snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -280,12 +279,7 @@ class LocalOutlierFactor(BaseTransformer):
280
279
  )
281
280
  return selected_cols
282
281
 
283
- @telemetry.send_api_usage_telemetry(
284
- project=_PROJECT,
285
- subproject=_SUBPROJECT,
286
- custom_tags=dict([("autogen", True)]),
287
- )
288
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LocalOutlierFactor":
282
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LocalOutlierFactor":
289
283
  """Fit the local outlier factor detector from the training dataset
290
284
  For more details on this function, see [sklearn.neighbors.LocalOutlierFactor.fit]
291
285
  (https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html#sklearn.neighbors.LocalOutlierFactor.fit)
@@ -312,12 +306,14 @@ class LocalOutlierFactor(BaseTransformer):
312
306
 
313
307
  self._snowpark_cols = dataset.select(self.input_cols).columns
314
308
 
315
- # If we are already in a stored procedure, no need to kick off another one.
309
+ # If we are already in a stored procedure, no need to kick off another one.
316
310
  if SNOWML_SPROC_ENV in os.environ:
317
311
  statement_params = telemetry.get_function_usage_statement_params(
318
312
  project=_PROJECT,
319
313
  subproject=_SUBPROJECT,
320
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LocalOutlierFactor.__class__.__name__),
314
+ function_name=telemetry.get_statement_params_full_func_name(
315
+ inspect.currentframe(), LocalOutlierFactor.__class__.__name__
316
+ ),
321
317
  api_calls=[Session.call],
322
318
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
323
319
  )
@@ -338,7 +334,7 @@ class LocalOutlierFactor(BaseTransformer):
338
334
  )
339
335
  self._sklearn_object = model_trainer.train()
340
336
  self._is_fitted = True
341
- self._get_model_signatures(dataset)
337
+ self._generate_model_signatures(dataset)
342
338
  return self
343
339
 
344
340
  def _batch_inference_validate_snowpark(
@@ -414,7 +410,9 @@ class LocalOutlierFactor(BaseTransformer):
414
410
  # when it is classifier, infer the datatype from label columns
415
411
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
416
412
  # Batch inference takes a single expected output column type. Use the first columns type for now.
417
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
413
+ label_cols_signatures = [
414
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
415
+ ]
418
416
  if len(label_cols_signatures) == 0:
419
417
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
420
418
  raise exceptions.SnowflakeMLException(
@@ -422,25 +420,22 @@ class LocalOutlierFactor(BaseTransformer):
422
420
  original_exception=ValueError(error_str),
423
421
  )
424
422
 
425
- expected_type_inferred = convert_sp_to_sf_type(
426
- label_cols_signatures[0].as_snowpark_type()
427
- )
423
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
428
424
 
429
425
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
430
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
426
+ assert isinstance(
427
+ dataset._session, Session
428
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
431
429
 
432
430
  transform_kwargs = dict(
433
- session = dataset._session,
434
- dependencies = self._deps,
435
- drop_input_cols = self._drop_input_cols,
436
- expected_output_cols_type = expected_type_inferred,
431
+ session=dataset._session,
432
+ dependencies=self._deps,
433
+ drop_input_cols=self._drop_input_cols,
434
+ expected_output_cols_type=expected_type_inferred,
437
435
  )
438
436
 
439
437
  elif isinstance(dataset, pd.DataFrame):
440
- transform_kwargs = dict(
441
- snowpark_input_cols = self._snowpark_cols,
442
- drop_input_cols = self._drop_input_cols
443
- )
438
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
444
439
 
445
440
  transform_handlers = ModelTransformerBuilder.build(
446
441
  dataset=dataset,
@@ -480,7 +475,7 @@ class LocalOutlierFactor(BaseTransformer):
480
475
  Transformed dataset.
481
476
  """
482
477
  super()._check_dataset_type(dataset)
483
- inference_method="transform"
478
+ inference_method = "transform"
484
479
 
485
480
  # This dictionary contains optional kwargs for batch inference. These kwargs
486
481
  # are specific to the type of dataset used.
@@ -517,17 +512,14 @@ class LocalOutlierFactor(BaseTransformer):
517
512
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
518
513
 
519
514
  transform_kwargs = dict(
520
- session = dataset._session,
521
- dependencies = self._deps,
522
- drop_input_cols = self._drop_input_cols,
523
- expected_output_cols_type = expected_dtype,
515
+ session=dataset._session,
516
+ dependencies=self._deps,
517
+ drop_input_cols=self._drop_input_cols,
518
+ expected_output_cols_type=expected_dtype,
524
519
  )
525
520
 
526
521
  elif isinstance(dataset, pd.DataFrame):
527
- transform_kwargs = dict(
528
- snowpark_input_cols = self._snowpark_cols,
529
- drop_input_cols = self._drop_input_cols
530
- )
522
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
531
523
 
532
524
  transform_handlers = ModelTransformerBuilder.build(
533
525
  dataset=dataset,
@@ -546,7 +538,11 @@ class LocalOutlierFactor(BaseTransformer):
546
538
  return output_df
547
539
 
548
540
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
549
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
541
+ def fit_predict(
542
+ self,
543
+ dataset: Union[DataFrame, pd.DataFrame],
544
+ output_cols_prefix: str = "fit_predict_",
545
+ ) -> Union[DataFrame, pd.DataFrame]:
550
546
  """ Fit the model to the training set X and return the labels
551
547
  For more details on this function, see [sklearn.neighbors.LocalOutlierFactor.fit_predict]
552
548
  (https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html#sklearn.neighbors.LocalOutlierFactor.fit_predict)
@@ -573,7 +569,9 @@ class LocalOutlierFactor(BaseTransformer):
573
569
  )
574
570
  output_result, fitted_estimator = model_trainer.train_fit_predict(
575
571
  drop_input_cols=self._drop_input_cols,
576
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
572
+ expected_output_cols_list=(
573
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
574
+ ),
577
575
  )
578
576
  self._sklearn_object = fitted_estimator
579
577
  self._is_fitted = True
@@ -590,6 +588,62 @@ class LocalOutlierFactor(BaseTransformer):
590
588
  assert self._sklearn_object is not None
591
589
  return self._sklearn_object.embedding_
592
590
 
591
+
592
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
593
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
594
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
595
+ """
596
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
597
+ # The following condition is introduced for kneighbors methods, and not used in other methods
598
+ if output_cols:
599
+ output_cols = [
600
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
601
+ for c in output_cols
602
+ ]
603
+ elif getattr(self._sklearn_object, "classes_", None) is None:
604
+ output_cols = [output_cols_prefix]
605
+ elif self._sklearn_object is not None:
606
+ classes = self._sklearn_object.classes_
607
+ if isinstance(classes, numpy.ndarray):
608
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
609
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
610
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
611
+ output_cols = []
612
+ for i, cl in enumerate(classes):
613
+ # For binary classification, there is only one output column for each class
614
+ # ndarray as the two classes are complementary.
615
+ if len(cl) == 2:
616
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
617
+ else:
618
+ output_cols.extend([
619
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
620
+ ])
621
+ else:
622
+ output_cols = []
623
+
624
+ # Make sure column names are valid snowflake identifiers.
625
+ assert output_cols is not None # Make MyPy happy
626
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
627
+
628
+ return rv
629
+
630
+ def _align_expected_output_names(
631
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
632
+ ) -> List[str]:
633
+ # in case the inferred output column names dimension is different
634
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
635
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
636
+ output_df_columns = list(output_df_pd.columns)
637
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
638
+ if self.sample_weight_col:
639
+ output_df_columns_set -= set(self.sample_weight_col)
640
+ # if the dimension of inferred output column names is correct; use it
641
+ if len(expected_output_cols_list) == len(output_df_columns_set):
642
+ return expected_output_cols_list
643
+ # otherwise, use the sklearn estimator's output
644
+ else:
645
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
646
+
593
647
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
594
648
  @telemetry.send_api_usage_telemetry(
595
649
  project=_PROJECT,
@@ -620,24 +674,28 @@ class LocalOutlierFactor(BaseTransformer):
620
674
  # are specific to the type of dataset used.
621
675
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
622
676
 
677
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
678
+
623
679
  if isinstance(dataset, DataFrame):
624
680
  self._deps = self._batch_inference_validate_snowpark(
625
681
  dataset=dataset,
626
682
  inference_method=inference_method,
627
683
  )
628
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
684
+ assert isinstance(
685
+ dataset._session, Session
686
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
629
687
  transform_kwargs = dict(
630
688
  session=dataset._session,
631
689
  dependencies=self._deps,
632
- drop_input_cols = self._drop_input_cols,
690
+ drop_input_cols=self._drop_input_cols,
633
691
  expected_output_cols_type="float",
634
692
  )
693
+ expected_output_cols = self._align_expected_output_names(
694
+ inference_method, dataset, expected_output_cols, output_cols_prefix
695
+ )
635
696
 
636
697
  elif isinstance(dataset, pd.DataFrame):
637
- transform_kwargs = dict(
638
- snowpark_input_cols = self._snowpark_cols,
639
- drop_input_cols = self._drop_input_cols
640
- )
698
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
641
699
 
642
700
  transform_handlers = ModelTransformerBuilder.build(
643
701
  dataset=dataset,
@@ -649,7 +707,7 @@ class LocalOutlierFactor(BaseTransformer):
649
707
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
650
708
  inference_method=inference_method,
651
709
  input_cols=self.input_cols,
652
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
710
+ expected_output_cols=expected_output_cols,
653
711
  **transform_kwargs
654
712
  )
655
713
  return output_df
@@ -679,7 +737,8 @@ class LocalOutlierFactor(BaseTransformer):
679
737
  Output dataset with log probability of the sample for each class in the model.
680
738
  """
681
739
  super()._check_dataset_type(dataset)
682
- inference_method="predict_log_proba"
740
+ inference_method = "predict_log_proba"
741
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
683
742
 
684
743
  # This dictionary contains optional kwargs for batch inference. These kwargs
685
744
  # are specific to the type of dataset used.
@@ -690,18 +749,20 @@ class LocalOutlierFactor(BaseTransformer):
690
749
  dataset=dataset,
691
750
  inference_method=inference_method,
692
751
  )
693
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
752
+ assert isinstance(
753
+ dataset._session, Session
754
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
694
755
  transform_kwargs = dict(
695
756
  session=dataset._session,
696
757
  dependencies=self._deps,
697
- drop_input_cols = self._drop_input_cols,
758
+ drop_input_cols=self._drop_input_cols,
698
759
  expected_output_cols_type="float",
699
760
  )
761
+ expected_output_cols = self._align_expected_output_names(
762
+ inference_method, dataset, expected_output_cols, output_cols_prefix
763
+ )
700
764
  elif isinstance(dataset, pd.DataFrame):
701
- transform_kwargs = dict(
702
- snowpark_input_cols = self._snowpark_cols,
703
- drop_input_cols = self._drop_input_cols
704
- )
765
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
705
766
 
706
767
  transform_handlers = ModelTransformerBuilder.build(
707
768
  dataset=dataset,
@@ -714,7 +775,7 @@ class LocalOutlierFactor(BaseTransformer):
714
775
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
715
776
  inference_method=inference_method,
716
777
  input_cols=self.input_cols,
717
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
778
+ expected_output_cols=expected_output_cols,
718
779
  **transform_kwargs
719
780
  )
720
781
  return output_df
@@ -742,30 +803,34 @@ class LocalOutlierFactor(BaseTransformer):
742
803
  Output dataset with results of the decision function for the samples in input dataset.
743
804
  """
744
805
  super()._check_dataset_type(dataset)
745
- inference_method="decision_function"
806
+ inference_method = "decision_function"
746
807
 
747
808
  # This dictionary contains optional kwargs for batch inference. These kwargs
748
809
  # are specific to the type of dataset used.
749
810
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
750
811
 
812
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
813
+
751
814
  if isinstance(dataset, DataFrame):
752
815
  self._deps = self._batch_inference_validate_snowpark(
753
816
  dataset=dataset,
754
817
  inference_method=inference_method,
755
818
  )
756
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
819
+ assert isinstance(
820
+ dataset._session, Session
821
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
757
822
  transform_kwargs = dict(
758
823
  session=dataset._session,
759
824
  dependencies=self._deps,
760
- drop_input_cols = self._drop_input_cols,
825
+ drop_input_cols=self._drop_input_cols,
761
826
  expected_output_cols_type="float",
762
827
  )
828
+ expected_output_cols = self._align_expected_output_names(
829
+ inference_method, dataset, expected_output_cols, output_cols_prefix
830
+ )
763
831
 
764
832
  elif isinstance(dataset, pd.DataFrame):
765
- transform_kwargs = dict(
766
- snowpark_input_cols = self._snowpark_cols,
767
- drop_input_cols = self._drop_input_cols
768
- )
833
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
769
834
 
770
835
  transform_handlers = ModelTransformerBuilder.build(
771
836
  dataset=dataset,
@@ -778,7 +843,7 @@ class LocalOutlierFactor(BaseTransformer):
778
843
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
779
844
  inference_method=inference_method,
780
845
  input_cols=self.input_cols,
781
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
846
+ expected_output_cols=expected_output_cols,
782
847
  **transform_kwargs
783
848
  )
784
849
  return output_df
@@ -809,12 +874,14 @@ class LocalOutlierFactor(BaseTransformer):
809
874
  Output dataset with probability of the sample for each class in the model.
810
875
  """
811
876
  super()._check_dataset_type(dataset)
812
- inference_method="score_samples"
877
+ inference_method = "score_samples"
813
878
 
814
879
  # This dictionary contains optional kwargs for batch inference. These kwargs
815
880
  # are specific to the type of dataset used.
816
881
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
817
882
 
883
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
884
+
818
885
  if isinstance(dataset, DataFrame):
819
886
  self._deps = self._batch_inference_validate_snowpark(
820
887
  dataset=dataset,
@@ -827,6 +894,9 @@ class LocalOutlierFactor(BaseTransformer):
827
894
  drop_input_cols = self._drop_input_cols,
828
895
  expected_output_cols_type="float",
829
896
  )
897
+ expected_output_cols = self._align_expected_output_names(
898
+ inference_method, dataset, expected_output_cols, output_cols_prefix
899
+ )
830
900
 
831
901
  elif isinstance(dataset, pd.DataFrame):
832
902
  transform_kwargs = dict(
@@ -845,7 +915,7 @@ class LocalOutlierFactor(BaseTransformer):
845
915
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
846
916
  inference_method=inference_method,
847
917
  input_cols=self.input_cols,
848
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
918
+ expected_output_cols=expected_output_cols,
849
919
  **transform_kwargs
850
920
  )
851
921
  return output_df
@@ -992,50 +1062,84 @@ class LocalOutlierFactor(BaseTransformer):
992
1062
  )
993
1063
  return output_df
994
1064
 
1065
+
1066
+
1067
+ def to_sklearn(self) -> Any:
1068
+ """Get sklearn.neighbors.LocalOutlierFactor object.
1069
+ """
1070
+ if self._sklearn_object is None:
1071
+ self._sklearn_object = self._create_sklearn_object()
1072
+ return self._sklearn_object
1073
+
1074
+ def to_xgboost(self) -> Any:
1075
+ raise exceptions.SnowflakeMLException(
1076
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1077
+ original_exception=AttributeError(
1078
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1079
+ "to_xgboost()",
1080
+ "to_sklearn()"
1081
+ )
1082
+ ),
1083
+ )
1084
+
1085
+ def to_lightgbm(self) -> Any:
1086
+ raise exceptions.SnowflakeMLException(
1087
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1088
+ original_exception=AttributeError(
1089
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1090
+ "to_lightgbm()",
1091
+ "to_sklearn()"
1092
+ )
1093
+ ),
1094
+ )
995
1095
 
996
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1096
+ def _get_dependencies(self) -> List[str]:
1097
+ return self._deps
1098
+
1099
+
1100
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
997
1101
  self._model_signature_dict = dict()
998
1102
 
999
1103
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1000
1104
 
1001
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1105
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1002
1106
  outputs: List[BaseFeatureSpec] = []
1003
1107
  if hasattr(self, "predict"):
1004
1108
  # keep mypy happy
1005
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1109
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1006
1110
  # For classifier, the type of predict is the same as the type of label
1007
- if self._sklearn_object._estimator_type == 'classifier':
1008
- # label columns is the desired type for output
1111
+ if self._sklearn_object._estimator_type == "classifier":
1112
+ # label columns is the desired type for output
1009
1113
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1010
1114
  # rename the output columns
1011
1115
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1012
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1013
- ([] if self._drop_input_cols else inputs)
1014
- + outputs)
1116
+ self._model_signature_dict["predict"] = ModelSignature(
1117
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1118
+ )
1015
1119
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1016
1120
  # For outlier models, returns -1 for outliers and 1 for inliers.
1017
- # Clusterer returns int64 cluster labels.
1121
+ # Clusterer returns int64 cluster labels.
1018
1122
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1019
1123
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1020
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1021
- ([] if self._drop_input_cols else inputs)
1022
- + outputs)
1023
-
1124
+ self._model_signature_dict["predict"] = ModelSignature(
1125
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1126
+ )
1127
+
1024
1128
  # For regressor, the type of predict is float64
1025
- elif self._sklearn_object._estimator_type == 'regressor':
1129
+ elif self._sklearn_object._estimator_type == "regressor":
1026
1130
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1027
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1028
- ([] if self._drop_input_cols else inputs)
1029
- + outputs)
1030
-
1131
+ self._model_signature_dict["predict"] = ModelSignature(
1132
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1133
+ )
1134
+
1031
1135
  for prob_func in PROB_FUNCTIONS:
1032
1136
  if hasattr(self, prob_func):
1033
1137
  output_cols_prefix: str = f"{prob_func}_"
1034
1138
  output_column_names = self._get_output_column_names(output_cols_prefix)
1035
1139
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1036
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1037
- ([] if self._drop_input_cols else inputs)
1038
- + outputs)
1140
+ self._model_signature_dict[prob_func] = ModelSignature(
1141
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1142
+ )
1039
1143
 
1040
1144
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1041
1145
  items = list(self._model_signature_dict.items())
@@ -1048,10 +1152,10 @@ class LocalOutlierFactor(BaseTransformer):
1048
1152
  """Returns model signature of current class.
1049
1153
 
1050
1154
  Raises:
1051
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1155
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1052
1156
 
1053
1157
  Returns:
1054
- Dict[str, ModelSignature]: each method and its input output signature
1158
+ Dict with each method and its input output signature
1055
1159
  """
1056
1160
  if self._model_signature_dict is None:
1057
1161
  raise exceptions.SnowflakeMLException(
@@ -1059,35 +1163,3 @@ class LocalOutlierFactor(BaseTransformer):
1059
1163
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1060
1164
  )
1061
1165
  return self._model_signature_dict
1062
-
1063
- def to_sklearn(self) -> Any:
1064
- """Get sklearn.neighbors.LocalOutlierFactor object.
1065
- """
1066
- if self._sklearn_object is None:
1067
- self._sklearn_object = self._create_sklearn_object()
1068
- return self._sklearn_object
1069
-
1070
- def to_xgboost(self) -> Any:
1071
- raise exceptions.SnowflakeMLException(
1072
- error_code=error_codes.METHOD_NOT_ALLOWED,
1073
- original_exception=AttributeError(
1074
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1075
- "to_xgboost()",
1076
- "to_sklearn()"
1077
- )
1078
- ),
1079
- )
1080
-
1081
- def to_lightgbm(self) -> Any:
1082
- raise exceptions.SnowflakeMLException(
1083
- error_code=error_codes.METHOD_NOT_ALLOWED,
1084
- original_exception=AttributeError(
1085
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1086
- "to_lightgbm()",
1087
- "to_sklearn()"
1088
- )
1089
- ),
1090
- )
1091
-
1092
- def _get_dependencies(self) -> List[str]:
1093
- return self._deps