type for output
|
984
1088
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
985
1089
|
# rename the output columns
|
986
1090
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
987
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
988
|
-
|
989
|
-
|
1091
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1092
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1093
|
+
)
|
990
1094
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
991
1095
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
992
|
-
# Clusterer returns int64 cluster labels.
|
1096
|
+
# Clusterer returns int64 cluster labels.
|
993
1097
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
994
1098
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
995
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
996
|
-
|
997
|
-
|
998
|
-
|
1099
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1100
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1101
|
+
)
|
1102
|
+
|
999
1103
|
# For regressor, the type of predict is float64
|
1000
|
-
elif self._sklearn_object._estimator_type ==
|
1104
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1001
1105
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1002
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1003
|
-
|
1004
|
-
|
1005
|
-
|
1106
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1107
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1108
|
+
)
|
1109
|
+
|
1006
1110
|
for prob_func in PROB_FUNCTIONS:
|
1007
1111
|
if hasattr(self, prob_func):
|
1008
1112
|
output_cols_prefix: str = f"{prob_func}_"
|
1009
1113
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1010
1114
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1011
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1012
|
-
|
1013
|
-
|
1115
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1116
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1117
|
+
)
|
1014
1118
|
|
1015
1119
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1016
1120
|
items = list(self._model_signature_dict.items())
|
@@ -1023,10 +1127,10 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
1023
1127
|
"""Returns model signature of current class.
|
1024
1128
|
|
1025
1129
|
Raises:
|
1026
|
-
|
1130
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1027
1131
|
|
1028
1132
|
Returns:
|
1029
|
-
Dict
|
1133
|
+
Dict with each method and its input output signature
|
1030
1134
|
"""
|
1031
1135
|
if self._model_signature_dict is None:
|
1032
1136
|
raise exceptions.SnowflakeMLException(
|
@@ -1034,35 +1138,3 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
1034
1138
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1035
1139
|
)
|
1036
1140
|
return self._model_signature_dict
|
1037
|
-
|
1038
|
-
def to_sklearn(self) -> Any:
|
1039
|
-
"""Get sklearn.feature_selection.SequentialFeatureSelector object.
|
1040
|
-
"""
|
1041
|
-
if self._sklearn_object is None:
|
1042
|
-
self._sklearn_object = self._create_sklearn_object()
|
1043
|
-
return self._sklearn_object
|
1044
|
-
|
1045
|
-
def to_xgboost(self) -> Any:
|
1046
|
-
raise exceptions.SnowflakeMLException(
|
1047
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1048
|
-
original_exception=AttributeError(
|
1049
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1050
|
-
"to_xgboost()",
|
1051
|
-
"to_sklearn()"
|
1052
|
-
)
|
1053
|
-
),
|
1054
|
-
)
|
1055
|
-
|
1056
|
-
def to_lightgbm(self) -> Any:
|
1057
|
-
raise exceptions.SnowflakeMLException(
|
1058
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1059
|
-
original_exception=AttributeError(
|
1060
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1061
|
-
"to_lightgbm()",
|
1062
|
-
"to_sklearn()"
|
1063
|
-
)
|
1064
|
-
),
|
1065
|
-
)
|
1066
|
-
|
1067
|
-
def _get_dependencies(self) -> List[str]:
|
1068
|
-
return self._deps
|